1. Field of the Invention
The present invention relates generally to sheet metal fabrication tools and methods, and, more particularly to an adapter that is used with a hammer drill for driving any one of a plurality of different types of cleats onto the opposing ends of two sheet metal sections that are to be joined together and used in typical heating ventilation and air-condition (HVAC) applications.
2. Description of the Related Art
In HVAC applications and the installation of other types of air flow systems, both the sections of the air ducts that are-to-be-joined and the cleats that are used to hold them together are typically made from galvanized steel, aluminum or stainless steel. The ends of the duct sections that are to be joined are typically configured to have a lip, an indentation or other configuration in order to help in joining the sections to the cleats.
Until relatively recently, a common handheld hammer was used to impact the end of a cleat in order to drive it onto the sometimes especially configured and adjoining ends of the sections that were to be joined together with a cleat. Since air ducts are typically overhead, sheet metal workers typically had to stand on a ladder to drive the cleat. Using a repetitive, upward shoulder force, the sheet metal worker would swing a hammer impacting one end of the cleat so as to force it into position connecting the ducts.
However, this method was time consuming, the cleats were difficult to maneuver and sometimes led to bent cleats during the installation process. In addition, this repetitive, overhead, manual, impact motion was physically very stressful for the sheet metal worker and would sometimes cause shoulder and other injuries to the workers tasked with installing the cleats.
The recent development of a “hammer drill” and its associated adapters has made the task of installing some types of cleats much less stressful on the installer or sheet metal worker. This situation is such because the hammer drill, that is now sometimes used in such applications, is designed to have its chuck move forward and backward on the centerline of the drill in order to apply a series of relatively small amplitude, but high frequency hammering motions that help to allow anything that is being held by and protruding forward from the drill's chuck to be moved forward when comparatively small amounts of pressure are applied in a forward direction to the hammer drill's grip.
However, the use of such hammer drill is still relatively limited because the adapters that have been designed to be used with them, see U.S. Patent Publication Nos. (USPPN) 20180043520 and 20090188690, can still not handle a wide range of differing types of cleats and there still are problems with bending the cleats when using such hammer drills & the current adapters to install the cleats.
What is needed are improved hammer drill adapters and the methods for installing such cleats. These needed, improved adapters and their methods need to accommodate a wider range of differing types of adapters, reduce the incidences of bent cleats when trying to install them, reduce the time required to safely install such cleats, and further reduce the resulting impact forces and stresses applied to the sheet metal workers who install such cleats.
Recognizing the need for the development of improved hammer drill adapters, the present invention seeks to provide such improved hammer drill adapters.
In accordance with a preferred embodiment of the present invention, an improved hammer drill adapter, that is to be inserted into the variable-diameter, chuck end of a hammer drill for driving forward any one of a plurality of different types of sheet metal cleats to join the opposing ends of two sheet metal, duct sections, includes: (a) an elongated shaft having a drive end and a working end and a shaft centerline between said ends, (b) the drive end configured to be releasably held in the hammer drill's chuck, (c) the working end having an elongated flat, front face, a top and a bottom surface and two ends and with the front face oriented so that a perpendicular to the front face is parallel to the shaft's centerline, (d) the front face has an elongated cavity and a front face channel that are oriented approximately perpendicular to each other, and (e) wherein the cavity is configured to accommodate the end of a flat drive cleat, and the cavity and front face channel together are configured to accommodate the end of a standing drive cleat within the cavity and the channel.
In accordance with a further example of this preferred embodiment of an improved hammer drill adapter, its front face is configured so that its cavity is sized so that it has a prescribed open space or gap between any end of a cleat that has been inserted into the cavity and its adjoining ends and sides.
In accordance with another example of this preferred embodiment of an improved hammer drill adapter, its front face is further configured so that it has an elongated end-to-end channel that extends between the ends of the front face, and this end-to-end channel is configured to accommodate a portion of the side of a flat, S-cleat within this end-to-end channel.
In accordance with yet another example of this preferred embodiment of an improved hammer drill adapter, the top and bottom surfaces of its front face are separated by a prescribed heigth that is set so as to allow the front face to be used to push forward the open side of a standing S cleat, that also has extending from it the cleat's standing portion, onto the edge of one of the two duct sections that are to be joined together.
In accordance with a still further example of this preferred embodiment of an improved hammer drill adapter, its front face has dimensions in the range of 1.75-2.5 inches in length between its ends, and 0.8-1.25 inches in height between its top and bottom surfaces.
Thus, there has been summarized above (rather broadly and understanding that there are other preferred embodiments which have not been summarized above) the present invention in order that the detailed description that follows may be better understood and appreciated.
Before explaining at least one embodiment of the present invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
Referring to
All such types of sheet metal, duct-section-joining cleats share, because of their intended use, some common characteristics, i.e., they all are elongated members that have two ends and each type has a differing, uniform, cross sectional shape. Thus, the end views of each of such cleats gives us a relatively complete description of the geometries of such cleats. See
Such a hammer drill derives its name from the fact that its chuck moves forward and backward on the centerline 18 of the drill in order to apply a series of relatively small amplitude, but high frequency hammering motions that help to allow anything that is being held by and is protruding forward from the drill's chuck to be moved forward when pressure is applied to the hammer drill's grip 2a in this same, forward direction.
The forward or working end 16 of this drill has an elongated or rectangular flat, front face 20 that has two ends 22a, 22b and top 24a and bottom 24b surfaces. This front face is oriented with respect to the adapter's shaft so that a perpendicular to this front face that lies in the middle of it is parallel to or coincides with the centerline of the shaft 12. The height between the face's top and bottom surfaces is carefully prescribed so that the adapter's front face can be used to push forward an open side of a standing S cleat from which said standing portion extends onto the edge of one of two duct sections that are to be joined together. Since the height of the combined, oppositely-faced openings in a S cleat is in the range of ½-¾ inches, this sets the minimum height of the adapter's front face. Typical dimensions for this front face are in the range of 1.75-2.5 inches in length, 13/16- 5/4 inches in height. The width of this working end from its rear to its front face is in the range of 1-1.75 inches. Preferred dimensions for this working end are 2 inches in length, 1 inch in height, and 1.25 inches in width.
An elongated cavity 26 extends between the ends 22a, 22b of the adapter. This cavity is seen to be configured to hold the end of one of the to-be-used cleats; see for example
Between each end of this cavity and the adjoining end of the front face, there is exists another shallower cavity or end channel 34a, 34b that is configured to hold other cleats (e.g., a flat S-cleat 4) that are to be pushed forward by the drive hammer when they are held on a portion of one of their elongated edges rather than on their ends. Since the front face's cavity has a void space between the ends from which each of these channels extend, these channels and the cavity combine to essentially a single, end-to-end channel that extends between the front face's ends. Typical dimensions for each of these end channels are in the range ¼-⅜ inches in width, and 3/16- 5/16 inches in depth.
This front face also has a pair of front face channels 36a, 36b, each of which extends perpendicularly between the bottom of the front face and the adjoining side 30b of its cavity 26 and each of which is located proximate one of the cavity's ends. Each of these channels also has a rear end and a front end that is located in the front face and a front face channel centerline 38a, 38b that extends between these ends and and each of these is oriented so that the front face channel centerline is approximately parallel to the shaft's centerline 18. These front face channels 36a, 36b are provided for those instances when the adapter is tasked with pushing forward from an end a cleat that has a standing element (e.g., a standing drive 5, or a standing S-cleat 6) and this standing element is situated in one of these front face channels 36a, 36b. Typical dimensions for each of these front channels are in the range ¼-½ inches in width, and ¼-¾ inches in depth.
The foregoing is considered as illustrative only of the principles of the present invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described herein. Accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention that is hereinafter set forth in the claims to the invention.
Number | Name | Date | Kind |
---|---|---|---|
273382 | Packham | Mar 1883 | A |
354657 | Rowe | Dec 1886 | A |
520212 | McKenzie | May 1894 | A |
755440 | Bonschur | Mar 1904 | A |
828625 | Ogg | Aug 1906 | A |
1484100 | Wertz | Feb 1924 | A |
1538808 | Hedeen | May 1925 | A |
1723597 | Bannister | Aug 1929 | A |
1948592 | Nelson | Feb 1934 | A |
1949452 | Chadwick | Mar 1934 | A |
2130748 | Suter | Sep 1938 | A |
D127728 | Tonelli | Jun 1941 | S |
2585089 | Caldwell | Feb 1952 | A |
2670234 | Roop | Feb 1954 | A |
2674793 | Dominick | Apr 1954 | A |
2892655 | Bower | Jun 1959 | A |
2929166 | Sneide | Mar 1960 | A |
3583821 | Shaub | Jun 1971 | A |
3611842 | Skipper | Oct 1971 | A |
3881838 | Derbyshire | May 1975 | A |
4033037 | Cooley | Jul 1977 | A |
4068377 | Kimmel | Jan 1978 | A |
4223936 | Jorgensen | Sep 1980 | A |
4317282 | Pace | Mar 1982 | A |
4386461 | Plummer | Jun 1983 | A |
4826136 | Thomas | May 1989 | A |
4848309 | Alderete | Jul 1989 | A |
4940370 | Gipson | Jul 1990 | A |
4955971 | Goulter | Sep 1990 | A |
5054226 | Hart | Oct 1991 | A |
5168783 | Shea | Dec 1992 | A |
5217464 | McDonald | Jun 1993 | A |
5219378 | Arnold | Jun 1993 | A |
5310341 | Byer | May 1994 | A |
5403052 | Lampron | Apr 1995 | A |
5427188 | Fisher | Jun 1995 | A |
5469623 | Roeker | Nov 1995 | A |
5513709 | Fisher | May 1996 | A |
5601323 | Kaiser | Feb 1997 | A |
5634679 | Hilderbrandt | Jun 1997 | A |
5640772 | Roeker | Jun 1997 | A |
5791053 | Koong | Aug 1998 | A |
5862658 | Howard | Jan 1999 | A |
5865072 | Jerdee | Feb 1999 | A |
5934721 | Walde | Aug 1999 | A |
6120220 | Speare | Sep 2000 | A |
6175998 | Leo | Jan 2001 | B1 |
D450992 | Abshire | Nov 2001 | S |
6328505 | Gibble | Dec 2001 | B1 |
6598775 | Chen | Jul 2003 | B1 |
6681756 | Kilpatrick | Jan 2004 | B1 |
6776615 | Dietrich | Aug 2004 | B2 |
7065883 | Popeil | Jun 2006 | B2 |
7096972 | Orozco, Jr. | Aug 2006 | B2 |
D545648 | Pulling | Jul 2007 | S |
7261348 | Fried | Aug 2007 | B1 |
7765631 | Fisher | Aug 2010 | B2 |
D715121 | Lai | Oct 2014 | S |
9180584 | Cook | Nov 2015 | B1 |
D763048 | Murphy | Aug 2016 | S |
9481074 | Lesche | Nov 2016 | B2 |
9561546 | Walter | Feb 2017 | B1 |
9701036 | Dion | Jul 2017 | B2 |
9848590 | Pangrcic | Dec 2017 | B2 |
20030041704 | Pelt | Mar 2003 | A1 |
20040191016 | Hintze | Sep 2004 | A1 |
20040240954 | Chilcott | Dec 2004 | A1 |
20050105980 | Davis | May 2005 | A1 |
20060257220 | Gertner | Nov 2006 | A1 |
20070158089 | Chen | Jul 2007 | A1 |
20070193430 | Jang | Aug 2007 | A1 |
20090084567 | Basham | Apr 2009 | A1 |
20090188690 | Rodola, Jr. | Jul 2009 | A1 |
20100018365 | Tyler | Jan 2010 | A1 |
20100019014 | Rodenhouse | Jan 2010 | A1 |
20100058895 | Wu | Mar 2010 | A1 |
20100107823 | Wu | May 2010 | A1 |
20120042710 | Polofsky | Feb 2012 | A1 |
20120255749 | Seith | Oct 2012 | A1 |
20130228046 | Wu | Sep 2013 | A1 |
20150217431 | Seith | Aug 2015 | A1 |
20150217433 | Seith | Aug 2015 | A1 |
20170028537 | McClung | Feb 2017 | A1 |
20170197305 | Rastegar | Jul 2017 | A1 |
20170297178 | Hsieh | Oct 2017 | A1 |
20180043520 | Aho | Feb 2018 | A1 |
20180141190 | Prunean | May 2018 | A1 |