Hammer toe implant method

Information

  • Patent Grant
  • 9044287
  • Patent Number
    9,044,287
  • Date Filed
    Thursday, October 25, 2012
    12 years ago
  • Date Issued
    Tuesday, June 2, 2015
    9 years ago
Abstract
An implant is disclosed including an elongate threaded portion and a blade portion extending from the elongate threaded portion. The blade portion has a taper terminating at a point.
Description
FIELD OF DISCLOSURE

The disclosed system and method relate implants. More specifically, the disclosed system and method relate to installing an implant for treating hammer toe.


BACKGROUND

Hammer toe is a deformity of the toe that affects the alignment of the bones adjacent to the proximal interphalangeal (PIP) joint. Hammer toe can cause pain and can lead to difficulty in walking or wearing shoes. A hammer toe can often result in an open sore or wound on the foot. In some instances, surgery may be required to correct the deformity by fusing one or both of the PIP and distal interphalangeal (DIP) joints.


The most common corrective surgery includes the placement of a pin or rod in the distal, middle, and proximal phalanxes of the foot to fuse the PIP and DIP joints. The pin or rod is cut at the tip of the toe, externally of the body. A plastic or polymeric ball is placed over the exposed end of the rod, which remains in the foot of the patient until the PIP and/or DIP joints are fused in approximately 6 to 12 weeks. This conventional treatment has several drawbacks such as preventing the patient from wearing closed toe shoes while the rod or pin is in place, and the plastic or polymeric ball may snag a bed sheet or other object due to it extending from the tip of the toe resulting in substantial pain for the patient.


Another conventional implant includes a pair of threaded members that are disposed within adjacent bones of a patient's foot. The implants are then coupled to one another through male-female connection mechanism, which is difficult to install in situ and has a tendency to separate.


Yet another conventional implant has body including an oval head and a pair of feet, which are initially compressed. The implant is formed from nitinol and is refrigerated until it is ready to be installed. The head and feet of the implant expand due to the rising temperature of the implant to provide an outward force on the surrounding bone when installed. However, the temperature sensitive material may result in the implant deploying or expanding prior to being installed, which requires a new implant to be used.


Accordingly, an improved implant for treating hammer toe is desirable.


SUMMARY

An implant is disclosed including an elongate threaded portion and a blade portion extending from the elongate threaded portion. The blade portion has a taper terminating at a point.


A method is also disclosed in which an incision is formed to gain access to a joint between first and second bones. The first and second bones are flexed such that the bones are disposed at an angle from one another. A threaded portion of an implant is advanced into the first bone. The implant includes a blade portion extending from the elongate threaded portion. The second bone is repositioned such that a middle of the second bone is approximately aligned with the blade portion of the implant. The second bone is forced into engagement with the blade portion of the implant.


A surgical assembly is disclosed comprising an implant having an elongate body and a driving assembly. The implant includes a threaded end and a blade end extending from the threaded end. The blade end tapers along its thickness and its width to a point and includes a plurality of serrated edges. The driving assembly includes a handle, a driving rod extending from the handle, and an adapter coupled to an end of the driving rod. The adapter has a body defining a slot at one end that is sized and configured to receive the blade end of the implant.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present invention will be more fully disclosed in, or rendered obvious by the following detailed description of the preferred embodiments of the invention, which are to be considered together with the accompanying drawings wherein like numbers refer to like parts and further wherein:



FIG. 1 is an isometric view of one example of an improved hammer toe implant;



FIG. 2 is a top side view of the hammer toe implant illustrated in FIG. 1;



FIG. 3 is a sectional view of the hammer toe implant taken along line 3-3 in FIG. 2;



FIG. 4 is an end on view of the hammer toe implant taken along line 4-4 in FIG. 2;



FIG. 5 is a side view of another example of a hammer toe implant;



FIG. 6 is a top side view of the hammer toe implant illustrated in FIG. 5;



FIG. 7 is a side view of one example of a driving adapter for use with the hammer toe implants illustrated in FIGS. 1 and 6;



FIG. 8 is an end view of the driving adapter illustrated in FIG. 7;



FIG. 9 is a side view of another example of a driving adapter for use with the hammer toe implants illustrated in FIGS. 1 and 6;



FIG. 10 is an end view of the driving adapter illustrated in FIG. 9;



FIG. 11 is an assembly view of a hammer toe implant engaged by a driving adapter;



FIGS. 12A and 12B illustrate the middle and proximal phalanxes of a foot being resected;



FIG. 13 illustrates a hammer toe implant being driven into a proximal phalanx;



FIG. 14 illustrates a middle phalanx being drilled or broached;



FIG. 15 illustrates a blade of a hammer toe implant extending from the proximal phalanx with the middle phalanx having been drilled or broached;



FIG. 16 illustrates a hammer toe implant installed in the middle and proximal phalanxes;



FIG. 17 illustrates another example of a driving assembly for installing an implant;



FIG. 18 illustrates side view of the driving assembly illustrated in FIG. 17;



FIG. 19 is an isometric view of an adapter of the driving assembly illustrated in FIG. 17;



FIG. 20 is an end view of the adapter illustrated in FIG. 19;



FIG. 21 is a cross-sectional view of the adapter taken along line 21-21 in FIG. 20;



FIG. 22 is a cross-sectional view of the adapter taken along line 22-22 in FIG. 20;



FIG. 23 is a plan view of the driving rod of the driving assembly illustrated in FIG. 17;



FIG. 24 is a cross-sectional view of the driving rod taken along line 24-24 in FIG. 23;



FIG. 25 is a cross-sectional view of the fin of the driving rod taken along line 25-25 in FIG. 23;



FIG. 26 is a plan view of driving assembly illustrated in FIG. 17 without the o-ring;



FIG. 27 is a cross-sectional view of the handle taken along line 27-27 in FIG. 26;



FIGS. 28A and 28B illustrate the middle and proximal phalanxes of a foot being resected;



FIGS. 29A and 29B illustrate an implant coupled to the adapter of the driving assembly illustrated in FIG. 17;



FIG. 30 illustrates a hammer toe implant being driven into a proximal phalanx;



FIG. 31 illustrates a middle phalanx being drilled or broached;



FIG. 32 illustrates a blade of a hammer toe implant extending from the proximal phalanx with the middle phalanx having been drilled or broached; and



FIG. 33 illustrates a hammer toe implant installed in the middle and proximal phalanxes.





DETAILED DESCRIPTION

This description of preferred embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. The drawing figures are not necessarily to scale and certain features of the invention may be shown exaggerated in scale or in somewhat schematic form in the interest of clarity and conciseness. In the description, relative terms such as “horizontal,” “vertical,” “up,” “down,” “top,” and “bottom” as well as derivatives thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing figure under discussion. These relative terms are for convenience of description and normally are not intended to require a particular orientation. Terms including “inwardly” versus “outwardly,” “longitudinal” versus “lateral,” and the like are to be interpreted relative to one another or relative to an axis of elongation, or an axis or center of rotation, as appropriate. Terms concerning attachments, coupling, and the like, such as “connected” and “interconnected,” refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise. The term “operatively connected” is such an attachment, coupling or connection that allows the pertinent structures to operate as intended by virtue of that relationship.



FIG. 1 illustrates one example of an improved implant 100 for treating hammer toe. As shown in FIG. 1, implant 100 includes a threaded portion 102 and a blade portion 104, which are connected together at an engagement portion 106. Implant 100 may have a substantially linear geometry having an overall length of approximately 19 mm (approximately 0.75 inches). In some embodiments, such as the one illustrated in FIGS. 5 and 6, blade portion 104 may be disposed at angle with respect to a longitudinal axis defined by the threaded portion 102. The angle may be between zero and 45 degrees, and more particularly between approximately five and fifteen degrees, although one skilled in the art will understand that implant 100 may have other dimensions and be provided in different sizes. For example, implant 100 may be provided in lengths of 16 mm and 22 mm, to name a few potential lengths.


Threaded portion 102 may include a plurality of threads 108 disposed along its entire length, which may be approximately 13 mm (approximately 0.5 inches). The tip 110 of threaded portion 102 may be pointed to facilitate the advancement of threads 108 into bone. Threads 108 may have a maximum outer diameter of approximately 2 mm (approximately 0.08 inches), although one skilled in the art will understand that thread portion 102 may have other dimensions and be configured to be received within a phalanx bone of a person. For example, threads may have an outer diameter of approximately 2.4 mm and 1.6 mm, to name a few potential possibilities.


As best seen in FIG. 3, blade portion 104 includes a plurality of serrated edges 112 on its top and bottom sides 114, 116. Blade portion 104 may have a width that is greater than its thickness as best seen in FIGS. 2 and 4. For example, blade portion 104 may have a width of approximately 0.4 centimeters (approximately 0.16 inches) and a thickness of approximately 0.1 centimeters (approximately 0.04 inches) each of which taper to point 118. Blade portion 104 may have a substantially rectangular cross-sectional area as illustrated in FIG. 4, although one skilled in the art will understand that blade portion 104 may have other cross-sectional geometries.


Engagement portion 106 may include a pair of protrusions 120 extending from opposite sides of implant 100 and having rounded outer edges 122. The sides 124 of protrusions 120 may be substantially parallel with each other as shown in FIG. 4.


Implant 100 is configured to be installed using a driving adapter 200 such as the one illustrated in FIGS. 7-10. The driving adapter 200 has an elongate body 202 having a proximal end 204 and a distal end 206. Body 202 of driving adapter 200 may have a circular cross-sectional geometry, although one skilled in the art will understand that body 202 may have other cross-sectional geometries including, but not limited to, triangular, rectangular, pentagonal, and hexagonal to name a few.


Proximal end 204 may be substantially solid and have a rounded tip 208. Distal end 206 may define a slot 210 sized and configured to receive blade portion 104 of implant 100 therein. Slot 210 may have a rectangular cross-sectional geometry and have a depth that is sufficient to receive the entire blade portion 104 of implant 100 such that distal edges 212 of slot 210 contact protrusions 120 of engagement portion 106. However, one skilled in the art will understand that slot 210 may have other cross-sectional geometries and dimensions. Slot 210 may extend through side walls 214 of body 202 as shown in FIGS. 7 and 8, or side walls 214 may completely enclose slot 210 as shown in FIGS. 9 and 10.


If the driving adapter 200 is to be used with an implant 100 having a substantially linear lengthwise geometry such as the implant 100 illustrated in FIGS. 1-5, then slot 210 may extend in a direction that is substantially parallel to an axis defined by body 202 of driving adapter 200. If driving adapter 200 is to be used with an implant 100 having a blade portion 104 that extends at an angle with respect to an axis defined by elongate threaded portion 102 such as the implant illustrated in FIGS. 5 and 6, then slot 210 may extend from distal edges 212 at an angle with respect to an axis defined by the length of body 202 such that elongate threaded portion 102 of implant 100 is linearly aligned with body 202 of driving adapter 200 as shown in FIG. 11. For example, if blade portion 104 of implant 100 extends at a ten degree angle with respect to an axis defined by elongate threaded portion 102, then slot 210 of driving adapter 200 may extend at a ten degree angle with respect to a longitudinal axis defined by body 202 such that threaded portion 102 of implant 100 and body 202 of driving adapter 200 are substantially linearly aligned.


A method of installing implant 100 in the proximal interphelangeal joint (PIP) 300 is described with reference to FIGS. 12A-16. However, one skilled in the art will understand that the technique for installing the implant 100 may be applied to other joints such as, for example, the distal interphelangeal (DIP) joint between middle phalanx 304 and distal phalanx 306. As shown in FIGS. 12A and 12B, an incision is made to open the PIP joint 300 and a cutting tool 400 having a blade 402 may be used to resect adjacent faces of proximal phalanx 302 and middle phalanx 304. The resected surfaces of proximal phalanx 302 and middle phalanx 304 may be debrided as understood by one skilled in the art.


Blade portion 104 of implant 100 may be disposed within slot 210 of driving adapter 200 as shown in FIG. 11, and the body 202 of driving adapter 200 may be secured in a chuck 412 of a drill 410 or other driving instrument as shown in FIG. 13. Drill 410 or other driving instrument is used to drive the threaded portion 102 of implant 100 into the resected surface of proximal phalanx 302. With the threaded portion 102 of implant 100 disposed within proximal phalanx 302, driving adapter 200 may be disengaged from blade portion 104 of implant 100.


Middle phalanx 304 may be predrilled or broached using drill 410 to create a hole 308 as shown in FIGS. 14 and 15. The predrilled or broached middle phalanx 304 is then repositioned such that the predrilled hole or broach 308 aligns with the blade portion 104 of implant 100. The middle phalanx 304 is then pressed into engagement with the blade portion 104 as shown in FIG. 16. Serrated edges 112 of blade portion 104 help to maintain the engagement between middle phalanx 304 and blade portion 104 of implant 100.



FIGS. 17-27 illustrate another embodiment of a driver assembly 500 for installing an implant into bone. As shown in FIGS. 17 and 18, driver assembly 500 includes an adapter 502 coupled to a driving rod 516 onto which a handle 534 is over-molded or otherwise coupled. Adapter 502 includes a body 504 with a substantially rectangular side profile comprising side walls 506-1, 506-2, 506-3, and 506-4 (collectively referred to as “side walls 506”) and a pair of end walls 508-1, 508-2 (collectively referred to as “end walls 508”) having a substantially square geometry as best seen in FIGS. 19-22.


Body 504 defines a recess 510 along the length of side walls 506. Recess 510 is dimensioned such that an o-ring 544 (FIGS. 17 and 18) may be received therein. Additionally, recess 510 is located along side walls 506 at a distance from end walls 508 such that recess 510 is aligned with a valley 126 of serrated edges 112 along the top and bottom sides 114, 116 of blade portion 104.


End wall 508-1 defines an aperture 512 having a geometry that complements the cross-sectional geometry of blade portion 104 of implant 100. For example, if implant 100 has a straight blade portion 104 as illustrated in FIG. 2, then aperture 512 may extend approximately parallel to the lengthwise direction of side walls 506. If the blade portion 104 of implant 100 is angled as illustrated in FIG. 6, then aperture 512 may extend from wall 508-1 at an angle relative to the plane defined by side wall 506-2 or 506-4 as will be understood by one skilled in the art. In some embodiments, aperture 512 has a depth that is greater than or equal to a length of blade portion 104 such that blade portion 104 may be received within body 504 and engagement portion 106 abuts end wall 508-1. Similarly, end wall 508-2 defines an aperture 514 that is sized and configured to receive an end of elongate driving rod 516 therein.


As best seen in FIGS. 23-25, driving rod 516 includes a fin 518 disposed at a first end 520. Fin 518 disposed at end 20 of driving rod 516 has a rectangular shape and is sized and configured to be received within aperture 512 of adapter 502. Fin 518 defines a slot 522, which is sized and configured to receive a pin (not shown) for cross-pinning driving rod 516 to adapter 502. In some embodiments, end 520 may have other cross-sectional geometries including, but not limited to, triangular, square, and pentagonal, to name a few possibilities, that are configured to be received within aperture 512. Adapter 502 may be over-molded onto the end of driving rod 516. However, one skilled in the art will understand that adapter 502 may be cross-pinned or otherwise coupled to driving rod 516.


The opposite end 524 of driving rod 516 defines a pair of flats 526, 528, which are disposed on opposite sides of driving rod 516. As best seen in FIG. 23, flat 526 extends from tip 530 and is linearly spaced from flat 528, which is disposed at a greater distance from tip 530 than flat 526. However, one skilled in the art will understand that flats 526, 528 may be disposed at other positions along driving rod 516. Flats 526, 528 are configured to provide a contact surface for coupling to handle 532, which may be over-molded onto driving rod 516, such that rotation of handle 532 is translated to driving rod 516.


Turning now to FIGS. 26 and 27, handle 532 has an elongate body 534 that includes a plurality of ribs 536 that extend in a longitudinal direction along body 534 to provide a gripping surface for a user. As best seen in FIGS. 17 and 22, a smooth surface 538 interrupts circumferential ridges 540, which are disposed adjacent to proximal end 542 also for providing a gripping surface for a user.


Driver assembly 500 may be provided in a kit with a first adapter 502 for use with a straight implant 100 and a second adapter for use with an angled implant 100. A plurality of implants 100 of different sizes may also be provided in the kit. The kit may be used in an operation similar to the operation described above with respect to FIGS. 12A-16.


For example and referring to FIGS. 28A-33, an incision is made to open the PIP joint 300 and a cutting tool 400 having a blade 402 may be used to resect adjacent faces of proximal phalanx 302 and middle phalanx 304 as illustrated in FIGS. 28A and 28B. The resected surfaces of proximal phalanx 302 and middle phalanx 304 may be debrided as understood by one skilled in the art.


Blade portion 104 of implant 100 is disposed within aperture 512 of adapter 502 as shown in FIGS. 29A and 29B. With blade portion 104 disposed within aperture 512, an o-ring 544 (FIGS. 17 and 18) is placed in recess 510 defined by adapter 502 and within a valley 126 of serrated edges 112 along the top and bottom sides 114, 116 of blade portion 104. O-ring 544 secures implant 100 to adapter 502 such that implant does not move axially out of aperture 512.


Once implant 100 is secured to adapter 502, the surgeon uses handle 534 to manually drive threaded portion 102 of implant 100 into the resected surface of proximal phalanx 302 as illustrated in FIG. 30. Implant 100 is driven into proximal phalanx 302 until engagement portion 106 abuts proximal phalanx 302. Implant 100 is decoupled from adapter 502 by axially pulling handle 534 away from implant 100 with sufficient force to flex o-ring 544 and separate adapter 502 from implant 100.


Middle phalanx 304 may be predrilled or broached using drill 410 to create a hole 308 as shown in FIGS. 31 and 32. The predrilled or broached middle phalanx 304 is then repositioned such that the predrilled hole or broach 308 aligns with the blade portion 104 of implant 100. The middle phalanx 304 is then pressed into engagement with the blade portion 104 as shown in FIG. 33. Serrated edges 112 of blade portion 104 help to maintain the engagement between middle phalanx 304 and blade portion 104 of implant 100.


The implant described above may advantageously be installed through a small incision as described above. Additionally, the improved implant is completely disposed within a toe of a patient, which prevents the implant from being caught on bed sheets or other objects like the conventional pins.


Although the invention has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.

Claims
  • 1. A method, comprising: exposing a joint between first and second bones;creating a hole in the first bone;advancing a threaded portion of an implant into the second bone, the implant including a blade portion extending from the threaded portion and having a plurality of serrations;positioning the first bone such that the hole in the first bone aligns with the blade portion of the implant; andforcing the first bone into engagement with the blade portion of the implant;wherein advancing the threaded portion of the implant includes:placing the blade portion of the implant within a recess defined in a driving adapter;retaining the blade portion within the recess of the driving adapter with an o-ring; said o-ring having a circular cross section, said cross section being in a plane parallel to an axis passing through the center of the o-ring; positioning the o-ring in a groove in the driving adapter and positioning the o-ring in a valley between serrations on the blade portion of the implant such that opposing valleys within the recess align with the groove and engage the o-ring, andusing a driving tool coupled to the driving adapter to advance the threaded portion of the implant into the second bone.
  • 2. The method of claim 1, further comprising resecting an end of the first bone.
  • 3. The method of claim 2, further comprising resecting an end of the second bone.
  • 4. The method of claim 1, further comprising resecting an end of the second bone.
  • 5. The method of claim 1, wherein the joint is a proximal interphelangeal joint.
  • 6. A method, comprising: exposing a proximal interphelangeal joint;resecting an end of a proximal phalanx;resecting an end of a middle phalanx such that the adjacent faces of the proximal and middle phalanxes are resected;creating a hole in the resected end of the middle phalanx;inserting a threaded portion of a hammer toe implant into the resected end of the proximal phalanx, the hammer toe implant including a blade portion extending from the threaded portion and having a plurality of serrations;positioning the middle phalanx such that the hole in the middle phalanx aligns with the blade portion of the hammer toe implant; andforcing the middle phalanx into engagement with the blade portion of the hammer toe implant;wherein advancing the threaded portion of the implant includes:placing the blade portion of the hammer toe implant within a recess defined in a driving adapter,retaining the blade portion within the recess of the driving adapter with an o-ring, said o-ring having a circular cross section, said cross section being in a plane parallel to an axis passing through the center of the o-ring; positioning the o-ring in a groove in the driving adapter and positioning the o-ring in a valley between serrations on the blade portion of the implant such that opposing valleys within the recess align with the groove and engage the o-ring, andusing a driving tool coupled to the driving adapter to advance the threaded portion of the implant into the proximal phalanx.
  • 7. The method of claim 6, wherein the blade portion of the hammer toe implant extends from the threaded portion of the hammer toe implant at angle with respect to an axis defined by the threaded portion of the hammer toe implant.
  • 8. The method of claim 7, wherein the angle is between zero and 45 degrees.
  • 9. The method of claim 7, wherein the angle is between five and 15 degrees.
  • 10. The method of claim 7, wherein a diameter of the threaded portion of the hammer toe implant is between 1.6 mm and 2.4 mm.
  • 11. The method of claim 7, wherein a diameter of the threaded portion of the hammer toe implant is 2 mm.
  • 12. The method of claim 7, wherein creating the hole in the resected end of the middle phalanx includes using a drill or a broach.
  • 13. A method, comprising: making an incision over a proximal interphelangeal joint;exposing the proximal interphelangeal joint;resecting an end of a proximal phalanx;resecting an end of a middle phalanx such that adjacent faces of the proximal and middle phalanxes are resected;creating a hole using a drill or a broach in the end of the middle phalanx that was resected;inserting a threaded portion of an implant into the end of the proximal phalanx that was resected, the implant including a blade portion extending from the threaded portion and having a plurality of serrations; wherein every thickness dimension along the blade portion of the hammer toe implant is less than the respective width dimension along the blade portion of the implant,positioning the middle phalanx such that the hole in the middle phalanx aligns with the blade portion of the implant; and,forcing the middle phalanx into engagement with the blade portion of the implant further comprising placing a driving adapter over the blade portion of the implant,wherein inserting the threaded portion of the implant includes using a driving tool coupled to the driving adapter to advance the threaded portion of the implant into the proximal phalanx;further comprising retaining the blade portion within a recess of the driving adapter with an o-ring, said o-ring having a circular cross section, said cross section being in a plane parallel to an axis passing through the center of the o-ring; positioning the o-ring in a groove in the driving adapter and positioning the o-ring in a valley between serrations on the blade portion of the implant such that opposing valleys within the recess align with the groove and engage the o-ring.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/086,136, filed Apr. 13, 2011, which claims priority to U.S. Provisional Patent Application Ser. No. 61/350,665, which was filed on Jun. 2, 2010, the entireties of which are herein incorporated by reference.

US Referenced Citations (183)
Number Name Date Kind
348589 Sloan Sep 1886 A
373074 Jones Nov 1887 A
430236 Rogers Jun 1890 A
561968 Coulon Jun 1896 A
821025 Davies May 1906 A
1966835 Stites Jul 1934 A
2140749 Kaplan Dec 1938 A
2361107 Johnson Oct 1944 A
2600517 Rushing Jun 1952 A
2832245 Burrows Apr 1958 A
2895368 Place Jul 1959 A
3466669 Flatt Sep 1969 A
3681786 Lynch Aug 1972 A
4156296 Johnson et al. May 1979 A
4204284 Koeneman May 1980 A
4213208 Marne Jul 1980 A
4262665 Roalstad et al. Apr 1981 A
4275717 Bolesky Jun 1981 A
4276660 Laure Jul 1981 A
4304011 Whelan, III Dec 1981 A
4367562 Gauthier Jan 1983 A
4404874 Lieser Sep 1983 A
4516569 Evans et al. May 1985 A
4590928 Hunt et al. May 1986 A
4642122 Steffee Feb 1987 A
4655661 Brandt Apr 1987 A
4731087 Sculco et al. Mar 1988 A
4865606 Rehder Sep 1989 A
4908031 Frisch Mar 1990 A
4915092 Firica et al. Apr 1990 A
4932974 Pappas et al. Jun 1990 A
4955916 Carignan et al. Sep 1990 A
4963144 Huene Oct 1990 A
4969909 Barouk Nov 1990 A
5007932 Bekki et al. Apr 1991 A
5011497 Persson et al. Apr 1991 A
5037440 Koenig Aug 1991 A
5047059 Saffar Sep 1991 A
5062851 Branemark Nov 1991 A
5092896 Meuli et al. Mar 1992 A
5133761 Krouskop Jul 1992 A
5171252 Friedland Dec 1992 A
5179915 Cohen et al. Jan 1993 A
5199839 DeHaitre Apr 1993 A
5207712 Cohen May 1993 A
5213347 Rulon et al. May 1993 A
5246443 Mai Sep 1993 A
5326366 Pascarella et al. Jul 1994 A
5330476 Hiot et al. Jul 1994 A
5354301 Castellano Oct 1994 A
5358405 Imai Oct 1994 A
5360450 Giannini Nov 1994 A
5380334 Torrie et al. Jan 1995 A
5417692 Goble et al. May 1995 A
5425776 Cohen Jun 1995 A
5425777 Sarkisian et al. Jun 1995 A
5437674 Worcel et al. Aug 1995 A
5458648 Berman et al. Oct 1995 A
5470230 Daftary et al. Nov 1995 A
5480447 Skiba Jan 1996 A
5484443 Pascarella et al. Jan 1996 A
5498265 Asnis et al. Mar 1996 A
5516248 DeHaitre May 1996 A
5522903 Sokolow et al. Jun 1996 A
5529075 Clark Jun 1996 A
5591165 Jackson Jan 1997 A
5595563 Moisdon Jan 1997 A
5601558 Torrie et al. Feb 1997 A
5634925 Urbanski Jun 1997 A
5669913 Zobel Sep 1997 A
5674297 Lane et al. Oct 1997 A
5683466 Vitale Nov 1997 A
5707395 Li Jan 1998 A
5713904 Errico et al. Feb 1998 A
5725585 Zobel Mar 1998 A
5776202 Copf et al. Jul 1998 A
5779707 Bertholet et al. Jul 1998 A
5919193 Slavitt Jul 1999 A
5951288 Sawa Sep 1999 A
5984971 Faccioli et al. Nov 1999 A
6045573 Wenstrom et al. Apr 2000 A
6048343 Mathis et al. Apr 2000 A
6099571 Knapp Aug 2000 A
6200321 Orbay et al. Mar 2001 B1
6200345 Morgan Mar 2001 B1
6224600 Protogirou May 2001 B1
6248109 Stofella Jun 2001 B1
6319284 Rushdy et al. Nov 2001 B1
6332885 Martella Dec 2001 B1
6336928 Guerin et al. Jan 2002 B1
6352560 Poeschmann et al. Mar 2002 B1
6383223 Baehler et al. May 2002 B1
6386877 Sutter May 2002 B1
6413260 Berrevoets et al. Jul 2002 B1
6423097 Rauscher Jul 2002 B2
6454808 Masada Sep 2002 B1
6458134 Songer et al. Oct 2002 B1
6508841 Martin et al. Jan 2003 B2
6517543 Berrevoets et al. Feb 2003 B1
6533788 Orbay Mar 2003 B1
6551343 Törmälä et al. Apr 2003 B1
6575976 Grafton Jun 2003 B2
6875235 Ferree Apr 2005 B2
7037309 Weil et al. May 2006 B2
7041106 Carver et al. May 2006 B1
7192445 Ellingsen et al. Mar 2007 B2
7207994 Vlahos et al. Apr 2007 B2
7291175 Gordon Nov 2007 B1
7585316 Trieu Sep 2009 B2
7588603 Leonard Sep 2009 B2
7695471 Cheung et al. Apr 2010 B2
7708759 Lubbers et al. May 2010 B2
7727235 Contiliano et al. Jun 2010 B2
7837738 Reigstad et al. Nov 2010 B2
7887589 Glenn et al. Feb 2011 B2
7909880 Grant Mar 2011 B1
7918879 Yeung et al. Apr 2011 B2
7959681 Lavi Jun 2011 B2
8002811 Corradi et al. Aug 2011 B2
8100983 Schulte Jan 2012 B2
8118839 Taylor Feb 2012 B2
8118849 Wahl et al. Feb 2012 B2
8197509 Contiliano et al. Jun 2012 B2
8394132 Lewis et al. Mar 2013 B2
8414583 Prandi et al. Apr 2013 B2
20010049529 Cachia et al. Dec 2001 A1
20020072803 Saunders et al. Jun 2002 A1
20020111690 Hyde Aug 2002 A1
20030032961 Pelo et al. Feb 2003 A1
20030191422 Sossong Oct 2003 A1
20040097941 Weiner et al. May 2004 A1
20040220574 Pelo et al. Nov 2004 A1
20040230313 Saunders Nov 2004 A1
20050123672 Justin et al. Jun 2005 A1
20050149031 Ciccone et al. Jul 2005 A1
20050187636 Graham Aug 2005 A1
20050283159 Amara Dec 2005 A1
20060074492 Frey Apr 2006 A1
20060100715 De Villiers May 2006 A1
20060129153 Klaue et al. Jun 2006 A1
20060200151 Ducharme et al. Sep 2006 A1
20060247787 Rydell et al. Nov 2006 A1
20070078518 Lavi Apr 2007 A1
20070142920 Niemi Jun 2007 A1
20070185583 Branemark Aug 2007 A1
20070213831 de Cubber Sep 2007 A1
20080051912 Hollawell Feb 2008 A1
20080086139 Bourke et al. Apr 2008 A1
20080132894 Coilard-Lavirotte et al. Jun 2008 A1
20080132958 Pech et al. Jun 2008 A1
20080177262 Augoyard et al. Jul 2008 A1
20080177334 Stinnette Jul 2008 A1
20080195215 Morton Aug 2008 A1
20080221697 Graser Sep 2008 A1
20080255618 Fisher et al. Oct 2008 A1
20090036893 Kartalian et al. Feb 2009 A1
20100131014 Peyrot et al. May 2010 A1
20100131072 Schulte May 2010 A1
20100185295 Emmanuel Jul 2010 A1
20100249942 Goswami et al. Sep 2010 A1
20100262254 Lawrence et al. Oct 2010 A1
20100274293 Terrill et al. Oct 2010 A1
20110004255 Weiner et al. Jan 2011 A1
20110082507 Slaue Apr 2011 A1
20110082508 Reed Apr 2011 A1
20110093017 Prasad et al. Apr 2011 A1
20110093085 Morton Apr 2011 A1
20110144644 Prandi et al. Jun 2011 A1
20110257652 Roman Oct 2011 A1
20110301652 Reed et al. Dec 2011 A1
20110301653 Reed et al. Dec 2011 A1
20120016428 White et al. Jan 2012 A1
20120065692 Champagne et al. Mar 2012 A1
20120089197 Anderson Apr 2012 A1
20120259419 Brown et al. Oct 2012 A1
20130030475 Weiner et al. Jan 2013 A1
20130053975 Reed et al. Feb 2013 A1
20130060295 Reed et al. Mar 2013 A1
20130066383 Anderson et al. Mar 2013 A1
20130066435 Averous et al. Mar 2013 A1
20130079776 Zwirkoski et al. Mar 2013 A1
20130131822 Lewis et al. May 2013 A1
20130150965 Taylor et al. Jun 2013 A1
Foreign Referenced Citations (28)
Number Date Country
0340159 Nov 1989 EP
0409364 Jan 1991 EP
0551846 Jul 1993 EP
0611557 Aug 1994 EP
0738502 Oct 1996 EP
1708653 Sep 2009 EP
1923012 Jun 2010 EP
1868536 Nov 2010 EP
2275055 May 2012 EP
2221025 Dec 2012 EP
2221026 Mar 2013 EP
736058 Nov 1932 FR
1036978 Sep 1953 FR
2605878 May 1988 FR
2645735 Oct 1990 FR
2651119 Mar 1991 FR
2783702 Mar 2000 FR
2787313 Jun 2000 FR
2794019 Dec 2000 FR
2846545 May 2004 FR
140983 Apr 1920 GB
2119655 Nov 1983 GB
2227540 Aug 1990 GB
2336415 Oct 1999 GB
2430625 Apr 2007 GB
2005094706 Oct 2005 WO
2006109004 Oct 2006 WO
2007135322 Nov 2007 WO
Non-Patent Literature Citations (1)
Entry
U.S. Appl. No. 13/086,036—Official Action dated Feb. 4, 2013.
Related Publications (1)
Number Date Country
20130053975 A1 Feb 2013 US
Provisional Applications (1)
Number Date Country
61350665 Jun 2010 US
Continuations (1)
Number Date Country
Parent 13086136 Apr 2011 US
Child 13660522 US