Energy/Heat Assisted Magnetic Recording (EAMR/HAMR) systems can potentially increase the areal density of information recorded magnetically on various media. For example, to achieve magnetic information storage levels beyond 1 terabit per inch squared, smaller grain size media may be required. Such designs can demand higher Ku materials for a magnetic recording layer to sustain thermal stability, such as L10 ordered FePt alloys.
The layer beneath the FePt magnetic recording layer (e.g., intermediate layer or underlayer) may be important to the media design to achieve the desired microstructure of the FePt magnetic recording layer. For example, one aspect controlling the FePt microstructure is the interfacial energy between the FePt magnetic recording layer and the intermediate layer, which varies depending on the segregant in the FePt magnetic recording layer and the intermediate layer properties. Recently, HAMR media including FePt magnetic recording layers has been optimized in terms of microstructure and magnetic properties using an MgO intermediate layer, together with a carbon segregant in the FePt magnetic recording layer.
However, when using intermediate layers other than MgO, carbon may not be an ideal segregant. For example, other intermediate layer materials may cause carbon to diffuse away from the intermediate layer interface, resulting in the formation of larger interconnected FePt grains. Accordingly, an improved HAMR media structure that addresses these shortcomings is needed.
Referring now to the drawings, embodiments of heat assisted magnetic recording (HAMR) media that include a heat sink layer, an underlayer on the heat sink layer, an intermediate layer on the underlayer, and an FePt magnetic recording layer on the intermediate layer are illustrated. One such HAMR media design includes a FePt magnetic recording layer having a first FePt magnetic recording sublayer on the intermediate layer, a second FePt magnetic recording sublayer on the first FePt magnetic recording sublayer and a third FePt magnetic recording sublayer on the second FePt magnetic recording sublayer. Each of the FePt magnetic recording sublayers includes a different segregant. The segregant in the first FePt magnetic recording sublayer and the material used for the intermediate layer are selected to produce a substantially uniform distribution of segregant at the interface between the first FePt magnetic recording sublayer and the intermediate layer, thereby resulting in a substantially uniform FePt granular microstructure. In an aspect, an intermediate layer of TiON, VON, CrON, TiOC, VOC, TiONC, VONC, and/or combinations thereof, is utilized together with a segregant of AgBN, AgCN, AgBNC, AgB2O3, AgMoO3, AgV2O5, B2O3, MoO3, V2O5, and/or combinations thereof, in the first FePt magnetic recording sublayer.
The terms “above,” “over,” “on,” “below,” “under,” and “between” as used herein refer to a relative position of one layer with respect to other layers. As such, one layer deposited or disposed above, over, on, below, or under another layer may be directly in contact with the other layer or may have one or more intervening layers. Moreover, one layer deposited or disposed between layers may be directly in contact with the layers or may have one or more intervening layers.
It shall be appreciated by those skilled in the art in view of the present disclosure that although various exemplary fabrication methods are discussed herein with reference to magnetic recording disks, the methods, with or without some modifications, may be used for fabricating other types of recording disks, for example, optical recording disks such as a compact disc (CD) and a digital-versatile-disk (DVD), or magneto-optical recording disks, or ferroelectric data storage devices.
In operation, a spindle motor (not shown) rotates the spindle assembly 104, and thereby rotates disk 102 to position head 108 at a particular location along a desired disk track. The position of head 104 relative to disk 102 may be controlled by position control circuitry 110.
In operation, the laser 114 is configured to direct light energy to a waveguide in the slider 108 which directs the light to a near field transducer (NFT) near the air bearing surface (e.g., bottom surface) of the slider. Upon receiving the light from the laser via the waveguide, the NFT generates localized heat energy that heats a portion of the media 102 near the write element and the read element.
The magnetic recording layer 214 includes a first magnetic recording sublayer 216 on the intermediate layer 212, a second magnetic recording sublayer 218 on the first magnetic recording sublayer 216, and a third magnetic recording sublayer 220 on the second magnetic recording sublayer 218. Each of the magnetic recording sublayers 216, 218, and 220 is made of FePt. In an exemplary embodiment, each of the magnetic recording sublayers 216, 218, and 220 includes L10 phase FePt. Providing three sublayers in the FePt magnetic recording layer 214 enables growth of columnar and thick granular media, which results in low roughness, improved read-back signal and improved overall media performance.
Each of the magnetic recording sublayers 216, 218, and 220 includes one or more segregants. In one embodiment, the segregant included in each of the magnetic recording sublayers is different. The segregant in the first FePt magnetic recording sublayer 216 and the material used for the intermediate layer 212 are selected to produce a substantially uniform distribution of segregant at the interface between the first FePt magnetic recording sublayer 216 and the intermediate layer 212, thereby resulting in a substantially uniform FePt granular microstructure. In one instance, a substantially uniform FePt granular microstructure is produced when the FePt grain diameter is between about 7.5 nm and about 8.5 nm with a standard deviation of between about 2.5 nm and about 3.5 nm. In one embodiment, an intermediate layer 212 of TiON, VON, CrON, TiOC, VOC, TiONC, VONC, and/or combinations thereof, is utilized together with a segregant of AgBN, AgCN, AgBNC, AgB2O3, AgMoO3, AgV2O5, B2O3, MoO3, V2O5, and/or combinations thereof, in the first FePt magnetic recording sublayer 216. In other embodiments, the segregant in the first magnetic recording sublayer may include other oxide, nitride or carbide segregants that have a surface energy less than 0.1 Joules per meter squared (J/m2).
For example, in an exemplary embodiment, the intermediate layer 212 includes TiOxN(1-x), where x is between about 0.4 and about 0.5. In another exemplary embodiment, the segregant in the first magnetic recording sublayer 216 includes AgBN. In a further exemplary embodiment, the first magnetic recording sublayer 216 includes an AgBN segregant having a BN content in the AgBN segregant that may be between about 25 mole percent and about 40 mole percent. In still a further exemplary embodiment, the first magnetic recording sublayer 216 includes an AgBN segregant and the intermediate layer 212 includes TiON.
In one embodiment, the underlayer 210 can be made of one or more materials such as TiN, CrN, VN, TiC, VC, RuAl, RuTi, FeAl, SrTiO3, BaTiO3, BaSnO3, MgO, W, Mo, Cr, NiAl, combinations thereof, and/or other suitable materials known in the art. For example, in an exemplary embodiment, the underlayer 210 includes TiN and the intermediate layer includes TiON.
In several embodiments, the intermediate layer 212 operates as a thermal barrier layer. For example, the intermediate layer 212 may be configured to (e.g., the materials for the intermediate layer are selected to) facilitate a heat transfer from the magnetic recording layer 214 to the heat sink layer 208, and impede a heat transfer from the heat sink layer 208 to the magnetic recording layer 214.
In several embodiments, the thermal conductivity (κ) of the intermediate layer 212 is less than the thermal conductivity of the underlayer 210. For example, in embodiments in which the intermediate layer 212 includes TiOxN(1-x) (where x=0.4 to 0.5) and the underlayer 210 includes TiN, the thermal conductivity of TiOxN(1-x) is about 5 Watts per meter Kelvin (W/mK), whereas the thermal conductivity of TiN is about 10 W/mK. This can also be compared to the thermal conductivity of MgO, which is around 10 W/mK. Thus, utilizing an intermediate layer 212 of TiOxN(1-x) underneath the magnetic recording layer provides improved thermal conductivity properties of the HAMR medium 200 as compared to using MgO as the intermediate layer.
In addition, TiOxN(−x) may further provide improved optical properties over that provided by MgO. For example, the plasmonic effect observable in TiON may improve the optical impedance of the HAMR medium 200 during writing operations. Furthermore, the use of TiON may also result in similar or better magnetic performance in the magnetic recording layer(s) than the use of MgO.
In one embodiment, the segregant in the second magnetic recording sublayer 218 can be made of one or more materials such as BNC, BN, combinations thereof, and/or other suitable materials known in the art. In addition, the segregant in the third magnetic recording sublayer 220 can be made of one or more materials such as BNSiO2, BNZrO2, BNTa2O5, combinations thereof, and/or other suitable materials known in the art.
In one embodiment, the substrate 202 can be made of one or more materials such as an Al alloy, NiP plated Al, glass, glass ceramic, and/or combinations thereof. In one embodiment, the adhesion layer 204 can includes one or more materials such as CrTa, NiTa, combinations thereof, and/or other suitable materials known in the art.
In one embodiment, the seed layer 206 can be made of one or more materials such as RuAl, Cr, combinations thereof, and/or other suitable materials known in the art. In one embodiment, the heat sink layer 208 can be made of one or more materials such as W, Mo, Cr, Ru, Cu, Ag, Cu alloy, Ag alloy, combinations thereof, and/or other suitable materials known in the art.
In one embodiment, an intermediate layer 212 of TiON is deposited using a non-reactive sputtering process with a composite target of TiON. In another embodiment, an underlayer 210 of TiN and an intermediate layer 212 of TiON are sputter-deposited using a pure TiN target with a two-step process in one chamber. In the first step, the TiN underlayer 210 can be sputter-deposited first using pure Ar gas. Then, in the second step, the TiON intermediate layer 212 can be formed using a dc-reactive sputtering process in a mixture of Ar and O2 gas. In an aspect, the amount of oxygen in the TiON intermediate layer can be tuned by varying the ratio of the Ar/O2 flow rate to maximize the texture quality of the FePt magnetic recording layer. For example, the O2 content in the Ar/O2 mixture can vary between about 1.6 percent and about 1.8 percent, thus producing an intermediate layer of TiOxN(1-x), where x is between about 0.4 and about 0.5. In addition, as the oxygen percentage increases, the transmittance and reflectance of the TiON intermediate layer increases. Therefore, in embodiments in which higher transmittance and reflectance of the TiON intermediate layer are desired, the O2 content percentage can be greater than or equal to 1.8 percent. However, at O2 content percentages higher than 1.8 percent, the FePt texture quality may degrade.
Each XRD pattern behind the baseline XRD pattern illustrates the intensity of a FePt—AgBN magnetic recording layer over a TiON intermediate layer at a particular sputter oxygen percentage of TiON. The O2 percentage utilized in the dc-reactive sputtering process of TiON increases from 0 percent in the first XRD pattern 304 behind the baseline XRD pattern 302 to 2.5 percent in the last XRD pattern 306. As can be seen in
In a number of embodiments, the process can manufacture the layers of the HAMR medium with any of the numerous variations described above for the embodiments of
In several embodiments, the layers can include the materials described above. For example, the process may provide the underlayer on the heat sink layer by depositing a layer of TiN, CrN, RuAl, SrTiO3, MgO, W, Mo, Cr, NiAl, and/or combinations thereof on the heat sink layer. In addition, the process may provide the intermediate layer on the underlayer by depositing a layer of TiON, VON, CrON, TiOC, VOC, TiONC, and/or combinations thereof on the underlayer.
In some embodiments, the process provides the underlayer on the heat sink layer by sputter-depositing the underlayer using a pure TiN target in pure Ar gas to produce a TiN underlayer. In some embodiments, the process provides the intermediate layer on the underlayer by dc-reactive sputtering the intermediate layer using a pure TiN target in mixed Ar/O2 gas to produce a TiON intermediate layer. For example, the O2 content percentage in the mixed Ar/O2 gas may be between about 1.6 and 1.8. In some embodiments, the process provides the intermediate layer on the underlayer by using a non-reactive sputtering process with a composite target of TiON.
In some embodiments, the process provides the magnetic recording layer by sputter-depositing the FePt—X granular magnetic recording sublayers onto the TiON/TiN layers. For example, the segregant used in the first magnetic recording sublayer may include AgBN, AgCN, AgBNC, AgB2O3, AgMoO3, AgV2O5, B2O3, MoO3, V2O5, and/or combinations thereof. As another example, the segregant used in the second magnetic recording sublayer may include BNC, BN, and/or combinations thereof. As yet another example, the segregant used in the third magnetic recording sublayer may include BNSiO2, BNZrO2, BNTa2O5, and/or combinations thereof.
In one embodiment, the process can perform the sequence of actions in a different order. In another embodiment, the process can skip one or more of the actions. In other embodiments, one or more of the actions are performed simultaneously. In some embodiments, additional actions can be performed.
While the above description contains many specific embodiments of the invention, these should not be construed as limitations on the scope of the invention, but rather as examples of specific embodiments thereof. Accordingly, the scope of the invention should be determined not by the embodiments illustrated, but by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
6013161 | Chen et al. | Jan 2000 | A |
6063248 | Bourez et al. | May 2000 | A |
6068891 | O'Dell et al. | May 2000 | A |
6086730 | Liu et al. | Jul 2000 | A |
6099981 | Nishimori | Aug 2000 | A |
6103404 | Ross et al. | Aug 2000 | A |
6117499 | Wong et al. | Sep 2000 | A |
6136403 | Prabhakara et al. | Oct 2000 | A |
6143375 | Ross et al. | Nov 2000 | A |
6145849 | Bae et al. | Nov 2000 | A |
6146737 | Malhotra et al. | Nov 2000 | A |
6149696 | Jia | Nov 2000 | A |
6150015 | Bertero et al. | Nov 2000 | A |
6156404 | Ross et al. | Dec 2000 | A |
6159076 | Sun et al. | Dec 2000 | A |
6164118 | Suzuki et al. | Dec 2000 | A |
6200441 | Gomicki et al. | Mar 2001 | B1 |
6204995 | Hokkyo et al. | Mar 2001 | B1 |
6206765 | Sanders et al. | Mar 2001 | B1 |
6210819 | Lal et al. | Apr 2001 | B1 |
6216709 | Fung et al. | Apr 2001 | B1 |
6221119 | Homola | Apr 2001 | B1 |
6248395 | Homola et al. | Jun 2001 | B1 |
6261681 | Suekane et al. | Jul 2001 | B1 |
6270885 | Hokkyo et al. | Aug 2001 | B1 |
6274063 | Li et al. | Aug 2001 | B1 |
6283838 | Blake et al. | Sep 2001 | B1 |
6287429 | Moroishi et al. | Sep 2001 | B1 |
6290573 | Suzuki | Sep 2001 | B1 |
6299947 | Suzuki et al. | Oct 2001 | B1 |
6303217 | Malhotra et al. | Oct 2001 | B1 |
6309765 | Suekane et al. | Oct 2001 | B1 |
6358636 | Yang et al. | Mar 2002 | B1 |
6362452 | Suzuki et al. | Mar 2002 | B1 |
6363599 | Bajorek | Apr 2002 | B1 |
6365012 | Sato et al. | Apr 2002 | B1 |
6381090 | Suzuki et al. | Apr 2002 | B1 |
6381092 | Suzuki | Apr 2002 | B1 |
6387483 | Hokkyo et al. | May 2002 | B1 |
6391213 | Homola | May 2002 | B1 |
6395349 | Salamon | May 2002 | B1 |
6403919 | Salamon | Jun 2002 | B1 |
6408677 | Suzuki | Jun 2002 | B1 |
6426157 | Hokkyo et al. | Jul 2002 | B1 |
6429984 | Alex | Aug 2002 | B1 |
6482330 | Bajorek | Nov 2002 | B1 |
6482505 | Bertero et al. | Nov 2002 | B1 |
6500567 | Bertero et al. | Dec 2002 | B1 |
6528124 | Nguyen | Mar 2003 | B1 |
6548821 | Treves et al. | Apr 2003 | B1 |
6552871 | Suzuki et al. | Apr 2003 | B2 |
6565719 | Lairson et al. | May 2003 | B1 |
6566674 | Treves et al. | May 2003 | B1 |
6571806 | Rosano et al. | Jun 2003 | B2 |
6620531 | Cheng | Sep 2003 | B1 |
6628466 | Alex | Sep 2003 | B2 |
6664503 | Hsieh et al. | Dec 2003 | B1 |
6670055 | Tomiyasu et al. | Dec 2003 | B2 |
6682807 | Lairson et al. | Jan 2004 | B2 |
6683754 | Suzuki et al. | Jan 2004 | B2 |
6730420 | Bertero et al. | May 2004 | B1 |
6743528 | Suekane et al. | Jun 2004 | B2 |
6759138 | Tomiyasu et al. | Jul 2004 | B2 |
6778353 | Harper | Aug 2004 | B1 |
6795274 | Hsieh et al. | Sep 2004 | B1 |
6855232 | Jairson et al. | Feb 2005 | B2 |
6857937 | Bajorek | Feb 2005 | B2 |
6893748 | Bertero et al. | May 2005 | B2 |
6899959 | Bertero et al. | May 2005 | B2 |
6916558 | Umezawa et al. | Jul 2005 | B2 |
6939120 | Harper | Sep 2005 | B1 |
6946191 | Morikawa et al. | Sep 2005 | B2 |
6967798 | Homola et al. | Nov 2005 | B2 |
6972135 | Homola | Dec 2005 | B2 |
7004827 | Suzuki et al. | Feb 2006 | B1 |
7006323 | Suzuki | Feb 2006 | B1 |
7016154 | Nishihira | Mar 2006 | B2 |
7019924 | McNeil et al. | Mar 2006 | B2 |
7045215 | Shimokawa | May 2006 | B2 |
7070870 | Bertero et al. | Jul 2006 | B2 |
7090934 | Hokkyo et al. | Aug 2006 | B2 |
7099112 | Harper | Aug 2006 | B1 |
7105241 | Shimokawa et al. | Sep 2006 | B2 |
7119990 | Bajorek et al. | Oct 2006 | B2 |
7147790 | Wachenschwanz et al. | Dec 2006 | B2 |
7161753 | Wachenschwanz et al. | Jan 2007 | B2 |
7166319 | Ishiyama | Jan 2007 | B2 |
7166374 | Suekane et al. | Jan 2007 | B2 |
7169487 | Kawai et al. | Jan 2007 | B2 |
7174775 | Ishiyama | Feb 2007 | B2 |
7179549 | Malhotra et al. | Feb 2007 | B2 |
7184139 | Treves et al. | Feb 2007 | B2 |
7196860 | Alex | Mar 2007 | B2 |
7199977 | Suzuki et al. | Apr 2007 | B2 |
7208236 | Morikawa et al. | Apr 2007 | B2 |
7220500 | Tomiyasu et al. | May 2007 | B1 |
7229266 | Harper | Jun 2007 | B2 |
7239970 | Treves et al. | Jul 2007 | B2 |
7252897 | Shimokawa et al. | Aug 2007 | B2 |
7277254 | Shimokawa et al. | Oct 2007 | B2 |
7281920 | Homola et al. | Oct 2007 | B2 |
7292329 | Treves et al. | Nov 2007 | B2 |
7301726 | Suzuki | Nov 2007 | B1 |
7302148 | Treves et al. | Nov 2007 | B2 |
7305119 | Treves et al. | Dec 2007 | B2 |
7314404 | Singh et al. | Jan 2008 | B2 |
7320584 | Harper et al. | Jan 2008 | B1 |
7329114 | Harper et al. | Feb 2008 | B2 |
7375362 | Treves et al. | May 2008 | B2 |
7420886 | Tomiyasu et al. | Sep 2008 | B2 |
7425719 | Treves et al. | Sep 2008 | B2 |
7471484 | Wachenschwanz et al. | Dec 2008 | B2 |
7498062 | Calcaterra et al. | Mar 2009 | B2 |
7531485 | Hara et al. | May 2009 | B2 |
7537846 | Ishiyama et al. | May 2009 | B2 |
7549209 | Wachenschwanz et al. | Jun 2009 | B2 |
7569490 | Staud | Aug 2009 | B2 |
7597792 | Homola et al. | Oct 2009 | B2 |
7597973 | Ishiyama | Oct 2009 | B2 |
7608193 | Wachenschwanz et al. | Oct 2009 | B2 |
7632087 | Homola | Dec 2009 | B2 |
7656615 | Wachenschwanz et al. | Feb 2010 | B2 |
7682546 | Harper | Mar 2010 | B2 |
7684152 | Suzuki et al. | Mar 2010 | B2 |
7686606 | Harper et al. | Mar 2010 | B2 |
7686991 | Harper | Mar 2010 | B2 |
7695833 | Ishiyama | Apr 2010 | B2 |
7722968 | Ishiyama | May 2010 | B2 |
7733605 | Suzuki et al. | Jun 2010 | B2 |
7736768 | Ishiyama | Jun 2010 | B2 |
7755861 | Li et al. | Jul 2010 | B1 |
7758732 | Calcaterra et al. | Jul 2010 | B1 |
7833639 | Sonobe et al. | Nov 2010 | B2 |
7833641 | Tomiyasu et al. | Nov 2010 | B2 |
7910159 | Jung | Mar 2011 | B2 |
7911736 | Bajorek | Mar 2011 | B2 |
7924519 | Lambert | Apr 2011 | B2 |
7944165 | O'Dell | May 2011 | B1 |
7944643 | Jiang et al. | May 2011 | B1 |
7955723 | Umezawa et al. | Jun 2011 | B2 |
7983003 | Sonobe et al. | Jul 2011 | B2 |
7993497 | Moroishi et al. | Aug 2011 | B2 |
7993765 | Kim et al. | Aug 2011 | B2 |
7998912 | Chen et al. | Aug 2011 | B2 |
8002901 | Chen et al. | Aug 2011 | B1 |
8003237 | Sonobe et al. | Aug 2011 | B2 |
8012920 | Shimokawa | Sep 2011 | B2 |
8038863 | Homola | Oct 2011 | B2 |
8057926 | Ayama et al. | Nov 2011 | B2 |
8062778 | Suzuki et al. | Nov 2011 | B2 |
8064156 | Suzuki et al. | Nov 2011 | B1 |
8076013 | Sonobe et al. | Dec 2011 | B2 |
8092931 | Ishiyama et al. | Jan 2012 | B2 |
8100685 | Harper et al. | Jan 2012 | B1 |
8101054 | Chen et al. | Jan 2012 | B2 |
8125723 | Nichols et al. | Feb 2012 | B1 |
8125724 | Nichols et al. | Feb 2012 | B1 |
8137517 | Bourez | Mar 2012 | B1 |
8142916 | Umezawa et al. | Mar 2012 | B2 |
8163093 | Chen et al. | Apr 2012 | B1 |
8171949 | Lund et al. | May 2012 | B1 |
8173282 | Sun et al. | May 2012 | B1 |
8178480 | Hamakubo et al. | May 2012 | B2 |
8206789 | Suzuki | Jun 2012 | B2 |
8218260 | Iamratanakul et al. | Jul 2012 | B2 |
8247095 | Champion et al. | Aug 2012 | B2 |
8257783 | Suzuki et al. | Sep 2012 | B2 |
8298609 | Liew et al. | Oct 2012 | B1 |
8298689 | Sonobe et al. | Oct 2012 | B2 |
8309239 | Umezawa et al. | Nov 2012 | B2 |
8316668 | Chan et al. | Nov 2012 | B1 |
8331056 | O'Dell | Dec 2012 | B2 |
8354618 | Chen et al. | Jan 2013 | B1 |
8367228 | Sonobe et al. | Feb 2013 | B2 |
8383209 | Ayama | Feb 2013 | B2 |
8394243 | Jung et al. | Mar 2013 | B1 |
8397751 | Chan et al. | Mar 2013 | B1 |
8399809 | Bourez | Mar 2013 | B1 |
8402638 | Treves et al. | Mar 2013 | B1 |
8404056 | Chen et al. | Mar 2013 | B1 |
8404369 | Ruffini et al. | Mar 2013 | B2 |
8404370 | Sato et al. | Mar 2013 | B2 |
8406918 | Tan et al. | Mar 2013 | B2 |
8414966 | Yasumori et al. | Apr 2013 | B2 |
8425975 | Ishiyama | Apr 2013 | B2 |
8431257 | Kim et al. | Apr 2013 | B2 |
8431258 | Onoue et al. | Apr 2013 | B2 |
8453315 | Kajiwara et al. | Jun 2013 | B2 |
8488276 | Jung et al. | Jul 2013 | B1 |
8491800 | Dorsey | Jul 2013 | B1 |
8492009 | Homola et al. | Jul 2013 | B1 |
8492011 | Itoh et al. | Jul 2013 | B2 |
8496466 | Treves et al. | Jul 2013 | B1 |
8517364 | Crumley et al. | Aug 2013 | B1 |
8517657 | Chen et al. | Aug 2013 | B2 |
8524052 | Tan et al. | Sep 2013 | B1 |
8530065 | Chernyshov et al. | Sep 2013 | B1 |
8546000 | Umezawa | Oct 2013 | B2 |
8551253 | Na'im et al. | Oct 2013 | B2 |
8551627 | Shimada et al. | Oct 2013 | B2 |
8556566 | Suzuki et al. | Oct 2013 | B1 |
8559131 | Masuda et al. | Oct 2013 | B2 |
8562748 | Chen et al. | Oct 2013 | B1 |
8565050 | Bertero et al. | Oct 2013 | B1 |
8570844 | Yuan et al. | Oct 2013 | B1 |
8580410 | Onoue | Nov 2013 | B2 |
8584687 | Chen et al. | Nov 2013 | B1 |
8591709 | Lim et al. | Nov 2013 | B1 |
8592061 | Onoue et al. | Nov 2013 | B2 |
8596287 | Chen et al. | Dec 2013 | B1 |
8597723 | Jung et al. | Dec 2013 | B1 |
8603649 | Onoue | Dec 2013 | B2 |
8603650 | Sonobe et al. | Dec 2013 | B2 |
8605388 | Yasumori et al. | Dec 2013 | B2 |
8605555 | Chernyshov et al. | Dec 2013 | B1 |
8608147 | Yap et al. | Dec 2013 | B1 |
8609263 | Chernyshov et al. | Dec 2013 | B1 |
8619381 | Moser et al. | Dec 2013 | B2 |
8623528 | Umezawa et al. | Jan 2014 | B2 |
8623529 | Suzuki | Jan 2014 | B2 |
8623670 | Mosendz | Jan 2014 | B1 |
8634155 | Yasumori et al. | Jan 2014 | B2 |
8658003 | Bourez | Feb 2014 | B1 |
8658292 | Mallary et al. | Feb 2014 | B1 |
8665541 | Saito | Mar 2014 | B2 |
8668953 | Buechel-Rimmel | Mar 2014 | B1 |
8674327 | Poon et al. | Mar 2014 | B1 |
8685214 | Moh et al. | Apr 2014 | B1 |
8696404 | Sun et al. | Apr 2014 | B2 |
8711499 | Desai et al. | Apr 2014 | B1 |
8743666 | Bertero et al. | Jun 2014 | B1 |
8758912 | Srinivasan et al. | Jun 2014 | B2 |
8787124 | Chernyshov et al. | Jul 2014 | B1 |
8787130 | Yuan et al. | Jul 2014 | B1 |
8791391 | Bourez | Jul 2014 | B2 |
8795765 | Koike et al. | Aug 2014 | B2 |
8795790 | Sonobe et al. | Aug 2014 | B2 |
8795857 | Ayama et al. | Aug 2014 | B2 |
8800322 | Chan et al. | Aug 2014 | B1 |
8811129 | Yuan et al. | Aug 2014 | B1 |
8817410 | Moser et al. | Aug 2014 | B1 |
8941950 | Yuan et al. | Jan 2015 | B2 |
9076476 | Kryder et al. | Jul 2015 | B2 |
9269480 | Ajan | Feb 2016 | B1 |
20020060883 | Suzuki | May 2002 | A1 |
20030022024 | Wachenschwanz | Jan 2003 | A1 |
20040022387 | Weikle | Feb 2004 | A1 |
20040132301 | Harper et al. | Jul 2004 | A1 |
20040202793 | Harper et al. | Oct 2004 | A1 |
20040202865 | Homola et al. | Oct 2004 | A1 |
20040209123 | Bajorek et al. | Oct 2004 | A1 |
20040209470 | Bajorek | Oct 2004 | A1 |
20050036223 | Wachenschwanz et al. | Feb 2005 | A1 |
20050142990 | Homola | Jun 2005 | A1 |
20050150862 | Harper et al. | Jul 2005 | A1 |
20050151282 | Harper et al. | Jul 2005 | A1 |
20050151283 | Bajorek et al. | Jul 2005 | A1 |
20050151300 | Harper et al. | Jul 2005 | A1 |
20050155554 | Saito | Jul 2005 | A1 |
20050167867 | Bajorek et al. | Aug 2005 | A1 |
20050263401 | Olsen et al. | Dec 2005 | A1 |
20060147758 | Jung et al. | Jul 2006 | A1 |
20060181697 | Treves et al. | Aug 2006 | A1 |
20060207890 | Staud | Sep 2006 | A1 |
20070070549 | Suzuki et al. | Mar 2007 | A1 |
20070245909 | Homola | Oct 2007 | A1 |
20080075845 | Sonobe et al. | Mar 2008 | A1 |
20080093760 | Harper et al. | Apr 2008 | A1 |
20090117408 | Umezawa et al. | May 2009 | A1 |
20090136784 | Suzuki et al. | May 2009 | A1 |
20090169922 | Ishiyama | Jul 2009 | A1 |
20090191331 | Umezawa et al. | Jul 2009 | A1 |
20090202866 | Kim et al. | Aug 2009 | A1 |
20090311557 | Onoue et al. | Dec 2009 | A1 |
20100143752 | Ishibashi et al. | Jun 2010 | A1 |
20100190035 | Sonobe et al. | Jul 2010 | A1 |
20100196619 | Ishiyama | Aug 2010 | A1 |
20100196740 | Ayama et al. | Aug 2010 | A1 |
20100209601 | Shimokawa et al. | Aug 2010 | A1 |
20100215992 | Horikawa et al. | Aug 2010 | A1 |
20100232065 | Suzuki et al. | Sep 2010 | A1 |
20100247965 | Onoue | Sep 2010 | A1 |
20100261039 | Itoh et al. | Oct 2010 | A1 |
20100279151 | Sakamoto et al. | Nov 2010 | A1 |
20100300884 | Homola et al. | Dec 2010 | A1 |
20100304186 | Shimokawa | Dec 2010 | A1 |
20110038079 | Choe | Feb 2011 | A1 |
20110097603 | Onoue | Apr 2011 | A1 |
20110097604 | Onoue | Apr 2011 | A1 |
20110171495 | Tachibana et al. | Jul 2011 | A1 |
20110206947 | Tachibana et al. | Aug 2011 | A1 |
20110212346 | Onoue et al. | Sep 2011 | A1 |
20110223446 | Onoue et al. | Sep 2011 | A1 |
20110244119 | Umezawa et al. | Oct 2011 | A1 |
20110299194 | Aniya et al. | Dec 2011 | A1 |
20110311841 | Saito et al. | Dec 2011 | A1 |
20120069466 | Okamoto et al. | Mar 2012 | A1 |
20120070692 | Sato et al. | Mar 2012 | A1 |
20120077060 | Ozawa | Mar 2012 | A1 |
20120127599 | Shimokawa et al. | May 2012 | A1 |
20120127601 | Suzuki et al. | May 2012 | A1 |
20120129009 | Sato et al. | May 2012 | A1 |
20120140359 | Tachibana | Jun 2012 | A1 |
20120141833 | Umezawa et al. | Jun 2012 | A1 |
20120141835 | Sakamoto | Jun 2012 | A1 |
20120148875 | Hamakubo et al. | Jun 2012 | A1 |
20120156523 | Seki et al. | Jun 2012 | A1 |
20120164488 | Shin et al. | Jun 2012 | A1 |
20120170152 | Sonobe et al. | Jul 2012 | A1 |
20120171369 | Koike et al. | Jul 2012 | A1 |
20120175243 | Fukuura et al. | Jul 2012 | A1 |
20120189872 | Umezawa et al. | Jul 2012 | A1 |
20120196049 | Azuma et al. | Aug 2012 | A1 |
20120207919 | Sakamoto et al. | Aug 2012 | A1 |
20120214021 | Sayama et al. | Aug 2012 | A1 |
20120225217 | Itoh et al. | Sep 2012 | A1 |
20120251842 | Yuan et al. | Oct 2012 | A1 |
20120251846 | Desai et al. | Oct 2012 | A1 |
20120276417 | Shimokawa et al. | Nov 2012 | A1 |
20120308722 | Suzuki et al. | Dec 2012 | A1 |
20130040167 | Alagarsamy et al. | Feb 2013 | A1 |
20130071694 | Srinivasan et al. | Mar 2013 | A1 |
20130165029 | Sun et al. | Jun 2013 | A1 |
20130175252 | Bourez | Jul 2013 | A1 |
20130216865 | Yasumori et al. | Aug 2013 | A1 |
20130230647 | Onoue et al. | Sep 2013 | A1 |
20130314815 | Yuan et al. | Nov 2013 | A1 |
20140011054 | Suzuki | Jan 2014 | A1 |
20140044992 | Onoue | Feb 2014 | A1 |
20140050843 | Yi et al. | Feb 2014 | A1 |
20140093748 | Chen | Apr 2014 | A1 |
20140151360 | Gregory et al. | Jun 2014 | A1 |
20140234666 | Knigge et al. | Aug 2014 | A1 |
20150138939 | Hellwig | May 2015 | A1 |
20150194175 | Chen | Jul 2015 | A1 |
Entry |
---|
Kumar Srinivasan , et al., U.S. Appl. No. 14/556,993, filed Dec. 1, 2014, 33 pages. |