Hand access laparoscopic device

Information

  • Patent Grant
  • 9017254
  • Patent Number
    9,017,254
  • Date Filed
    Tuesday, January 7, 2014
    11 years ago
  • Date Issued
    Tuesday, April 28, 2015
    9 years ago
Abstract
The application relates to a hand access laparoscopy device having a gelcap, a retainer, a sleeve and a retention ring. The gelcap includes gel that is bonded to a cap. The cap includes an inner cylindrical wall to which the gel in bonded, thereby providing a sealing area between the device and the wound in a body wall. By securing the gel to the inner cylindrical wall, the thickness of the gel and corresponding cap is minimized along with the overall footprint of the device. With the gel thickness reduced and able to be substantially flush, the “doming” phenomenon produced by insufflation of a patient's abdomen is reduced.
Description
BACKGROUND OF THE INVENTION

This application relates substantially to devices and other apparatuses facilitating sealed access with surgical instruments, such as a surgeon's hand, across a body wall and into a body cavity.


In several areas of surgery there exists a need to have mechanisms or devices that can seal a body cavity or space, and yet permit the introduction of surgical instruments such as guidewires, endoscopes, and even the hand of a surgeon. Typical of these areas of surgery is laparoscopic surgery that relies on surgical instruments inserted through the abdominal wall to reach an operative site within the abdominal cavity. In order to increase space around the operative site within the cavity, insufflation gases are typically introduced to inflate the cavity and elevate the abdominal wall. This pressurizing of the abdominal cavity is referred to as pneumoperitoneum. In this context, the need to seal the body cavity or space arises from the need to maintain the pneumoperitoneum even when instruments are present.


Trocars have been commonly used to provide instrument access in laparoscopic surgeries. These trocars have included elaborate seal structures having zero seals that prevent escape of the gases in the absence of instruments, and instrument seals that prevent escape of the gases in the presence of instruments. Unfortunately, the instrument seals have been able to accommodate only a narrow range of instrument diameters. Multiple seal pairs had to be provided where wider ranges were desired.


Some instruments, such as the hand of the surgeon, have been too large for trocar access. Under these circumstances, hand-assisted laparoscopic seals have been provided. Such devices have been large, cumbersome, and largely ineffective in providing the required sealing mechanism. Other access devices, such as Touhy-Borst seals, have been used, but only for very small diameter access such as that required by a guidewire.


Each of the prior devices suffers from drawbacks that make the device difficult or cumbersome to use. For example, a Touhy-Borst seal requires two hands to use and does not form a seal when a guidewire or other device is about to be introduced. Present trocar seals and hand-assisted seals require two valves, one forming an instrument seal in the presence of the instrument, and the other forming a zero seal in the absence of the instrument. For example, in hand-assisted devices, elaborate mechanisms have been required to seal around the surgeon's arm. When the arm is removed, a separate zero seal has been required to prevent the escape of blood or insufflation gases.


SUMMARY

The application is directed to a surgical access device that is adapted for disposition relative to an incision in a body wall. The access device facilitates insertion of an instrument therethrough as well as maintenance of a sealing relationship with the instrument. The surgical access device includes a cap that is substantially annular and has an opening therethrough. The surgical access device also includes a gel pad that is coupled to the cap and adapted for insertion of the instrument therethrough. The gel pad covers and seals the entire opening of the cap. The surgical access device further includes a retainer that is substantially annular and adapted for placement against the body wall. Additionally, the surgical access device includes coupling means that are adapted for coupling the cap and the retainer together. The retainer is configured to be coupled to a proximal portion of an elongate sleeve that is adapted to extend through the incision. The retainer is also adapted, together with the elongate sleeve, to retract the incision.


In one aspect, the cap includes at least one gap along the annular perimeter of the cap. The at least one gap creates at least one first end and at least one second end of the cap. The at least one gap facilitates a transition in the cap from a first, larger periphery to a second, smaller periphery. In another aspect, the surgical access device also includes means for maintaining the periphery of the cap at the second, smaller periphery. In another aspect, when the cap is at the first, larger periphery, the retainer may be inserted into or removed from the opening of the cap, and the retainer may be fixedly coupled to the cap by first, transitioning the perimeter of the cap to the second, smaller periphery with the retainer positioned within the opening of the cap, and second, maintaining the periphery of the cap at the second, smaller periphery with the maintaining means. In one aspect, the maintaining means includes a squeeze release buckle fitting configured to couple the at least one first end of the cap to the at least one second end of the cap. The squeeze release buckle fitting includes a first, barbed portion that extends from the at least one first end of the cap and a second, receiver portion that extends from the at least one second end of the cap. The barbed portion and the receiver portion of the squeeze release buckle fitting are configured to engage each other in a mating relationship. In another aspect, the barbed portion of the squeeze release buckle fitting includes a plurality of arms, two of which are resilient and have projections extending therefrom. The receiver portion of the squeeze release buckle fitting has corresponding sidewalls for engaging the projections of the barbed portion, thereby causing the two arms that have the projections to flex toward each other as the arms slide into a channel defined by the receiver and to flex away from each other as the projections clear the ends of the sidewalls and into a fully engaged state. In another aspect, the cap includes at least a first gap and a second gap. The first and second gaps create first and second arc portions of the annular cap, each of which includes first and second ends. The first end of the first arc portion corresponds with the second end of the second arc portion and the second end of the first arc portion corresponds with the first end of the second arc portion. The first end of each of the first and second arc portions has a barbed portion of the squeeze release buckle fitting extending therefrom and the second end of each of the first and second arc portions has a corresponding receiver portion of the squeeze release buckle fitting extending therefrom. In another aspect, the maintaining means includes a latch that is pivotally coupled proximate the first end of the cap and a latch receiver that is positioned proximate the second end of the cap. In another aspect, the latch receiver includes a channel that is defined by substantially parallel channel walls. The channel is configured to releasably receive the latch. In another aspect, the latch includes a shaft that has an enlarged head positioned at the non-hinged end of the latch. The perimeter of the enlarged head is larger than the perimeter of the shaft. The head of the latch is configured to engage the channel and to be held in the channel. The width of the channel is smaller than the head of the latch. The channel walls are resilient such that the walls flex away from each other during receipt of the head of the latch. In another aspect, the coupling means include at least one latch that is pivotally coupled to the retainer. The at least one latch is configured to engage the cap. The at least one latch includes a projection that extends substantially orthogonally from the at least one latch and is configured to engage the cap. The cap includes at least one engagement portion for receiving the projection on the at least one latch. In another aspect, the at least one latch is coupled to the retainer with a live hinge. In another aspect, the at least one latch includes a plurality of latches that are spaced along the periphery of the retainer. In another aspect, in a first position the at least one latch extends substantially laterally from the periphery of the retainer in a substantially planar relationship with the retainer. After placing the cap on the retainer, the at least one latch is rotated toward the cap to a second position in which the latch engages the cap to couple the retainer to the cap. In another aspect, the retainer includes at least one resilient snap for releasably coupling the retainer to the cap. The at least one snap extends from the outer periphery of the retainer in a substantially perpendicular direction from a substantially planar, annular surface of the retainer. Each of the at least one snaps has a projection extending substantially perpendicular and radially inwardly from the snap. The at least one snap is configured to deflect radially outwardly to slide over a corresponding lip portion of the cap when the cap and retainer are brought together in a mating relationship. The at least one snap is configured to return toward a neutral position after the projection on the at least one snap passes the lip portion of the cap such that the projection of the at least one snap engages a receiver portion of the cap. In another aspect, the planar, annular surface of the retainer is configured to secure the sleeve to the retainer. In another aspect, the retainer includes a sidewall portion adjacent to each of the at least one snaps and on either side of each of the at least one snaps. The cap includes openings disposed along the edges of the cap for receiving the sidewall portions of the retainer. In another aspect, the cap includes at least one snap for releasably coupling the cap to the retainer. The at least one snap extends perpendicularly from the periphery of the cap. The at least one snap is configured to engage with a corresponding lip portion of the retainer. Each of the at least one snaps has a projection extending substantially perpendicular and radially inward from the snap. The at least one snap is configured to deflect radially outwardly such that the projection on the at least one snap slides over the corresponding lip portion of the retainer when the cap and retainer are brought together in a mating relationship. The at least one snap is configured to return toward a neutral position after the projection on the at least one snap passes the lip portion of the retainer such that the projection of the at least one snap engages a lip portion of the retainer. In another aspect, the cap includes an inner cylindrical wall and the gel pad being coupled to the inner cylindrical wall. In another aspect, the gel pad is bonded to the inner cylindrical wall. In another aspect, the gel pad is molded to the cap. In another aspect, the surgical access device also includes a resilient fabric integrated on a surface of the gel pad and coupled to the periphery of the cap. In another aspect, the surgical access device also includes a first fabric integrated on a first surface of the gel pad and coupled to the periphery of the cap, and a second fabric integrated on a second, opposite surface of the gel pad and coupled to the cap. In another aspect, the surgical access device also includes a first fabric coupled to the periphery of the cap and a second fabric coupled to the cap a distance from the first fabric. The space between the first fabric and the second fabric defines a cavity. The gel pad is positioned within the cavity between the first and second fabric. In another aspect, the gel pad includes multi-cusped lobes. Adjacent lobes are configured to seal upon one another. In another aspect, the gel pad includes at least two concentric regions of differing resiliency. The at least two concentric regions include a first, central region having first resiliency and a second, outer region having less resiliency than the first region. In another aspect, the gel pad has more than two concentric regions having differing resiliency with the resiliency of each region decreasing in relation to the increase in distance from the first, central region. In another aspect, the gel pad includes gas-filled pockets arranged substantially around the center of the gel pad. In another aspect, the gel pad includes gas-filled pockets dispersed randomly throughout a region beyond the center of the gel pad.


These and other features of the invention will become more apparent with a discussion of the various embodiments in reference to the associated drawings.





DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a top perspective view of a hand access laparoscopic device of the present invention;



FIG. 2 depicts a bottom perspective view of the hand access laparoscopic device of FIG. 1;



FIG. 3 depicts a plan view of a gelcap with a gel pad having regions of varying firmness;



FIG. 4 depicts a side view of a gelcap with gel having gas-filled pockets disbursed therein;



FIG. 5 depicts a plan view of a gelcap with gel having gas-filled pockets disbursed therein;



FIG. 6 depicts a plan view of a gelcap with gel having gas-filled pockets disbursed therein;



FIG. 7 depicts a side view of a hand access laparoscopic device including a gelcap with gel having gas-filled pockets disbursed therein;



FIG. 8 depicts a top perspective view of a multiple-piece cap having squeeze release buckle connectors molded into the ends of the pieces forming the cap;



FIG. 9 depicts a top perspective view of one of the pieces of the cap having a male squeeze release buckle connector fitting at one end and a female squeeze release buckle connector fitting at the other end;



FIG. 10 depicts a top perspective view of a cap having a gap with a latch pivotally coupled on one side of the gap and a groove for accepting the latch on the other side of the gap;



FIG. 11 depicts a top perspective view of a cap having latches for releasable coupling the cap to a retainer;



FIG. 12 depicts a side view of the cap of FIG. 11;



FIG. 13 depicts a top perspective view of a hand access laparoscopic device of the present invention including a cap and a retainer, the retainer having a plurality of snaps for releasably coupling the retainer to the cap;



FIG. 14 depicts a top perspective view of the cap of FIG. 13;



FIG. 15 depicts a top perspective view of the retainer of FIG. 13;



FIG. 16 depicts a section view depicting the interaction between the cap and the retainer of FIG. 13;



FIG. 17 depicts a top perspective view of a hand access laparoscopic device of the present invention including a cap and a retainer, the cap having a plurality of snaps for releasably coupling the cap to the retainer;



FIG. 18 depicts a top perspective view of the cap of FIG. 17;



FIG. 19 depicts a top perspective view of the retainer of FIG. 17;



FIG. 20 depicts a section view depicting the interaction between the cap and the retainer of FIG. 17;



FIG. 21 depicts a side view of a hand access laparoscopic device having a gelcap, a retainer, a sleeve and a retention ring, with a plurality of stabilizers in the form of strings or tethers extending from the retention ring to the gelcap;



FIG. 22 depicts a side view of a hand access laparoscopic device having a gelcap, a retainer, a sleeve and a retention ring, with a plurality of stabilizers in the form of gussets or webs extending from the retention ring to the gelcap;



FIG. 23 depicts a top perspective view of a hand access laparoscopic device having a gelcap, a retainer, a sleeve and a retention ring, with a fabric integrated on the surface of the gel pad;



FIG. 24 depicts a partial side view of the hand access laparoscopic device of FIG. 23;



FIG. 25 depicts a top perspective view of a hand access laparoscopic device having a gelcap, a retainer, a sleeve and a retention ring, the gelcap having a cavity defined by fabric with the gel pad housed within the cavity; and



FIG. 26 depicts a bottom perspective view of a hand access laparoscopic device having a gelcap, a retainer, a sleeve and a retention ring, with the gel pad having multi-cusped lobes that seal upon one another.





DESCRIPTION

In FIGS. 1 and 2, a surgical hand access device 50 according to one aspect of the present invention is shown. The device includes a retainer 52 and a cap 54. The cap 54 and the retainer 52 are both substantially annular and both include an opening therethrough. The retainer 52 is adapted to be placed against a body wall. The retainer 52, in one aspect, is rigid and is associated with and/or capable of being coupled to an elongate sleeve 56. The surgical hand access device 50 is adapted for disposition relative to an incision in a body wall. The surgical hand access device 50 also facilitates insertion of an instrument through the access device and maintenance of a sealing relationship with the instrument.


In one aspect, the elongate sleeve 56 extends through an incision to a point where an attached retention ring 58 contacts the interior portions of the body cavity and provides tension between the retainer 52 outside the body cavity and the retention ring. The retainer 52 in one aspect also supports or otherwise enables a portion of the elongate sleeve 56 to remain outside of the body cavity. Additionally, the retainer 52, retention ring 58 and elongate sleeve 56 together allow the incision to be retracted and isolated during a surgical procedure. In one aspect, the elongate sleeve 56 and aspects thereof is a wound retractor type device such as described in U.S. patent application Ser. No. 10/516,198, filed Nov. 30, 2004, the disclosure of which is hereby incorporated by reference as if set forth in full herein.


As shown, the retainer 52 and retention ring 58 are circular, but as one skilled in the art would appreciate, they may be of different shapes and sizes. The retainer 52 in one aspect may be either rigid, flexible or a combination of both. The retention ring 58 may be flexible to facilitate insertion into the body cavity. As will be described in more detail, the access device 50 includes coupling means that are adapted for coupling the cap 54 and the retainer 52 together.


A gel pad 60 may be coupled to, attached to, formed or integrated with the cap 54 so that a gas-tight conduit is formed between the cap and the sleeve 56. The gel pad 60 covers and seals the entire opening in the cap 54. In one aspect, the gel pad includes a plurality of intersecting dead-end slits 62, 64 that form an access portion or passage through the gel pad 60. Unlike foam rubber or other similar types of elastic materials, the gel pad 60 provides a gas tight seal around a variety of shapes and sizes of hands or instruments inserted therethrough.


In one aspect, the gel material from which the gel pad 60 is made is an elastomeric gel. Some such gels have been described in U.S. patent application Ser. No. 10/381,220, filed Mar. 20, 2003, the disclosure of which is hereby incorporated by reference as if set forth in full herein. The gel can be prepared by mixing a triblock copolymer with a solvent for the midblocks. The endblocks are typically thermoplastic materials such as styrene and the midblocks are thermoset elastomers such as isoprene or butadiene, e.g., Styrene-Ethylene-Butylene-Styrene (SEBS). In one aspect, the solvent used is mineral oil. Upon heating this mixture or slurry, the midblocks are dissolved into the mineral oil and a network of the insoluble endblocks forms. The resulting network has enhanced elastomeric properties over the parent copolymer. In one aspect, the triblock copolymer used is KRATON G1651, which has a styrene to rubber ratio of 33/67. Once formed, the gel is substantially permanent and, by the nature of the endblocks, processable as thermoplastic elastomers henceforward. The mixture or slurry has a minimum temperature at which it becomes a gel, i.e., the minimum gelling temperature (MGT). This temperature, in one aspect, corresponds to the glass transition temperature of the thermoplastic endblock plus a few degrees. For example, the MGT for the mixture of KRATON G1651 and mineral oil is about 120° C. When the slurry reaches the MGT and the transformation to a gel state takes place, the gel becomes more transparent, thereby providing means for visually confirming when the transformation of the slurry to the gel state is substantially complete and that the gel may be cooled. In addition to triblocks, there are also diblock versions of the materials that may be used where Styrene is present at only one end of the formula, for example, Styrene-Ethylene/Butylene (SEB).


For a given mass of slurry to form into a complete gel, the entire mass of the slurry is heated to the MGT and remains heated at the MGT for sufficient time for the end blocks to form a matrix of interconnections. The slurry will continue to form into gel at temperatures above the MGT until the slurry/gel reaches temperatures at which the components within the slurry/gel begin to decompose or oxidize. For example, when the slurry/gel is heated at temperatures above 250° C., the mineral oil in the slurry/gel will begin to be volatile and oxidize. Oxidizing may cause the gel to turn brown and become oily.


The speed at which a given volume of slurry forms a gel is dependant on the speed with which the entire mass of slurry reaches the MGT. Also, with the application of temperatures higher than the MGT, this speed is further enhanced as the end block networks distribute and form more rapidly.


The various base formulas may also be alloyed with one another to achieve a variety of intermediate properties. For example, KRATON G1701X is a 70% SEB 30% SEBS mixture with an overall Styrene to rubber ratio of 28/72. It can be appreciated that an almost infinite number of combinations, alloys, and Styrene to rubber ratios can be formulated, each capable of providing advantages to a particular embodiment of the invention. These advantages will typically include low durometer, high elongation, and good tear strength.


It is contemplated that the gel material may also include silicone, soft urethanes and even harder plastics that might provide the desired sealing qualities with the addition of a foaming agent. The silicone material may be of the types currently used for electronic encapsulation. The harder plastics may include PVC, Isoprene, KRATON neat, and other KRATON/oil mixtures. In the KRATON/oil mixture, oils such as vegetable oils, petroleum oils and silicone oils may be substituted for the mineral oil.


Any of the gel materials contemplated could be modified to achieve different properties such as enhanced lubricity, appearance, and wound protection. Additives may be incorporated directly into the gel or applied as a surface treatment. Other compounds may be added to the gel to modify its physical properties or to assist in subsequent modification of the surface by providing bonding sites or a surface charge. Additionally, oil based colorants may be added to the slurry to create gels of different colors.


In one aspect, the mixture/slurry used with the various embodiments of the caps that are described herein are composed of about 90% by weight of mineral oil and about 10% by weight of KRATON G1651. From a thermodynamic standpoint, this mixture behaves similar to mineral oil. Mineral oil has a considerable heat capacity and, therefore, at about 130° C. it can take 3 or 4 hours to heat a pound of the slurry sufficiently to form a homogeneous gel. Once formed, the gel can be cooled as quickly as practical with no apparent deleterious effects on the gel. This cooling, in one aspect, is accomplished with cold-water immersion. In another aspect, the gel may be air-cooled. Those familiar with the art will recognize that other cooling techniques that are well known in the art may be employed and are contemplated as within the scope of the present invention.


Many of the properties of the KRATON/oil mixture will vary with adjustments in the weight ratio of the components. In general, the greater the percentage of mineral oil the less firm the mixture; the greater the percentage of KRATON, the more firm the mixture. If the resultant gel is too soft it can lead to excessive tenting or doming of the gelcap during surgery when a patient's abdominal cavity is insufflated. Excessive tenting or doming may cause the slits 62, 64 to open, providing a leak path. Additionally, if the gel is too soft it might not provide an adequate seal. However, the gel should be sufficiently soft to be comfortable for the surgeon while simultaneously providing good sealing both in the presence of an instrument and in the absence of an instrument.


If the slurry is permitted to sit for a prolonged period of time, the copolymer, such as KRATON, and the solvent, such as mineral oil, may separate. The slurry may be mixed, such as with high shear blades, to make the slurry more homogeneous. However, mixing the slurry may introduce or add air to the slurry. To remove air from the slurry, the slurry may be degassed. In one aspect, the slurry may be degassed in a vacuum, such as within a vacuum chamber. In one aspect, the applied vacuum may be 0.79 meters (29.9 inches) of mercury, or about 1.0 atmosphere. The slurry may be stirred while the slurry is under vacuum to facilitate removal of the air. During degassing within a vacuum, the slurry typically expands, then bubbles, and then reduces in volume. The vacuum may be discontinued when the bubbling substantially ceases. Degassing the slurry in a vacuum chamber reduces the volume of the slurry by about 10%. Degassing the slurry helps reduce the potential of the finished gel to oxidize.


Degassing the slurry tends to make the resultant gel firmer. A degassed slurry composed of about 91.6% by weight of mineral oil and about 8.4% by weight of KRATON G1651, an eleven-to-one ratio, results in a gel having about the same firmness as a gel made from a slurry that is not degassed and that is composed of about 90% by weight of mineral oil and about 10% by weight of KRATON G1651, a nine-to-one ratio.


Mineral oil is of a lighter density than KRATON and the two components will separate after mixing, with the lighter mineral oil rising to the top of the container. This separation may occur when attempting to form static slurry into gel over a period of several hours. The separation can cause the resulting gel to have a higher concentration of mineral oil at the top and a lower concentration at the bottom, e.g., a non-homogeneous gel. The speed of separation is a function of the depth or head height of the slurry being heated. The mass of slurry combined with the head height, the temperature at which the gel sets and the speed with which the energy can be transferred to the gel, factor into the determination or result of homogeneous gel versus a non-homogeneous gel.


One aspect of a cap 70 in accordance with the present invention is illustrated in FIG. 3 with a gel pad 72 that differs in texture in specific regions 74-80. For example, in one aspect, the gel pad 72 has a soft occlusive first, central sealing region 74, a second region 76 less resilient than the first region, a third region 78 less resilient than the second region, a fourth region 80 less resilient than the third region, and so-on. More particularly, the gel pad 72 may include more than two concentric regions having differing resiliency with the resiliency of each region decreasing in relation to the increase in distance from the first, central region 74. The progressively less resilient or pliable regions allow positive attachment of the gel pad 72 to a support structure, such as the cap 70, while preserving the desirable occlusive properties of a softer more resilient material at, or about, the central portion of the gel pad.


In one aspect, the gel pad 72 has gradient concentric portions 74-80 in which the gel pad is centrifugally molded or formed. During gel formation, the slurry is mixed in a centrifuge. By rotating the slurry while forming the gel pad 72, density separation is created in which denser triblocks of the slurry migrate towards the circumference of the container holding the spinning slurry and the mineral oil increases in concentration towards the center. In this manner, a firmer gel is formed on the exterior of the finished part and a softer gel is formed in the central portion of the finished part, which is useful in hand access seals for laparoscopic surgery.


In one aspect, a long flat rectangular part is used instead of a thin circular part. There are three conventional axes of rotation associated with the rectangular part. The first axis is through the center of the part normal to the long and short axes of the part. Rotation about the first axis induces a higher density gel at the ends of the part as will rotating the gel about the short midpoint of the rectangle. However, rotation about the long axis of the rectangle creates higher density gel along the long edges of the rectangle. The rotation can be altered during processing, as in the case of rotational molding, in which the part is rotated about multiple axes during processing. The axis of rotation does not have to intersect a centroid of the part or even be within the part itself.


A reverse texture layout of the gel pad 70 can be achieved by selecting lighter density triblocks and higher density mineral oils. Other components can be added as well, based on the desired effect, including additives such as colorants, inert filler material, different oils, different triblock or diblock copolymers, polymers, plasticizers, decorative items, etc.


In one aspect, heavy plastic components 82 are provided with the gel pad 72 or slurry and gravitate toward outer regions of the gel away from the center, leaving the central region 74 with a particular proportion of plastic material and oil. The outer regions 76-80 of the gel pad 72 are denser and contain more heavy plastic material than the central region 74. When the particular gradient proportions for the gel pad 72 are achieved, rotation is slowed and the gel pad is allowed to cool.


In one aspect, a non-homogenous gel pad with soft gel on one side and a firmer gel on the other is accomplished with density separation over time commensurate with the timing of the energy input into the gel which can vary with the direction of gravity.


In FIGS. 4-7, a cap 90 includes a gel pad 92 with a plurality of gas-filled pockets 94. The pockets 94 may be formed by the presence of lightweight foam or balloons, or by casting or molding the gel around spheres or solid objects of other shapes that are removed after the gel pad 92 has cured. The foam, balloons, spheres or other shapes may be inserted into the mold cavity either prior to or after filling the mold cavity with the slurry. In one aspect, the arrangement of gas-pockets 94 substantially around the center of the gel pad 92 reduces the weight of the gel pad and resistance to the passage of a surgeon's hand or instruments while retaining occlusive properties. An alternative aspect of the gel pad 92 contemplates a more random dispersion of gas pockets 94 throughout the region beyond the center of the gel pad, which reduces the overall weight of the gel pad.


The gel pad or gelcap in various aspects of the present invention may be gamma sterilized. The relative or comparative simplicity of qualifying the sterilization process, for example of gamma versus ethylene oxide, of the gel pad and the device with the gel pad is desirable. However, under gamma sterilization large bubbles can form in the gel pad causing potential cosmetic or aesthetic issues in the sterilized devices. The bubbles are more than 99% room air, so removal of the dissolved air in the slurry is performed prior to forming the slurry into gel. For example, the slurry may be degassed via vacuum, as described above, and turned into gel by heat. Bubbles may still form in the gel during gamma sterilization but disappear in a period of about 24 to 72 hours. In one aspect, the percentage of dissolved gas in the mineral oil at room temperature is about 10%. The removal of the air in the gel has an additional effect of making the gel firmer. This however is counterbalanced by the softening effect on the gel caused by gamma radiation during gamma sterilization.


If the gel pad is to be gamma sterilized, the gel may include about 90% mineral oil by weight and about 10% KRATON by weight. As stated above, degassing the slurry has the effect of making the gel firmer. However, the gamma radiation softens the gel to substantially the same firmness as a gel having about 90% mineral oil by weight and about 10% KRATON by weight that is not degassed and gamma sterilized.


In one aspect, cyanoacrylate, e.g., SUPERGLUE or KRAZY GLUE, may be used to bond or otherwise couple or attach the gel pad 60 to the cap 54. The glue may attach to either the rubber or styrene component of the tri-block and the bond is frequently stronger than the gel material itself. In another aspect, a solvent may be used to dissolve the plastics in the cap and the polystyrene in the gel. The solution of solvent is applied to the gel pad and cap in either a spray or dip form. In effect, the solution melts both the plastic of the cap as well as the polystyrene in the gel pad to allow a chemical bond to form between the two, which remains when the solvent evaporates.


Polyethylene can be dissolved in mineral oil and then applied to the gel pad. The mineral oil will not evaporate but will over time absorb into the gel pad and impart a polyethylene layer on the gel pad that may have some beneficial properties.


In one aspect, the gel pad 60 is cast into a DYNAFLEX or KRATON polymer support structure, e.g., the cap 54. By using KRATON polymer or a similar material in the cap, ring adhesion between the gel pad 60 and the cap 54 can be achieved. The polystyrene in the gel is identified as achieving adhesion with polyphenylene oxide (PPO), polystyrene and other polymers.


In the casting process the gel pad 60 and the cap 54 are heated to a temperature above about 130° C. and held at that temperature for several hours, e.g., about 3 to 4 hours. The temperature used is not sufficient to deform the cap 54.


The cap 54, in one aspect, includes a polymer, e.g., polyethylene (PE). In one aspect, the polyethylene is a low density polyethylene (LDPE) or high density polyethylene (HDPE), or ultra high molecular weight polyethylene (UHMWPE). In one aspect, the cap 54 may be made of a polymer, such as polycarbonate and may be fabricated by methods including injection molding.


The gel includes mineral oil. PE has a higher molecular weight than mineral oil. PE is dissolved by mineral oil at high temperatures. As such, as the PE and the mineral oil in the gel pad 60 intermix as both are heated to and held at temperatures above about 130° C., a bond between the PE and gel pad is formed.


In one aspect, the cap 54 includes polycarbonate. The polycarbonate of the cap 54 does not form bonds with the gel pad 60 at 130° C. However, by raising the temperature to about 150° C. for a few minutes during casting, bonding occurs between the gel pad 60 and the cap 54. As such, heating the gel pad 60 and cap 54 to temperatures at which both the polystyrene of the gel and the polycarbonate are simultaneously beyond their melt points allow bonds to form between the gel pad and the cap. Alternatively, the gel pad 60 and cap 54 may be heated to near or at the glass transition temperature of the polycarbonate cap to form the bond between the gel pad and the cap.


Referring to FIGS. 8-10, the cap 100, 130 includes at least one gap 101, 132 along the annular perimeter of the cap. The at least one gap 101, 132 creates at least one first end 103, 134 and at least one second end 105, 138 of the cap 100, 130. The gap 101, 132 facilitates a transition in the cap from a first, larger periphery to a second, smaller periphery. As will be discussed in more detail below, the cap 100, 130 includes means for maintaining the cap at the second, smaller periphery. When the cap 100, 130 is set at the first, larger periphery, the retainer 52 (FIG. 1) may be inserted into or removed from the opening of the cap. The retainer 52 (FIG. 1) may be fixedly coupled to the cap 100, 130 by transitioning the perimeter of the cap to the second, smaller periphery while the retainer is positioned within the opening of the cap, and maintaining the periphery of the cap at the second, smaller periphery with the maintaining means.


Referring to FIGS. 8-9, the cap 100 incorporates squeeze release buckles 102 molded into or otherwise coupled to the cap. The cap 100 includes a first arc 108 and a second arc 110, the first and second arcs being separated by first and second gaps 101. The first arc 108 has a first barbed portion 112 extending from a first end and adapted to be inserted in a snap fit mating relationship with a second, receiver portion 114 extending from a second end of the second arc 110, thereby coupling the at least one first end 103 of the cap 100 to the at least one second end 105 of the cap. Another barbed portion 112 may extend from the first end of the second arc 110, which is operationally inserted in a snap fit mating relationship with another receiver portion 114 extending from the second end 105 of the first arc 108. In another aspect, the first arc 108 has a barbed portion 112 on each end of the arc with the second arc 110 having corresponding receiver portions 114 on each end of the second arc.


With the first and second arcs 108, 110 placed adjacent to each other, such that the first end 103 of the first arc corresponds with the second end 105 of the second arc and the second end 105 of the first arc corresponds with the first end 103 of the second arc, and prior to being snapped together, the arcs define a first, larger periphery to allow placement of a retainer 52 (FIG. 1) between the two arcs. The barbed portions 112 engage with corresponding receivers 114 coupling the arcs together. Each barbed portion has a plurality of resilient arms 122, two of which have projections 124 extending therefrom. Each receiver 114 has corresponding sidewalls 126 for engaging projections 124 from the barbed portion, which causes the arms 122 to flex towards each other as the arms slide into a channel 128 defined by the receiver. As the projections 124 clear the ends of the sidewalls 126, the arms 122 are allowed to flex away from each other. Engagement or contact between the edges of the projections 124 with edges of the end of the sidewall 126 prevents the arcs 108, 110 from being detached from each other. By coupling the two arcs 108, 110 together, the delimited circumference is reduced to a second, smaller periphery to capture or hold the retainer 52 (FIG. 1). Flexing the arms 122 toward each other allows the barbed portions 112 to disengage from the sidewalls of the corresponding receiver 114 and to slide out from the receiver, thereby allowing the arcs 108, 110 to separate and detach from the retainer 52 (FIG. 1).


Although not shown, additional barbed portions and receiver snap engagements may be included in each arc to assist in the coupling between the cap 100 and the retainer 52 (FIG. 1) or allow for other size and shape configurations of the cap and/or retainer. In one aspect, the cap 100 includes a single gap 101 and a single barbed portion 112 and receiver portion 114 is provided. In one aspect the cap 100 having the single barbed portion 112 and receiver portion 114 may be provided with a hinge or pivot on another portion of the arc.


Referring now to FIG. 10, a cap 130 has a gap or opening 132 along a portion of the periphery of the cap. A latch 136 is hinged or pivotally coupled to the cap proximate a first end 134 of the opening 132 of the cap 130. Proximate a second, opposite end 138 of the opening 132, a latch receiver, such as an aperture or channel 140 defined by substantially parallel channel walls 142, 144, is configured to releasably receive the latch 136. The latch 136 has a shaft 146 coupled to the cap 130 on one end and an enlarged or bulbous head 148 having a perimeter or diameter larger than the perimeter or diameter of the shaft on the non-hinged end of the latch. The head 148 of the latch 136 is configured to be graspable and the latch swung so that the head may engage and be held in the channel 140 defined by the channel walls 142, 144. The width of the channel 140 is smaller than the diameter of the head 148 of the latch 136 and the channel walls 142, 144 are resilient such that the walls flex away from each other during receipt of the head of the latch. Alternatively, or additionally, portions of the head 148 may compress so that the head may be received and held in the channel 140. In one aspect, one or more projections extend from one or both channel walls 142, 144 and engage notches in the head 148, or vice versa, to secure the latch 136 to the channel 140.


In this manner, with the latch 136 open or not engaged with the channel 140, the initial periphery of the cap 130 allows simple placement of the retainer 52 (FIG. 1) within the periphery of the cap. Actuating the latch 136 closes the cap 130 and reduces the size of the periphery delimited by the cap, thereby securing the cap to the retainer 52 (FIG. 1).


Referring back to FIGS. 8-10, with the cap 100, 130 being separable or otherwise disjointed, placement of the respective retainer 52 (FIG. 1) within the inner periphery of the cap is eased. Subsequent joining or recoupling of the cap together secures the retainer and cap to each other. As such, one skilled in the art would recognize that other types of couplings or engagements may be used to couple or join separate portions of the cap and/or the retainer together to close or delimit a periphery to encase or otherwise secure the cap and the retainer together and vice versa. In one aspect, the retainer, or both the retainer and the cap, are separable, having couplings and/or engagements to recouple the separate portions together to secure the cap and retainer to each other.


In FIGS. 11-12, the retainer 150 has one or more latches 152 to releasably couple the retainer to a cap 54 (FIGS. 1 and 2). In one aspect, a plurality of latches 152 is spaced along the periphery of the retainer 150. The latches 152 are hinged or pivotally coupled to the retainer 150 and are spaced along the periphery of the retainer. In one aspect, each of the latches is coupled to the retainer 150 with a live hinge. In a first position, the latches 152 extend laterally from the periphery of the retainer 150 in a substantially planar relationship with the retainer. Each latch 152 has a projection 156 extending substantially orthogonally from the latch. After placing or fitting the cap 54 on the retainer 150 and/or vice versa, the latches 152 are actuated to couple the cap and retainer together. In particular, the latches 152 are rotated toward the cap to a second position in which the latches engage a portion or edge of the cap 54 to couple the retainer to the cap. In one aspect, the engagement portion of the cap 54 is an opening, aperture, notch, step, projection or other similar type of receiver or engagement to secure the projection of the latch 152 to the cap.


In one aspect, one or more of the latches 152 has notches or openings for receiving corresponding projections or protrusions extending laterally from the cap 54 to couple the retainer 150 to the cap. Additionally or alternatively, although not shown, the cap may have one or more latches hinged along the periphery of the cap for engagement with portions or edges of the retainer to releasably couple the cap and retainer together.


Referring now to FIGS. 13-16, the retainer 160 has one or more resilient snaps 162 for releasably coupling the retainer and a cap 164 together. The snaps 162 extend from the outer periphery or edge of the retainer 160 in a substantially perpendicular direction from a substantially planar, annular surface 166 of the retainer. The planar, annular surface 166 of the retainer 160 secures the sleeve 56 (FIGS. 1 and 2) to the retainer. In one aspect, the surface 166 has projections or hooks to catch and secure the sleeve 56 to the retainer 160 under tension. The edge of the retainer 160 is also slightly raised to assist in the holding of the sleeve 56 and the handling of the retainer.


Multiple snaps 162 may be spaced along the periphery of the retainer 160. In one aspect, portions of the edge of the retainer 160 adjacent to each snap are elevated, thereby forming sidewall portions 167 on either side of each snap. The sidewall portions 167 protect the snaps 162 and strengthen or bolster the coupling between the retainer 160 and the cap 164 once coupled together. Additionally, the sidewall portions 167 facilitate handling and coupling the retainer 160 to the cap 164. Corresponding openings or cutouts 169 are disposed along the edges of the cap 164 to receive the sidewall portions 167 of the retainer 160.


Each snap 162 also has a projection 168 extending substantially perpendicular and radially inwardly from the snap. After placing or fitting a cap 164 on the retainer 160 and/or vice versa, both are squeezed together. The snaps 162 are configured to flex or deflect radially outwardly to slide over a corresponding receiver portion 170, such as a lip portion or an edge, of the cap 164 when the cap and retainer are brought together in a mating relationship. The snaps 162 are also configured to return toward a neutral position after the projection 168 on the snaps pass the receiver portion 170 of the cap 164 such that the projection of the snaps engages the receiver portion 170 of the cap. The receiver portion 170 in one aspect has an opening, aperture, notch, step, projection or other similar type of receiver or engagement means to secure the projection 168 of the snap 162 to the cap 164. Alternatively, one or more of the snaps 162 have notches or openings (not shown) for receiving corresponding projections or protrusions (not shown) extending from the cap to secure the snaps of the retainer 160 to the cap 164. The cap 164 and retainer 160 may each be made via injection molding. Additionally, the cap 164 and retainer 160 may each be made of a polycarbonate material.


In one aspect, as shown in FIGS. 17-20, a cap 180 has one or more snaps 182 for releasably coupling the cap to a retainer 184. The snaps 182 extend perpendicularly from the periphery of the cap 180 for engagement with portions 188, such as corresponding lip portions, and/or edges of the retainer 184. Each snap 182 has a projection 186 extending substantially perpendicular and radially inwardly from the snap. After placing or fitting the cap 180 on the retainer 184, both are squeezed together. The snaps 182 flex or deflect radially outwardly to slide over the lip or edge 188 of the retainer 184 when the cap 180 and retainer are brought together in a mating relationship, thereby securing the cap, retainer and sleeve 56 disposed therebetween. Each snap 182 is configured to return toward a neutral position after the projection 186 on the snap passes the lip portion 188 of the retainer 184 such that the projection of the snap engages the lip portion of the retainer.


Referring now to FIGS. 1-20, the retainers and caps previously described in one aspect are rigid, thereby providing manufacturing benefits as well as easing the assembly of the device. In one aspect, the caps 54, 70, 90, 100, 130, 164, 180 also incorporate an inner cylindrical wall 172 (see FIG. 14) to which the gel pad 60 is bonded or otherwise coupled or attached to the cap. In this manner, the gel pad 60 attaches to a “skeleton” inside the sleeve 56 and provides a sealing area between the device and the wound, incision and/or body cavity. The coupling or intersection of the sleeve, cap and retainer together also provides another sealing area between the device and the body.


By securing the gel pad 60 to the inner cylindrical wall 172, the thickness of the gel pad and corresponding cap 54, 70, 90, 100, 130, 164, 180 is minimized along with the overall footprint of the device. A reduced thickness and overall size of the device provides a lighter device and allows for easier hand exchanges. With the gel pad thickness reduced and the gel pad being able to be substantially flush or recessed in the cap, the “doming” phenomena produced by gas pressure exerted on the body and device during insufflation is also reduced.


In various aspects (FIGS. 11-20) in accordance with the present invention, the retainer 150, 160 has a raised edge 158, 174 disposed around the outer periphery of the retainer. A raised edge 159, 190, in one aspect, is also disposed around the inner periphery of the retainer 150, 184. The inner periphery defines an opening 157, 192 through which the sleeve extends. The outer raised edge 158, 174 assists in maintaining or securing the releasable coupling between the cap and the retainer. In one aspect, a groove 129 (FIG. 8) extends along the circumference of the cap for receiving the outer raised edge to further enhance the coupling between the cap and retainer. Similarly, the inner raised edge assists in maintaining or securing the releasable coupling between the retainer and the sleeve. The inner raised edge also facilitates the seal between the inner cylindrical wall and/or gel pad, the sleeve and the retainer. In one aspect, notches or spaced valleys or openings 155 (FIG. 11) are disposed along the inner raised edge 159, which facilitates the engagement of the inner cylindrical wall and/or gel pad with the retainer by reducing binding between the components.


Several of the above-described attachments could be modified to integrate the retainer or a retainer like component directly into a sleeve to which the cap is releasably coupled. Similarly, the cap may be integrated directly into the retainer and/or sleeve creating a non-releasable coupling between the components.


In one aspect, casting the gel pad 60 into the cap 54 to form a gelcap 66 includes placing the cap into a mold cavity of a casting mold. The mold cavity may include support for the annular walls of the cap 54. The mold may be made of aluminum, copper, brass, or other mold material having good heat dissipation properties. However, those familiar with the art will recognize that other mold materials having lower heat dissipation properties will produce acceptable parts and these are contemplated as within the scope of the present invention as well.


The mold cavity having the cap 54 is filled with the slurry such that the slurry is in contact with the cap. To facilitate filling voids in the mold cavity with the slurry, the slurry may be preheated, for example, to about 52° C. (125° F.). Preheating the slurry to a temperature below the MGT reduces the viscosity of the slurry and allows the slurry to flow more easily. As stated above, the slurry may have been degassed in a vacuum. The slurry may be degassed again within the mold after the mold cavity is filled to remove air that may have been introduced during the filling of the mold cavity and to facilitate flow of the slurry into voids in the mold. Heat is applied to the mold having the cap 54 and the slurry, such as in an oven, until the slurry attains a temperature of about 150° C. As stated above, the slurry turns into gel at about 120° C., however, at about 150° C., the gel can bond to a polycarbonate cap 54. Depending on the material used to fabricate the cap 54, bonding may take place at temperatures other than about 150° C. If the cap 54 is fabricated of a material having a lower melting point than 120° C., then the gel pad 60, such as a gel slug 60, may be molded separately and then bonded to the cap. The slits 62, 64 may be molded into the gel pad 60 through the use of an insert in the form of the slit in the mold.


Once the temperature of the gel pad 60 reaches about 150° C., the gelcap 66 may be cooled, such as by air-cooling, cold-water immersion, or other cooling means that are well known in the art. At 150° C. the gel pad is soft and if it were distorted during cooling it would set with the distortion included. To reduce the likelihood of distorting the gel pad 60, the gelcap 66 may be cooled within the mold. Cooling times may vary based on parameters including size and configuration of the mold, quantity of gel, temperature and quantity of cooling medium, cooling medium properties and the mold material. As an example, the cooling time may be about two (2) hours if cooling in air and about fifteen (15) minutes if cooling in water. Whether cooling with air or water, the final properties of the gel are substantially the same. The gelcap 66 is typically cooled to about ambient room temperature, but may be cooled to lower temperatures. If the gelcap 66 is cooled to the freezing point of the gel, about 0° C., then the gel will freeze and become hard. This may be beneficial for other means of coupling the gel pad 60 to the cap 54, such as with a secondary operation. The gelcap 66 may be removed from the mold at any time after the gel has set.


When removed from the mold, the gel pad 60 typically has a tacky surface. The gelcap 66 may be coated with a powder, such as cornstarch, to substantially reduce or eliminate the tackiness of the cured gel pad 60.


As stated above, in another aspect, the gel pad 60 may be molded separately from the cap 54 and coupled to the cap 54 by a secondary operation, such as by bonding. In one aspect, the gel pad 60 may be molded into a gel slug 60 having an outer perimeter smaller than the inner cylindrical wall of the cap 54 and to a height higher that the height of the cap. Since the gel pad 60 is being molded separate from the cap 54, the slurry only needs to be heated until it reaches about 120° C. and completes the transformation from slurry into gel and the gel becomes substantially transparent. The gel slug 60 may then be placed within the inner cylindrical wall of the cap 54. The gel slug 60 may be cooled and/or frozen prior to placing it within the inner cylindrical wall of the cap 54. The gel slug 60 may be coupled to the cap 54 through compression molding with the gel slug being compressed longitudinally so that the outer perimeter of the gel slug expands and compresses against the inner cylindrical wall of the cap. The gel slug 60 and cap 54 are heated to a sufficient temperature for the polystyrene of the gel and the polymer of the cap to form bonds between the gel and the cap. Molding the gel slug 60 separately from the cap 54 and heat bonding the gel slug to the cap at a later time is especially useful when the cap is made of a material that has a lower melting temperature than the MGT. In such situations, the gel slug 60 can be molded first and heat bonded to the cap 54 without melting the cap.


In reference to FIGS. 21-22, a cap 54 has the gel pad 60 attached, formed or integrated with the cap and is capable of being coupled to the retainer 52 which is capable of being coupled to the sleeve 56. In one aspect, the elongate sleeve 56 extends through an incision and is attached to a retention ring 58 that contacts the interior portions of the body cavity and provides tension between the retainer 52 outside the body cavity and the deformable retention ring. A plurality of stabilizers 200-206 extends from the retention ring 58 to the gel pad 60.


In one aspect, the stabilizers 200-206 are sized and configured to prevent excessive bulging of the gel pad 60 in response to the elevated body-cavity pressure. The stabilizers 200, 202, in one aspect, include a plurality of strings or tethers that extend from the retention ring 58 and subsequently through or into the gel pad 60. The stabilizers 204, 206 include a plurality of contiguous gel based gussets or webs that extend between the retention ring 58 and the gel pad 60.


With reference to FIGS. 23-24, a cap 54 has a woven or knitted fabric 210 that is stretchable and/or resilient. The fabric 210 is integrated into or attached onto the surface 211 of the gel pad 60 and coupled to the periphery of the cap 54. The fabric 210 provides support to counteract the “doming” or “bowing” of the gel pad 60 or cap 54 under the influence of the internal inflation gas pressure associated with the inflation of the body cavity. In one aspect, a first fabric 212 can be integrated on a first surface 214 of the gel pad 60 and coupled to the periphery of the cap 54 and a second fabric 216 can be integrated on a second, opposite surface 218 and coupled to the cap. In this manner, counteracting support is provided in both directions to minimize uncontrolled deformation of the gel pad as a hand or instrument is placed through or withdrawn.


In FIG. 25, a first fabric 220 is coupled to the periphery of the cap 54 and a second fabric 222 is coupled to the cap a distance from the first fabric. A cavity 224 is defined by the space between the first fabric 220 and the second fabric 222. The gel pad 60 may be inserted into the cavity 224 or otherwise held within the cavity. The gel pad 60 may be processed alone and formed to a preferred shape and size and firmness prior to coupling to the cap 54. The temperatures commonly required to process SEBS may substantially deform associated plastic structures. Therefore, separate processing and subsequent assembly may be useful for constructing a cap with the gel pad.


Referring to FIG. 26, the gel pad 60 has multi-cusped lobes 230 that seal upon one another. The channel 232 through which a surgeon's hand or instruments may be inserted through is formed between individual lobes of the gel pad 60.


Accordingly, the present invention provides a hand access device and methods thereof. Although this invention has been described in certain specific embodiments, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that this invention may be practiced otherwise than specifically described, including various changes in the size, shape and materials, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive. The scope of the present invention is to be determined by the appended claims and their equivalents rather than the foregoing description.

Claims
  • 1. A surgical access device adapted for disposition relative to an incision in a body wall, the access device facilitating insertion of an instrument therethrough and maintenance of a sealing relationship with the instrument, comprising: a cap, the cap being substantially annular and having an opening therethrough;a gel pad coupled to the cap and adapted for insertion of the instrument therethrough, the gel pad covering and sealing the entire opening in the cap;a retainer, the retainer being substantially annular and adapted for placement against the body wall; andcoupling means adapted for coupling the cap and the retainer together,wherein the retainer being configured to be coupled to a proximal portion of an elongate sleeve that is adapted to extend through the incision, and the retainer being adapted together with the elongate sleeve to retract the incision;wherein the gel pad has an outer surface, an inner surface and a plurality of regions having differing resiliency, each region of the plurality of regions having an top surface and each top surface of each region collectively forming the outer surface of the gel pad.
  • 2. The surgical access device of claim 1 wherein the outer surface of the gel pad is a flat planar surface extending across the entire opening of the cap to an inner periphery of the cap.
  • 3. The surgical access device of claim 2 wherein the inner surface of the gel pad is a flat planar surface extending across the entire opening of the cap to an inner periphery of the cap and parallel to the outer surface of the gel pad; and further comprising a plurality of slits between the inner and outer surfaces of the gel pad.
  • 4. The surgical access device of claim 1 wherein the plurality of regions comprises a first region and a second region, the first region having a higher concentration of mineral oil than the second region.
  • 5. The surgical access device of claim 1 wherein the plurality of regions comprises a first region and a second region, the second region having more plastic material than the first region.
  • 6. The surgical access device of claim 1 wherein the plurality of regions comprises a first region and a second region, the first region comprising a triblock copolymer and the second region comprising a triblock copolymer, the triblock copolymer of the first region having a lower density than the triblock copolymer of the second region.
  • 7. A surgical access device adapted for disposition relative to a body wall, the access device facilitating insertion of an instrument therethrough and maintenance of a sealing relationship with the instrument, comprising: a cap defining a central opening and arranged to connect to a retractor; anda gel pad connected to the cap and sealing the central opening in the cap and forming an instrument seal in the presence of an instrument inserted therethrough and a zero seal in the absence of an instrument inserted therethrough;a retainer connectable to the cap and connected to a proximate portion of an elongate sleeve; anda retention ring attached to a distal portion of the elongate sleeve and a plurality of stabilizers extending from the retention ring and into the gel pad;wherein the gel pad has at least two concentric regions having differing resiliency.
  • 8. The surgical access device of claim 7 wherein the resiliency of each region of the at least two concentric regions decreases in relation to the increase in distance from a central region at a center of the gel pad.
  • 9. The surgical access device of claim 7 wherein the plurality of stabilizers comprises a plurality of contiguous gel based webs.
  • 10. The surgical access device of claim 7 wherein the plurality of stabilizers comprises a plurality of contiguous gel based gussets.
  • 11. The surgical access device of claim 7 further comprising a fabric coupled to an inner periphery of the cap and attached to a surface of the gel pad.
  • 12. The surgical access device of claim 7 wherein the gel pad comprises a plurality of intersecting dead-end slits.
  • 13. A surgical access device adapted for disposition relative to a body wall, the access device facilitating insertion of an instrument therethrough and maintenance of a sealing relationship with the instrument, comprising: a cap defining a central opening and arranged to connect to a retractor;a gel pad connected to the cap and sealing the central opening in the cap and forming an instrument seal in the presence of an instrument inserted therethrough and a zero seal in the absence of an instrument inserted therethrough;a first fabric coupled to the cap; anda second fabric coupled to the cap, a distance from the first fabric, the space between the first fabric and the second fabric defining a cavity;wherein the gel pad is positioned within the cavity between the first and second fabric.
  • 14. The surgical access device of claim 13 wherein the cap further comprises a latch pivotably coupled to the cap.
  • 15. The surgical access device of claim 13 further comprising a retractor comprising a proximal end; a distal end; and a retention ring at the distal end of the retractor, wherein the retention ring is deformably insertable through an opening into a body cavity; and an elongate sleeve extending proximally from the retention ring, the cap being removably coupled to the proximal end of the retractor.
  • 16. The surgical access device of claim 15 further comprising a plurality of stabilizers extending from the retention ring and into the gel pad.
  • 17. The surgical access device of claim 16 wherein the plurality of stabilizers comprises a plurality of contiguous gel based webs.
  • 18. The surgical access device of claim 16 wherein the plurality of stabilizers comprises a plurality of contiguous gel based gussets.
  • 19. The surgical access device of claim 13 wherein the gel pad comprises a plurality of intersecting dead-end slits in which the first fabric and second fabric does not extend therethrough.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 13/006,727, filed Jan. 14, 2011, which is a continuation of U.S. application Ser. No. 12/815,986, filed Jun. 15, 2010, now U.S. Pat. No. 7,878,974, which is a divisional of U.S. application Ser. No. 11/548,955, filed Oct. 12, 2006, now U.S. Pat. No. 7,736,306, which claims the benefit of U.S. Provisional Application No. 60/726,826, filed Oct. 14, 2005; U.S. Provisional Application No. 60/745,730, filed on Apr. 26, 2006; U.S. Provisional Application No. 60/803,346, filed on May 26, 2006; U.S. Provisional Application No. 60/803,965, filed on Jun. 5, 2006; and U.S. Provisional Application No. 60/828,089, filed Oct. 4, 2006, the entire disclosures of which are incorporated herein by reference.

US Referenced Citations (810)
Number Name Date Kind
558364 Doolittle Apr 1896 A
1157202 Bates et al. Oct 1915 A
1598284 Kinney Aug 1926 A
1690995 Pratt Nov 1928 A
1180466 Deutsch Jun 1931 A
1810466 Deutsch Jun 1931 A
2219564 Reyniers Oct 1940 A
2305289 Coburg Dec 1942 A
2478586 Krapp Aug 1949 A
2669991 Curutchet Feb 1954 A
2695608 Gibbon Nov 1954 A
2812758 Blumenschein Nov 1957 A
2835253 Borgeson May 1958 A
2853075 Hoffman et al. Sep 1958 A
3039468 Price Jun 1962 A
3057350 Cowley Oct 1962 A
3111943 Orndorff Nov 1963 A
3195934 Parrish Jul 1965 A
3244169 Baxter Apr 1966 A
3253594 Matthews et al. May 1966 A
3313299 Spademan Apr 1967 A
3329390 Hulsey Jul 1967 A
3332417 Blanford et al. Jul 1967 A
3347226 Harrower Oct 1967 A
3347227 Harrower Oct 1967 A
3397692 Creager, Jr. et al. Aug 1968 A
3402710 Paleschuck Sep 1968 A
3416520 Creager, Jr. Dec 1968 A
3447533 Spicer Jun 1969 A
3522800 Lesser Aug 1970 A
3523534 Nolan Aug 1970 A
3570475 Weinstein Mar 1971 A
3656485 Robertson Apr 1972 A
3685786 Woodson Aug 1972 A
3717151 Collett Feb 1973 A
3717883 Mosher Feb 1973 A
3729006 Wilder et al. Apr 1973 A
3729027 Bare Apr 1973 A
3782370 McDonald Jan 1974 A
3797478 Walsh et al. Mar 1974 A
3799166 Marsan Mar 1974 A
3807393 McDonald Apr 1974 A
3828764 Jones Aug 1974 A
3831583 Edmunds et al. Aug 1974 A
3841332 Treacle Oct 1974 A
3850172 Cazalis Nov 1974 A
3853126 Schulte Dec 1974 A
3853127 Spademan Dec 1974 A
3856021 McIntosh Dec 1974 A
3860274 Ledstrom et al. Jan 1975 A
3861416 Wichterle Jan 1975 A
3907389 Cox et al. Sep 1975 A
3915171 Shermeta Oct 1975 A
3965890 Gauthier Jun 1976 A
3970089 Saice Jul 1976 A
3996623 Kaster Dec 1976 A
4000739 Stevens Jan 1977 A
4016884 Kwan-Gett Apr 1977 A
4024872 Muldoon May 1977 A
4030500 Ronnquist Jun 1977 A
4043328 Cawood, Jr. et al. Aug 1977 A
4069913 Harrigan Jan 1978 A
4083370 Taylor Apr 1978 A
4096853 Weigand Jun 1978 A
4112932 Chiulli Sep 1978 A
4117847 Clayton Oct 1978 A
4130113 Graham Dec 1978 A
4177814 Knepshield et al. Dec 1979 A
4183357 Bentley et al. Jan 1980 A
4187849 Stim Feb 1980 A
4188945 Wenander Feb 1980 A
4217664 Faso Aug 1980 A
4222126 Boretos et al. Sep 1980 A
4228792 Rhys-Davies Oct 1980 A
4239036 Krieger Dec 1980 A
4240411 Hosono Dec 1980 A
4253201 Ross et al. Mar 1981 A
4254973 Benjamin Mar 1981 A
4306562 Osborne Dec 1981 A
4321915 Leighton Mar 1982 A
4331138 Jessen May 1982 A
4338934 Spademan Jul 1982 A
4338937 Lerman Jul 1982 A
4367728 Mutke Jan 1983 A
4369284 Chen Jan 1983 A
4399816 Spangler Aug 1983 A
4402683 Kopman Sep 1983 A
4411659 Jensen et al. Oct 1983 A
4421296 Stephens Dec 1983 A
4424833 Spector et al. Jan 1984 A
4428364 Bartolo Jan 1984 A
4430081 Timmermans Feb 1984 A
4434791 Darnell Mar 1984 A
4436519 O'Neill Mar 1984 A
4454873 Laufenberg et al. Jun 1984 A
4473067 Schiff Sep 1984 A
4475548 Muto Oct 1984 A
4485490 Akers et al. Dec 1984 A
4488877 Klein Dec 1984 A
4543088 Bootman et al. Sep 1985 A
4550713 Hyman Nov 1985 A
4553537 Rosenberg Nov 1985 A
4555242 Saudagar Nov 1985 A
4556996 Wallace Dec 1985 A
4601710 Moll Jul 1986 A
4610665 Matsumoto et al. Sep 1986 A
4626245 Weinstein Dec 1986 A
4634424 O'Boyle Jan 1987 A
4634432 Kocak Jan 1987 A
4644951 Bays Feb 1987 A
4649904 Krauter Mar 1987 A
4653476 Bonnet Mar 1987 A
4654030 Moll et al. Mar 1987 A
4655752 Honkanen et al. Apr 1987 A
4673393 Suzuki et al. Jun 1987 A
4673394 Fenton Jun 1987 A
4691942 Ford Sep 1987 A
4714749 Hughes et al. Dec 1987 A
4738666 Fuqua Apr 1988 A
4755170 Golden Jul 1988 A
4760933 Christner et al. Aug 1988 A
4776843 Martinez et al. Oct 1988 A
4777943 Chvapil Oct 1988 A
4784646 Feingold Nov 1988 A
4796629 Grayzel Jan 1989 A
4798594 Hillstead Jan 1989 A
4802694 Vargo Feb 1989 A
4808168 Warring Feb 1989 A
4809679 Shimonaka et al. Mar 1989 A
4828554 Griffin May 1989 A
4842931 Zook Jun 1989 A
4848575 Nakamura et al. Jul 1989 A
4856502 Ersfeld et al. Aug 1989 A
4863430 Klyce et al. Sep 1989 A
4863438 Gauderer et al. Sep 1989 A
4889107 Kaufman Dec 1989 A
4895565 Hillstead Jan 1990 A
4897081 Poirier Jan 1990 A
4903710 Jessamine et al. Feb 1990 A
4911974 Shimizu et al. Mar 1990 A
4915132 Hodge et al. Apr 1990 A
4926882 Lawrence May 1990 A
4929235 Merry et al. May 1990 A
4944732 Russo Jul 1990 A
4950222 Scott et al. Aug 1990 A
4950223 Silvanov Aug 1990 A
4984564 Yuen Jan 1991 A
4991593 LeVahn Feb 1991 A
4998538 Charowsky et al. Mar 1991 A
5000745 Guest et al. Mar 1991 A
5009224 Cole Apr 1991 A
5015228 Columbus et al. May 1991 A
5019101 Purkait et al. May 1991 A
5026366 Leckrone Jun 1991 A
5037379 Clayman et al. Aug 1991 A
5041095 Littrell Aug 1991 A
5045070 Grodecki et al. Sep 1991 A
D320658 Quigley et al. Oct 1991 S
5071411 Hillstead Dec 1991 A
5073169 Raiken Dec 1991 A
5074878 Bark et al. Dec 1991 A
5082005 Kaldany Jan 1992 A
5086763 Hathman Feb 1992 A
5092846 Nishijima et al. Mar 1992 A
5104389 Deem Apr 1992 A
5125396 Ray Jun 1992 A
5125897 Quinn et al. Jun 1992 A
5127626 Hilal et al. Jul 1992 A
5129885 Green et al. Jul 1992 A
5141498 Christian Aug 1992 A
5149327 Oshiyama Sep 1992 A
5156617 Reid Oct 1992 A
5158553 Berry et al. Oct 1992 A
5159921 Hoover Nov 1992 A
5161773 Tower Nov 1992 A
5167636 Clement Dec 1992 A
5167637 Okada et al. Dec 1992 A
5176648 Holmes et al. Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5176697 Hasson et al. Jan 1993 A
5178162 Bose Jan 1993 A
5180365 Ensminger et al. Jan 1993 A
5183471 Wilk Feb 1993 A
5188595 Jacobi Feb 1993 A
5188607 Wu Feb 1993 A
5192301 Kamiya et al. Mar 1993 A
5197955 Stephens et al. Mar 1993 A
5207656 Kranys May 1993 A
5209737 Ritchart et al. May 1993 A
5211370 Powers May 1993 A
5211633 Stouder, Jr. May 1993 A
5213114 Bailey, Jr. May 1993 A
5226890 Ianniruberto et al. Jul 1993 A
5234455 Mulhollan Aug 1993 A
5241968 Slater Sep 1993 A
5242400 Blake, III et al. Sep 1993 A
5242409 Buelna Sep 1993 A
5242412 Blake, III et al. Sep 1993 A
5242415 Kantrowitz et al. Sep 1993 A
5248304 Vigdorchik et al. Sep 1993 A
5256150 Quiachon et al. Oct 1993 A
5257973 Villasuso Nov 1993 A
5257975 Foshee Nov 1993 A
5259366 Reydel et al. Nov 1993 A
5261883 Hood et al. Nov 1993 A
5262468 Chen Nov 1993 A
5263922 Sova et al. Nov 1993 A
5269763 Boehmer et al. Dec 1993 A
5269772 Wilk Dec 1993 A
5273449 Mattis et al. Dec 1993 A
5273545 Hunt et al. Dec 1993 A
D343236 Quigley et al. Jan 1994 S
5279575 Sugarbaker Jan 1994 A
5290310 Makower et al. Mar 1994 A
D346022 Quigley et al. Apr 1994 S
5299582 Potts Apr 1994 A
5300034 Behnke Apr 1994 A
5300035 Clement Apr 1994 A
5300036 Mueller et al. Apr 1994 A
5308336 Hart et al. May 1994 A
5309896 Moll et al. May 1994 A
5312391 Wilk May 1994 A
5314417 Stephens et al. May 1994 A
5316541 Fischer May 1994 A
5320611 Bonutti et al. Jun 1994 A
5330437 Durman Jul 1994 A
5330486 Wilk Jul 1994 A
5330497 Freitas et al. Jul 1994 A
5331975 Bonutti Jul 1994 A
5334143 Carroll Aug 1994 A
5334646 Chen Aug 1994 A
5336192 Palestrant Aug 1994 A
5336708 Chen Aug 1994 A
5338313 Mollenauer et al. Aug 1994 A
5342315 Rowe et al. Aug 1994 A
5342385 Norelli et al. Aug 1994 A
5350364 Stephens et al. Sep 1994 A
5353786 Wilk Oct 1994 A
5354280 Haber et al. Oct 1994 A
5360417 Gravener et al. Nov 1994 A
5364345 Lowery et al. Nov 1994 A
5364372 Danks et al. Nov 1994 A
5366446 Tal et al. Nov 1994 A
5366478 Brinkerhoff et al. Nov 1994 A
5368545 Schaller et al. Nov 1994 A
5375588 Yoon Dec 1994 A
5380288 Hart et al. Jan 1995 A
5383861 Hempel et al. Jan 1995 A
5385552 Haber et al. Jan 1995 A
5385553 Hart et al. Jan 1995 A
5385560 Wulf Jan 1995 A
5389080 Yoon Feb 1995 A
5389081 Castro Feb 1995 A
5391153 Haber et al. Feb 1995 A
5391156 Hildwein et al. Feb 1995 A
5395367 Wilk Mar 1995 A
5403264 Wohlers et al. Apr 1995 A
5403336 Kieturakis et al. Apr 1995 A
5407433 Loomas Apr 1995 A
5411483 Loomas May 1995 A
5413571 Katsaros et al. May 1995 A
5423848 Washizuka et al. Jun 1995 A
5429609 Yoon Jul 1995 A
5431676 Dubrul et al. Jul 1995 A
5437683 Neumann et al. Aug 1995 A
5439455 Kieturakis et al. Aug 1995 A
5441486 Yoon Aug 1995 A
5443452 Hart et al. Aug 1995 A
5456284 Ryan et al. Oct 1995 A
5460170 Hammerslag Oct 1995 A
5460616 Weinstein et al. Oct 1995 A
5468248 Chin et al. Nov 1995 A
5476475 Gadberry Dec 1995 A
5480410 Cuschieri et al. Jan 1996 A
5486426 McGee et al. Jan 1996 A
5490843 Hildwein et al. Feb 1996 A
5492304 Smith et al. Feb 1996 A
5496280 Vandenbroek et al. Mar 1996 A
5503112 Luhman et al. Apr 1996 A
5507758 Thomason et al. Apr 1996 A
5508334 Chen Apr 1996 A
5511564 Wilk Apr 1996 A
5514109 Mollenauer et al. May 1996 A
5514133 Golub et al. May 1996 A
5514153 Bonutti May 1996 A
5518278 Sampson May 1996 A
5520632 Leveen May 1996 A
5522791 Leyva Jun 1996 A
5522824 Ashby Jun 1996 A
5524644 Crook Jun 1996 A
5526536 Cartmill Jun 1996 A
5531758 Uschold et al. Jul 1996 A
5538509 Dunlap et al. Jul 1996 A
5540648 Yoon Jul 1996 A
5540711 Kieturakis et al. Jul 1996 A
5545150 Danks et al. Aug 1996 A
5545179 Williamson, IV Aug 1996 A
5549563 Kronner Aug 1996 A
5549637 Crainich Aug 1996 A
5554124 Alvarado Sep 1996 A
5562632 Davila et al. Oct 1996 A
5562677 Hildwein et al. Oct 1996 A
5562688 Riza Oct 1996 A
5571115 Nicholas Nov 1996 A
5571137 Marlow et al. Nov 1996 A
5575799 Bolanos et al. Nov 1996 A
5577993 Zhu et al. Nov 1996 A
5578048 Pasqualucci et al. Nov 1996 A
5580344 Hasson Dec 1996 A
5584850 Hart et al. Dec 1996 A
5601579 Semertzides Feb 1997 A
5601581 Fogarty et al. Feb 1997 A
5603702 Smith et al. Feb 1997 A
5607443 Kieturakis et al. Mar 1997 A
5620415 Lucey et al. Apr 1997 A
5620420 Kriesel Apr 1997 A
5628732 Antoon, Jr. et al. May 1997 A
5632284 Graether May 1997 A
5632979 Goldberg et al. May 1997 A
5634911 Hermann et al. Jun 1997 A
5634936 Linden et al. Jun 1997 A
5634937 Mollenauer et al. Jun 1997 A
5636645 Ou Jun 1997 A
5640977 Leahy et al. Jun 1997 A
5643301 Mollenauer Jul 1997 A
5649550 Crook Jul 1997 A
5651771 Tangherlini et al. Jul 1997 A
5653705 de la Torre et al. Aug 1997 A
5657963 Hinchliffe et al. Aug 1997 A
5658272 Hasson Aug 1997 A
5658306 Kieturakis Aug 1997 A
5662615 Blake, III Sep 1997 A
5672168 de la Torre et al. Sep 1997 A
5681341 Lunsford et al. Oct 1997 A
5683378 Christy Nov 1997 A
5685854 Green et al. Nov 1997 A
5685857 Negus et al. Nov 1997 A
5697914 Brimhall Dec 1997 A
5707703 Rothrum et al. Jan 1998 A
5709664 Vandenbroek et al. Jan 1998 A
5713858 Heruth et al. Feb 1998 A
5713869 Morejon Feb 1998 A
5720730 Blake, III Feb 1998 A
5725536 Oberlin et al. Mar 1998 A
5728103 Picha et al. Mar 1998 A
5730748 Fogarty et al. Mar 1998 A
5735791 Alexander et al. Apr 1998 A
5738628 Sierocuk et al. Apr 1998 A
5741234 Aboul-Hosn Apr 1998 A
5741298 MacLeod Apr 1998 A
5743884 Hasson et al. Apr 1998 A
5749882 Hart et al. May 1998 A
5755660 Tyagi May 1998 A
5760117 Chen Jun 1998 A
5769783 Fowler Jun 1998 A
5782812 Hart et al. Jul 1998 A
5782817 Franzel et al. Jul 1998 A
5782859 Nicholas et al. Jul 1998 A
5788676 Yoon Aug 1998 A
5792119 Marx Aug 1998 A
5795290 Bridges Aug 1998 A
5803919 Hart et al. Sep 1998 A
5803921 Bonadio Sep 1998 A
5803923 Singh-Derewa et al. Sep 1998 A
5807350 Diaz Sep 1998 A
5810712 Dunn Sep 1998 A
5810721 Mueller et al. Sep 1998 A
5813409 Leahy et al. Sep 1998 A
5814026 Yoon Sep 1998 A
5817062 Flom et al. Oct 1998 A
5819375 Kastner Oct 1998 A
5820555 Watkins, III et al. Oct 1998 A
5820600 Carlson et al. Oct 1998 A
5830191 Hildwein et al. Nov 1998 A
5832925 Rothrum Nov 1998 A
5836871 Wallace et al. Nov 1998 A
5841298 Huang Nov 1998 A
5842971 Yoon Dec 1998 A
5848992 Hart et al. Dec 1998 A
5853395 Crook et al. Dec 1998 A
5853417 Fogarty et al. Dec 1998 A
5857461 Levitsky et al. Jan 1999 A
5860995 Berkelaar Jan 1999 A
5865728 Moll et al. Feb 1999 A
5865729 Meehan et al. Feb 1999 A
5865807 Blake, III Feb 1999 A
5865817 Moenning et al. Feb 1999 A
5871474 Hermann et al. Feb 1999 A
5876413 Fogarty et al. Mar 1999 A
5879368 Hoskin et al. Mar 1999 A
5882344 Stouder, Jr. Mar 1999 A
5884639 Chen Mar 1999 A
5894843 Benetti et al. Apr 1999 A
5895377 Smith et al. Apr 1999 A
5899208 Bonadio May 1999 A
5899913 Fogarty et al. May 1999 A
5904703 Gilson May 1999 A
5906577 Beane et al. May 1999 A
5913847 Yoon Jun 1999 A
5916198 Dillow Jun 1999 A
5916232 Hart Jun 1999 A
5919476 Fischer et al. Jul 1999 A
5931832 Jensen Aug 1999 A
5947922 MacLeod Sep 1999 A
5951467 Picha et al. Sep 1999 A
5951588 Moenning Sep 1999 A
5957888 Hinchliffe Sep 1999 A
5957913 de la Torre et al. Sep 1999 A
5962572 Chen Oct 1999 A
5964781 Mollenauer et al. Oct 1999 A
5976174 Ruiz Nov 1999 A
5989232 Yoon Nov 1999 A
5989233 Yoon Nov 1999 A
5989266 Foster Nov 1999 A
5993471 Riza et al. Nov 1999 A
5993485 Beckers Nov 1999 A
5994450 Pearce Nov 1999 A
5997515 de la Torre et al. Dec 1999 A
6004303 Peterson Dec 1999 A
6010494 Schafer et al. Jan 2000 A
6017355 Hessel et al. Jan 2000 A
6018094 Fox Jan 2000 A
6024736 de la Torre et al. Feb 2000 A
6025067 Fay Feb 2000 A
6033426 Kaji Mar 2000 A
6033428 Sardella Mar 2000 A
6035559 Freed et al. Mar 2000 A
6042573 Lucey Mar 2000 A
6045535 Ben Nun Apr 2000 A
6048309 Flom et al. Apr 2000 A
6050871 Chen Apr 2000 A
6053934 Andrews et al. Apr 2000 A
6059816 Moenning May 2000 A
6066117 Fox et al. May 2000 A
6068639 Fogarty et al. May 2000 A
6076560 Stahle et al. Jun 2000 A
6077288 Shimomura Jun 2000 A
6086603 Termin et al. Jul 2000 A
6090043 Austin et al. Jul 2000 A
6099506 Macoviak et al. Aug 2000 A
6110154 Shimomura et al. Aug 2000 A
6123689 To et al. Sep 2000 A
6142935 Flom et al. Nov 2000 A
6142936 Beane et al. Nov 2000 A
6149642 Gerhart et al. Nov 2000 A
6150608 Wambeke et al. Nov 2000 A
6159182 Davis Dec 2000 A
6162172 Cosgrove et al. Dec 2000 A
6162196 Hart et al. Dec 2000 A
6162206 Bindokas Dec 2000 A
6163949 Neuenschwander Dec 2000 A
6164279 Tweedle Dec 2000 A
6171282 Ragsdale Jan 2001 B1
6183486 Snow et al. Feb 2001 B1
6197002 Peterson Mar 2001 B1
6217555 Hart et al. Apr 2001 B1
6217590 Levinson Apr 2001 B1
6224612 Bates et al. May 2001 B1
6228063 Aboul-Hosn May 2001 B1
6238373 de la Torre et al. May 2001 B1
6241768 Agarwal et al. Jun 2001 B1
6254533 Fadem et al. Jul 2001 B1
6254534 Butler et al. Jul 2001 B1
6258065 Dennis et al. Jul 2001 B1
6264604 Kieturakis et al. Jul 2001 B1
6267751 Mangosong Jul 2001 B1
6276661 Laird Aug 2001 B1
6287280 Lampropoulos et al. Sep 2001 B1
6315770 de la Torre et al. Nov 2001 B1
6319246 de la Torre et al. Nov 2001 B1
6322541 West Nov 2001 B2
6325384 Berry, Sr. et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6371968 Kogasaka et al. Apr 2002 B1
6382211 Crook May 2002 B1
6383162 Sugarbaker May 2002 B1
6391043 Moll et al. May 2002 B1
6413244 Bestetti et al. Jul 2002 B1
6413458 Pearce Jul 2002 B1
6420475 Chen Jul 2002 B1
6423036 Van Huizen Jul 2002 B1
6440061 Wenner et al. Aug 2002 B1
6440063 Beane et al. Aug 2002 B1
6443957 Addis Sep 2002 B1
6447489 Peterson Sep 2002 B1
6450983 Rambo Sep 2002 B1
6454783 Piskun Sep 2002 B1
6464686 O'Hara et al. Oct 2002 B1
6468292 Mollenauer et al. Oct 2002 B1
6482181 Racenet et al. Nov 2002 B1
6485435 Bakal Nov 2002 B1
6485467 Crook et al. Nov 2002 B1
6488620 Segermark et al. Dec 2002 B1
6488692 Spence et al. Dec 2002 B1
6494893 Dubrul et al. Dec 2002 B2
6527787 Fogarty et al. Mar 2003 B1
6533734 Corley, III et al. Mar 2003 B1
6551270 Bimbo et al. Apr 2003 B1
6551276 Mann et al. Apr 2003 B1
6551344 Thill Apr 2003 B2
6552109 Chen Apr 2003 B1
6554793 Pauker et al. Apr 2003 B1
6558371 Dorn May 2003 B2
6569120 Green May 2003 B1
6578577 Bonadio et al. Jun 2003 B2
6579281 Palmer et al. Jun 2003 B2
6582364 Butler et al. Jun 2003 B2
6589167 Shimomura et al. Jul 2003 B1
6589211 MacLeod Jul 2003 B1
6607504 Haarala et al. Aug 2003 B2
6613952 Rambo Sep 2003 B2
6623426 Bonadio et al. Sep 2003 B2
6627275 Chen Sep 2003 B1
6663598 Carrillo et al. Dec 2003 B1
6669674 Macoviak et al. Dec 2003 B1
6676639 Ternström Jan 2004 B1
6702787 Racenet et al. Mar 2004 B2
6705989 Cuschieri et al. Mar 2004 B2
6706050 Giannadakis Mar 2004 B1
6714298 Ryer Mar 2004 B2
6716201 Blanco Apr 2004 B2
6723044 Pulford et al. Apr 2004 B2
6723088 Gaskill, III et al. Apr 2004 B2
6725080 Melkent et al. Apr 2004 B2
6793621 Butler et al. Sep 2004 B2
6794440 Chen Sep 2004 B2
6796940 Bonadio et al. Sep 2004 B2
6797765 Pearce Sep 2004 B2
6800084 Davison et al. Oct 2004 B2
6811546 Callas et al. Nov 2004 B1
6814078 Crook Nov 2004 B2
6814700 Mueller et al. Nov 2004 B1
6817974 Cooper et al. Nov 2004 B2
6830578 O'Heeron et al. Dec 2004 B2
6837893 Miller Jan 2005 B2
6840946 Fogarty et al. Jan 2005 B2
6840951 de la Torre et al. Jan 2005 B2
6846287 Bonadio et al. Jan 2005 B2
6860463 Hartley Mar 2005 B2
6863674 Kasahara et al. Mar 2005 B2
6866861 Luhman Mar 2005 B1
6867253 Chen Mar 2005 B1
6869393 Butler Mar 2005 B2
6878110 Yang et al. Apr 2005 B2
6884253 McFarlane Apr 2005 B1
6890295 Michels et al. May 2005 B2
6895965 Scarberry et al. May 2005 B2
6902541 McNally et al. Jun 2005 B2
6902569 Parmer et al. Jun 2005 B2
6908430 Caldwell et al. Jun 2005 B2
6909220 Chen Jun 2005 B2
6913609 Yencho et al. Jul 2005 B2
6916310 Sommerich Jul 2005 B2
6916331 Mollenauer et al. Jul 2005 B2
6929637 Gonzalez et al. Aug 2005 B2
6936037 Bubb et al. Aug 2005 B2
6939296 Ewers et al. Sep 2005 B2
6945932 Caldwell et al. Sep 2005 B1
6958037 Ewers et al. Oct 2005 B2
6972026 Caldwell et al. Dec 2005 B1
6979324 Bybordi et al. Dec 2005 B2
6991602 Nakazawa et al. Jan 2006 B2
6997909 Goldberg Feb 2006 B2
7001397 Davison et al. Feb 2006 B2
7008377 Beane et al. Mar 2006 B2
7014628 Bousquet Mar 2006 B2
7033319 Pulford et al. Apr 2006 B2
7052454 Taylor May 2006 B2
7056304 Bacher et al. Jun 2006 B2
7056321 Pagliuca et al. Jun 2006 B2
7067583 Chen Jun 2006 B2
7077852 Fogarty et al. Jul 2006 B2
7081089 Bonadio et al. Jul 2006 B2
7083626 Hart et al. Aug 2006 B2
7093599 Chen Aug 2006 B2
7100614 Stevens et al. Sep 2006 B2
7101353 Liu et al. Sep 2006 B2
7105009 Johnson Sep 2006 B2
7105607 Chen Sep 2006 B2
7112185 Hart et al. Sep 2006 B2
7118528 Piskun Oct 2006 B1
7134929 Chen Nov 2006 B2
7153261 Wenchell Dec 2006 B2
7163510 Kahle et al. Jan 2007 B2
7192436 Sing et al. Mar 2007 B2
7193002 Chen Mar 2007 B2
7195590 Butler et al. Mar 2007 B2
7214185 Rosney et al. May 2007 B1
7217277 Parihar et al. May 2007 B2
7222380 Chen May 2007 B2
7223257 Shubayev et al. May 2007 B2
7223278 Davison et al. May 2007 B2
7226484 Chen Jun 2007 B2
7235062 Brustad Jun 2007 B2
7235084 Skakoon et al. Jun 2007 B2
7238154 Ewers et al. Jul 2007 B2
7244244 Racenet et al. Jul 2007 B2
7276075 Callas et al. Oct 2007 B1
7290367 Chen Nov 2007 B2
7294103 Bertolero et al. Nov 2007 B2
7297106 Yamada et al. Nov 2007 B2
7300399 Bonadio et al. Nov 2007 B2
7316699 McFarlane Jan 2008 B2
7331940 Sommerich Feb 2008 B2
7338473 Campbell et al. Mar 2008 B2
7344546 Wulfman et al. Mar 2008 B2
7344547 Piskun Mar 2008 B2
7344568 Chen Mar 2008 B2
7377898 Ewers et al. May 2008 B2
7390317 Taylor et al. Jun 2008 B2
7393322 Wenchell Jul 2008 B2
7412977 Fields et al. Aug 2008 B2
7445597 Butler et al. Nov 2008 B2
7473221 Ewers et al. Jan 2009 B2
7481765 Ewers et al. Jan 2009 B2
7537564 Bonadio et al. May 2009 B2
7540839 Butler et al. Jun 2009 B2
7559893 Bonadio et al. Jul 2009 B2
7578832 Johnson Aug 2009 B2
7645232 Shluzas Jan 2010 B2
7650887 Nguyen et al. Jan 2010 B2
7661164 Chen Feb 2010 B2
7704207 Albrecht et al. Apr 2010 B2
7717847 Smith May 2010 B2
7727146 Albrecht et al. Jun 2010 B2
7727255 Taylor et al. Jun 2010 B2
7736306 Brustad et al. Jun 2010 B2
7749415 Brustad et al. Jul 2010 B2
7753901 Piskun et al. Jul 2010 B2
7758500 Boyd et al. Jul 2010 B2
7766824 Jensen et al. Aug 2010 B2
7811251 Wenchell et al. Oct 2010 B2
7815567 Albrecht et al. Oct 2010 B2
7837612 Gill et al. Nov 2010 B2
7841765 Keller Nov 2010 B2
7850667 Gresham Dec 2010 B2
7867164 Butler et al. Jan 2011 B2
7878974 Brustad et al. Feb 2011 B2
7896889 Mazzocchi et al. Mar 2011 B2
7909760 Albrecht et al. Mar 2011 B2
7930782 Chen Apr 2011 B2
20010037053 Bonadio et al. Nov 2001 A1
20010047188 Bonadio et al. Nov 2001 A1
20020002324 McManus Jan 2002 A1
20020010389 Butler et al. Jan 2002 A1
20020013542 Bonadio et al. Jan 2002 A1
20020016607 Bonadio et al. Feb 2002 A1
20020026230 Moll et al. Feb 2002 A1
20020038077 de la Torre et al. Mar 2002 A1
20020072762 Bonadio et al. Jun 2002 A1
20020111536 Cuschieri et al. Aug 2002 A1
20030004253 Chen Jan 2003 A1
20030028179 Piskun Feb 2003 A1
20030040711 Racenet et al. Feb 2003 A1
20030078478 Bonadio et al. Apr 2003 A1
20030139756 Brustad Jul 2003 A1
20030167040 Bacher et al. Sep 2003 A1
20030187376 Rambo Oct 2003 A1
20030192553 Rambo Oct 2003 A1
20030225392 McMichael et al. Dec 2003 A1
20030236505 Bonadio et al. Dec 2003 A1
20030236549 Bonadio et al. Dec 2003 A1
20040015185 Ewers et al. Jan 2004 A1
20040024363 Goldberg Feb 2004 A1
20040049099 Ewers et al. Mar 2004 A1
20040049100 Butler Mar 2004 A1
20040054353 Taylor Mar 2004 A1
20040063833 Chen Apr 2004 A1
20040068232 Hart et al. Apr 2004 A1
20040070187 Chen Apr 2004 A1
20040072942 Chen Apr 2004 A1
20040073090 Butler Apr 2004 A1
20040092795 Bonadio et al. May 2004 A1
20040092796 Butler et al. May 2004 A1
20040093018 Johnson May 2004 A1
20040097793 Butler et al. May 2004 A1
20040106942 Taylor et al. Jun 2004 A1
20040111061 Curran Jun 2004 A1
20040127772 Ewers et al. Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040143158 Hart et al. Jul 2004 A1
20040154624 Bonadio et al. Aug 2004 A1
20040167559 Taylor et al. Aug 2004 A1
20040173218 Yamada et al. Sep 2004 A1
20040215063 Bonadio et al. Oct 2004 A1
20040230161 Zeiner Nov 2004 A1
20040243144 Bonadio et al. Dec 2004 A1
20040249248 Bonadio et al. Dec 2004 A1
20040254426 Wenchell Dec 2004 A1
20040260244 Piechowicz et al. Dec 2004 A1
20040267096 Caldwell et al. Dec 2004 A1
20050020884 Hart et al. Jan 2005 A1
20050033246 Ahlberg et al. Feb 2005 A1
20050059865 Kahle et al. Mar 2005 A1
20050065475 Hart et al. Mar 2005 A1
20050065543 Kahle et al. Mar 2005 A1
20050080319 Dinkler, II et al. Apr 2005 A1
20050090713 Gonzales et al. Apr 2005 A1
20050090716 Bonadio et al. Apr 2005 A1
20050090717 Bonadio et al. Apr 2005 A1
20050096695 Olich May 2005 A1
20050131349 Albrecht et al. Jun 2005 A1
20050148823 Vaugh et al. Jul 2005 A1
20050155611 Vaugh et al. Jul 2005 A1
20050159647 Hart et al. Jul 2005 A1
20050192483 Bonadio et al. Sep 2005 A1
20050192598 Johnson et al. Sep 2005 A1
20050197537 Bonadio et al. Sep 2005 A1
20050203346 Bonadio et al. Sep 2005 A1
20050209510 Bonadio et al. Sep 2005 A1
20050222582 Wenchell Oct 2005 A1
20050240082 Bonadio et al. Oct 2005 A1
20050241647 Nguyen Nov 2005 A1
20050251124 Zvuloni et al. Nov 2005 A1
20050261720 Caldwell et al. Nov 2005 A1
20050267419 Smith Dec 2005 A1
20050277946 Greenhalgh Dec 2005 A1
20050283050 Gundlapalli et al. Dec 2005 A1
20050288558 Ewers et al. Dec 2005 A1
20050288634 O'Heeron et al. Dec 2005 A1
20060020164 Butler et al. Jan 2006 A1
20060020241 Piskun et al. Jan 2006 A1
20060030755 Ewers et al. Feb 2006 A1
20060041270 Lenker Feb 2006 A1
20060047284 Gresham Mar 2006 A1
20060047293 Haberland et al. Mar 2006 A1
20060052669 Hart Mar 2006 A1
20060084842 Hart et al. Apr 2006 A1
20060106402 McLucas May 2006 A1
20060129165 Edoga et al. Jun 2006 A1
20060149137 Pingleton et al. Jul 2006 A1
20060149306 Hart et al. Jul 2006 A1
20060161049 Beane et al. Jul 2006 A1
20060161050 Butler et al. Jul 2006 A1
20060241651 Wilk Oct 2006 A1
20060247498 Bonadio et al. Nov 2006 A1
20060247499 Butler et al. Nov 2006 A1
20060247500 Voegele et al. Nov 2006 A1
20060247516 Hess et al. Nov 2006 A1
20060247586 Voegele et al. Nov 2006 A1
20060247673 Voegele et al. Nov 2006 A1
20060247678 Weisenburgh, II et al. Nov 2006 A1
20060258899 Gill et al. Nov 2006 A1
20060264706 Piskun Nov 2006 A1
20060270911 Voegele et al. Nov 2006 A1
20070004968 Bonadio et al. Jan 2007 A1
20070049966 Bonadio et al. Mar 2007 A1
20070088202 Albrecht et al. Apr 2007 A1
20070088204 Albrecht Apr 2007 A1
20070093695 Bonadio et al. Apr 2007 A1
20070118175 Butler et al. May 2007 A1
20070149859 Albrecht Jun 2007 A1
20070151566 Kahle et al. Jul 2007 A1
20070156023 Frasier et al. Jul 2007 A1
20070185387 Albrecht et al. Aug 2007 A1
20070203398 Bonadio et al. Aug 2007 A1
20070208312 Norton et al. Sep 2007 A1
20070255219 Vaugh et al. Nov 2007 A1
20070270752 LaBombard Nov 2007 A1
20070299387 Williams et al. Dec 2007 A1
20080027476 Piskun Jan 2008 A1
20080048011 Weller Feb 2008 A1
20080097162 Bonadio et al. Apr 2008 A1
20080097163 Butler et al. Apr 2008 A1
20080200767 Ewers et al. Aug 2008 A1
20080255519 Piskun et al. Oct 2008 A1
20080281161 Albrecht et al. Nov 2008 A1
20080281162 Albrecht et al. Nov 2008 A1
20090012477 Norton et al. Jan 2009 A1
20090036745 Bonadio et al. Feb 2009 A1
20090069837 Bonadio et al. Mar 2009 A1
20090093683 Richard et al. Apr 2009 A1
20090093752 Richard et al. Apr 2009 A1
20090131754 Ewers et al. May 2009 A1
20090137879 Ewers et al. May 2009 A1
20090149714 Bonadio Jun 2009 A1
20090182279 Wenchell et al. Jul 2009 A1
20090182282 Okihisa Jul 2009 A1
20090187079 Albrecht et al. Jul 2009 A1
20090227843 Smith et al. Sep 2009 A1
20090292176 Bonadio et al. Nov 2009 A1
20090326330 Bonadio et al. Dec 2009 A1
20100063362 Bonadio et al. Mar 2010 A1
20100063364 Bonadio et al. Mar 2010 A1
20100081880 Widenhouse et al. Apr 2010 A1
20100081881 Murray et al. Apr 2010 A1
20100081995 Widenhouse et al. Apr 2010 A1
20100100043 Racenet Apr 2010 A1
20100113882 Widenhouse et al. May 2010 A1
20100217087 Bonadio et al. Aug 2010 A1
20100228091 Widenhouse et al. Sep 2010 A1
20100228092 Ortiz et al. Sep 2010 A1
20100228094 Ortiz et al. Sep 2010 A1
20100240960 Richard Sep 2010 A1
20100249523 Spiegal et al. Sep 2010 A1
20100249524 Ransden et al. Sep 2010 A1
20100249525 Shelton, IV et al. Sep 2010 A1
20100249694 Choi et al. Sep 2010 A1
20100261972 Widenhouse et al. Oct 2010 A1
20100261975 Huey et al. Oct 2010 A1
20100286484 Stellon et al. Nov 2010 A1
20100298646 Stellon et al. Nov 2010 A1
20110021877 Fortier et al. Jan 2011 A1
20110028891 Okoniewski Feb 2011 A1
20110034935 Kleyman Feb 2011 A1
20110034946 Kleyman Feb 2011 A1
20110034947 Kleyman Feb 2011 A1
20110071462 Ewers et al. Mar 2011 A1
20110071463 Ewers et al. Mar 2011 A1
20120095297 Dang et al. Apr 2012 A1
Foreign Referenced Citations (128)
Number Date Country
26 05 148 Aug 1977 DE
33 36 279 Jan 1986 DE
37 39 532 Dec 1988 DE
37 37 121 May 1989 DE
296 00 939 Jun 1996 DE
19828009 Dec 1999 DE
0 113 520 Jul 1984 EP
0 142 262 May 1985 EP
0 517 248 Dec 1992 EP
0 537 768 Apr 1993 EP
0 807 416 Nov 1997 EP
0 849 517 Jun 1998 EP
0950376 Oct 1999 EP
1 118 657 Jul 2001 EP
1 125 552 Aug 2001 EP
1 312 318 May 2003 EP
1 407 715 Apr 2004 EP
2 044 889 Apr 2009 EP
2 272 450 Jan 2011 EP
2 340 792 Jul 2011 EP
1456623 Sep 1966 FR
1151993 May 1969 GB
1355611 Jun 1974 GB
1372491 Oct 1974 GB
1379772 Jan 1975 GB
1400808 Jul 1975 GB
1407023 Sep 1975 GB
1482857 Aug 1977 GB
1496696 Dec 1977 GB
2071502 Sep 1981 GB
2255019 Oct 1992 GB
2275420 Aug 1994 GB
2298906 Sep 1996 GB
930649 Sep 1993 IE
930650 Sep 1993 IE
S940150 Feb 1994 IE
S940613 Aug 1994 IE
S940960 Dec 1994 IE
S950055 Jan 1995 IE
S950266 Apr 1995 IE
S75368 Aug 1997 IE
S960196 Aug 1997 IE
S970810 Nov 1997 IE
991010 Jul 2000 IE
990218 Nov 2000 IE
990219 Nov 2000 IE
990220 Nov 2000 IE
990660 Feb 2001 IE
990795 Mar 2001 IE
10-108868 Apr 1998 JP
11-290327 Oct 1999 JP
2001-61850 Mar 2001 JP
2002-28163 Jan 2002 JP
02003 235879 Aug 2003 JP
2004-195037 Jul 2004 JP
1342485 Jan 1997 SU
WO 8606272 Nov 1986 WO
WO 8606316 Nov 1986 WO
WO 9211880 Jul 1992 WO
WO 9221292 Dec 1992 WO
WO 9305740 Apr 1993 WO
WO 9314801 Aug 1993 WO
WO 9404067 Mar 1994 WO
WO 9422357 Oct 1994 WO
WO 9505207 Feb 1995 WO
WO 9507056 Mar 1995 WO
WO 9522289 Aug 1995 WO
WO 9524864 Sep 1995 WO
WO 9527445 Oct 1995 WO
WO 9527468 Oct 1995 WO
WO 9636283 Nov 1996 WO
WO 9711642 Apr 1997 WO
WO 9732514 Sep 1997 WO
WO 9732515 Sep 1997 WO
WO 9742889 Nov 1997 WO
WO 9819853 May 1998 WO
WO 9835614 Aug 1998 WO
WO 9848724 Nov 1998 WO
WO 9903416 Jan 1999 WO
WO 9915068 Apr 1999 WO
WO 9916368 Apr 1999 WO
WO 9922804 May 1999 WO
WO 9925268 May 1999 WO
WO 9929250 Jun 1999 WO
WO 0032116 Jun 2000 WO
WO 0032117 Jun 2000 WO
WO 0032119 Jun 2000 WO
WO 0032120 Jun 2000 WO
WO 0035356 Jun 2000 WO
WO 0054675 Sep 2000 WO
WO 0054676 Sep 2000 WO
WO 0054677 Sep 2000 WO
WO 0108563 Feb 2001 WO
WO 0108581 Feb 2001 WO
WO 0126558 Apr 2001 WO
WO 0126559 Apr 2001 WO
WO 0145568 Jun 2001 WO
WO 0149363 Jul 2001 WO
WO 0191652 Dec 2001 WO
WO 0207611 Jan 2002 WO
WO 0217800 Mar 2002 WO
WO 0234108 May 2002 WO
WO 03011153 Feb 2003 WO
WO 03011551 Feb 2003 WO
WO 03026512 Apr 2003 WO
WO 03032819 Apr 2003 WO
WO 03034908 May 2003 WO
WO 03061480 Jul 2003 WO
WO 03077726 Sep 2003 WO
WO 03103548 Dec 2003 WO
WO 2004026153 Apr 2004 WO
WO 2004030547 Apr 2004 WO
WO 2004075730 Sep 2004 WO
WO 2004075741 Sep 2004 WO
WO 2004075930 Sep 2004 WO
WO 2005009257 Feb 2005 WO
WO 2005034766 Apr 2005 WO
WO 2005089661 Sep 2005 WO
WO 2006040748 Apr 2006 WO
WO 2006059318 Jun 2006 WO
WO 2006100658 Sep 2006 WO
WO 2007044849 Apr 2007 WO
WO 2008015566 Feb 2008 WO
WO 2008093313 Aug 2008 WO
WO 2008121294 Oct 2008 WO
WO 2010045253 Apr 2010 WO
WO 2010082722 Jul 2010 WO
WO 2010104259 Sep 2010 WO
Non-Patent Literature Citations (112)
Entry
U.S. Appl. No. 10/381,220, filed Mar. 20, 2003; Title: Surgical Access Apparatus and Method, now USPN 7,473,221 issued Jan. 6, 2009.
U.S. Appl. No. 10/436,522, filed May 13, 2003; Title: Laparoscopic Illumination Apparatus and Method, now USPN 6,939,296 issued Sep. 6, 2005.
U.S. Appl. No. 10/399,209, filed Aug. 22, 2003; Title: Wound Retraction Apparatus and Method, now USPN 6,958,037 issued Oct. 25, 2005.
U.S. Appl. No. 11/218,412, filed Sep. 1, 2005; Title: Wound Retraction Apparatus and Method, now USPN 7,238,154 issued Jul. 3, 2007.
U.S. Appl. No. 10/399,057, filed Apr. 11, 2003; Title: Sealed Surgical Access Device, now USPN 7,052,454 issued May 30, 2006.
U.S. Appl. No. 10/666,579, filed Sep. 17, 2003; Title: Surgical Instrument Access Device, now USPN 7,163,510 issued Jan. 16, 2007.
U.S. Appl. No. 10/052,297, filed Jan. 18, 2002; Title: Hand Access Port Device, now USPN 6,908,430 issued Jun. 21, 2005.
U.S. Appl. No. 08/015,765, filed Feb. 10, 1993; Title: Gas-Tight Seal Accomodating Surgical Instruments With a Wide Range of Diameters, now USPN 5,407,433 issued Apr. 18, 1995.
U.S. Appl. No. 08/040,373, filed Mar. 30, 1993; Title: Gas-Tight Seal Accomodating Surgical Instruments With a Wide Range of Diameters, now USPN 5,411,483 issued May 2, 1995.
U.S. Appl. No. 10/902,756, filed Jul. 29, 2004; Title: Hand Access Port Device, now abandoned.
U.S. Appl. No. 10/802,125, filed Mar. 15, 2004; Title: Surgical Guide Valve, now abandoned.
U.S. Appl. No. 10/516,198, filed Nov. 30, 2004; Title: Wound Retractor, now USPN 7,650,887 issued Jan. 26, 2010.
U.S. Appl. No. 10/927,551, filed Aug. 25, 2004; Title: Surgical Access System, now abandoned.
U.S. Appl. No. 11/244,647, filed Oct. 5, 2005; Title: Surgical Access Apparatus and Method, now USPN 7,481,765 issued Jan. 27, 2009.
U.S. Appl. No. 11/548,746, filed Oct. 12, 2006; Title: Method of Making a Hand Access Laparoscopic Device, now USPN 7,749,415 issued Jul. 6, 2010.
U.S. Appl. No. 11/548,765, filed Oct. 12, 2006; Title: Split Hoop Wound Retractor, now USPN 7,815,567 issued Oct. 26, 2010.
U.S. Appl. No. 11/548,767, filed Oct. 12, 2006; Title: Circular Surgical Retractor now USPN 7,704,207 issued Apr. 27, 2010.
U.S. Appl. No. 11/548,781, filed Oct. 12, 2006; Title: Wound Retractor With Gel Cap, now USPN 7,727,146 issued Jun. 1, 2010.
U.S. Appl. No. 11/548,955, filed Oct. 12, 2006; Title: Hand Access Laparoscopic Device, now USPN 7,736,306 issued Jun. 15, 2010.
U.S. Appl. No. 11/755,305, filed May 30, 2007; Title: Wound Retraction Apparatus and Method, now USPN 7,377,898 issued May 27, 2008.
U.S. Appl. No. 11/548,758, filed Oct. 12, 2007; Title: Split Hoop Wound Retractor With Gel Pad, now USPN 7,909,760 issued Mar. 22, 2011.
U.S. Appl. No. 12/693,242, filed Jan. 1, 2010; Title: Wound Retractor, now USPN 7,913,697 issued Mar. 29, 2011.
U.S. Appl. No. 12/768,328, filed Apr. 27, 2010; Title: Circular Surgical Retractor, now USPN 7,892,172 issued Feb. 22, 2011.
U.S. Appl. No. 12/791,666, filed Jun. 1, 2010; Title: Wound Retractor With Gel Cap, now USPN 7,883,461 issued Feb. 8, 2011.
U.S. Appl. No. 12/815,986, filed Jun. 15, 2010; Title: Hand Access Laparoscopic Device, now USPN 7,878,974 issued Feb. 1, 2011.
U.S. Appl. No. 10/695,295, filed Oct. 28, 2003; Title: Surgical Gel Seal.
U.S. Appl. No. 11/132,741, filed May 18, 2005; Title: Gas-Tight Seal Accomodating Surgical Instruments With a Wide Range of Diameters.
U.S. Appl. No. 11/245,709, filed Oct. 7, 2005; Title: Surgical Access System.
U.S. Appl. No. 11/330,661, filed Jan. 12, 2006; Title: Sealed Surgical Access Device.
U.S. Appl. No. 11/564,409, filed Nov. 29, 2006; Title: Surgical Instrument Access Device.
U.S. Appl. No. 12/108,400, filed Apr. 23, 2008; Title: Wound Retraction Apparatus and Method.
U.S. Appl. No. 12/119,371, filed May 12, 2008; Title: Surgical Retractor With Gel Pad.
U.S. Appl. No. 12/119,414, filed May 12, 2008; Title: Surgical Retractor.
U.S. Appl. No. 12/358,080, filed Jan. 22, 2009; Title: Surgical Instrument Access Device.
U.S. Appl. No. 12/360,634, filed Jan. 27, 2009; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 12/360,710, filed Jan. 27, 2009; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 12/578,422, filed Oct. 13, 2009; Title: Single Port Access System.
U.S. Appl. No. 12/905,932, filed Oct. 15, 2010; Title: Split Hoop Wound Retractor.
U.S. Appl. No. 12/960,449, filed Dec. 3, 2010; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 12/960,458, filed Dec. 3, 2010; Title: Surgical Access Apparatus and Method.
U.S. Appl. No. 13/006,727, filed Jan. 14, 2011; Title: Hand Access Laparoscopic Device.
U.S. Appl. No. 13/008,728, filed Jan. 18, 2011; Title: Wound Retractor With Gel Cap.
U.S. Appl. No. 13/023,334, filed Feb. 8, 2011; Title: Circular Surgical Retractor.
U.S. Appl. No. 13/031,892, filed Feb. 22, 2011; Title: Wound Retractor.
U.S. Appl. No. 13/050,042, filed Mar. 17, 2011; Title: Split Hoop Wound Retractor With Gel Pad.
U.S. Appl. No. 10/446,365, filed May 28, 2003; Title: Screw-Type Seal With Inflatable Membrane.
U.S. Appl. No. 12/004,439, filed Dec. 20, 2007; Title: Skin Seal.
U.S. Appl. No. 12/004,441, filed Dec. 20, 2007; Title: Screw-Type Skin Seal With Inflatable Membrane.
U.S. Appl. No. 12/607,667, filed Oct. 28, 2009; Title: Screw-Type Skin Seal With Inflatable Membrane.
U.S. Appl. No. 10/965,217, filed Oct. 15, 2004; Title: Surgical Sealing Device.
U.S. Appl. No. 10/981,730, filed Nov. 5, 2004; Title: Surgical Sealing Device.
U.S. Appl. No. 11/246,909, filed Oct. 11, 2005; Title: Instrument Access Device.
U.S. Appl. No. 11/291,089, filed Dec. 1, 2005; Title: A Surgical Sealing Device.
U.S. Appl. No. 11/486,383, filed Jul. 14, 2006; Title: Wound Retractor.
U.S. Appl. No. 11/785,752, filed Apr. 19, 2007; Title: Instrument Access Device.
U.S. Appl. No. 12/244,024, filed Oct. 2, 2008; Title: Seal Anchor for Use in Surgical Procedures.
U.S. Appl. No. 12/578,832, filed Oct. 14, 2009; Title: Flexible Access Device for Use in Surgical Procedure.
U.S. Appl. No. 12/706,043, filed Feb. 16, 2010; Title: Flexible Port Seal.
U.S. Appl. No. 12/719,341, filed Mar. 8, 2010; Title: Foam Port and Introducer Assembly.
U.S. Appl. No. 10/895,546, filed Jul. 21, 2004; Title: Laparoscopic Instrument and Cannula Assembly and Related Surgical Method.
U.S. Appl. No. 10/913,565, filed Aug. 5, 2004; Title: Surgical Device With Tack-Free Gel and Method of Manufacture.
Dexterity Protractor Instruction Manual by Dexterity Surgical, Inc., dated 1999.
European Patent Office, European Search Report for European Application No. EP 10 18 4681, entitled “Wound Retraction Apparatus and Method”,dated Nov. 22, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 4608, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 4648, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 4731, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 4661, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 4677, entitled “Wound Retraction Apparatus and Method”, dated Nov. 22, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 9325, entitled “Split Hoop Wound Retractor”, dated Dec. 14, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 9327, entitled “Split Hoop Wound Retractor”, dated Dec. 14, 2010.
European Patent Office, European Search Report for European Application No. EP 10 18 9328, entitled “Split Hoop Wound Retractor”, dated Dec. 15, 2010.
European Patent Office, European Search Report for European Application No. EP 04 00 2888, entitled “Hand Access Port Device”, dated Sep. 10, 2004.
European Patent Office, European Search Report for European Application No. EP 04 00 2889, entitled “Hand Access Port Device”, dated Sep. 13, 2004.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/040154, mailed Jan. 30, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/040073, mailed Jan. 26, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039905, mailed Jan. 17, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039883, mailed Jan. 31, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039800, mailed Apr. 16, 2007.
European Patent Office, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US2006/039799, mailed Mar. 27, 2007.
European Patent Office, European Search Report for European Application No. EP 08253236 dated Feb. 10, 2009.
Horigame, et al., Silicone Rumen Cannula with a Soft Cylindrical Part and a Hard Flange, Journal of Dairy Science, Nov. 1989, vol. 72, No. 11, pp. 3230-3232.
Horigame, et al., Technical Note: Development of Duodoenal Cannula for Sheep, Journal of Animal Science, Apr. 1992, vol. 70, Issue 4, pp. 1216-1219.
International Searching Authority/US, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US04/05484, mailed on Nov. 12, 2004.
International Searching Authority/US, International Search Report and the Written Opinion of the International Searching Authority for International Application No. PCT/US01/29682, mailed on Jun. 14, 2002.
McSweeney, Cannulation of the Rumen in Cattle and Buffaloes, Australian Veterniary Journal, Aug. 1989, vol. 66, No. 8, pp. 266-268.
Neil Sheehan, Supplemental Expert Report of Neil Sheehan, Re: U.S. Patent No. 5,741,298, United States District Court for the Central District of California, Civil Action No. SACV 03-1322 JVS, Aug. 9, 2005.
Office Action in co-pending U.S. Appl. No. 12/360,634, dated Jan. 24, 2011 in 12 pages.
Office Action in co-pending U.S. Appl. No. 12/360,710, dated Jan. 24, 2011 in 12 pages.
Technical Note: Development of Duodenal Cannula for Sheep, Faculty of Agriculture and School of Medicine Tohokju University, Sendai 981, Japan, dated 1992.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2004/028250, dated Aug. 29, 2006.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2006/039799, dated Apr. 16, 2008.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2006/039800 dated Apr. 16, 2008.
Yamazaki, et al., Diurnal Changes in the Composition of Abomasal Digesta in Fasted and Fed Sheep, The Tohoki Journal of Agricultural Research, Mar. 1987, vol. 37, No. 3-4, pp. 49-58.
Kagaya, Laparascopic cholecystecomy via two ports, using the “Twin-Port” system, J. Hepatobiliary Pancreat Surg (2001) 8:76-80, dated Feb. 20, 2001.
Declaration of John R. Brustad dated Dec. 10, 2009, submitted in U.S. Appl. No. 11/548,955, including Appendices A-D regarding product sales brochures and production drawings from 2001 and 2005.
International Search Report and Written Opinion for PCT/IE2005/000113, mailed on Feb. 22, 2006.
International Searching Authority-US, International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US04/25511, mailed Nov. 7, 2007.
International Bureau of WIPO, International Report on Patentability for International Application No. PCT/US04/25511, mailed Dec. 6, 2007.
International Search Report and Written Opinion for PCT/IE2007/000050 mailed on Aug. 13, 2007.
The International Searching Authority, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US08/63445, mailed Sep. 29, 2008.
The International Searching Authority, The International Search Report and Written Opinion of the International Searching Authority for International Application No. PCT/US08/063463 mailed Sep. 10, 2008.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US2008/063463, entitled “Surgical Retractor”, dated Nov. 17, 2009.
The International Bureau of WIPO, International Preliminary Report on Patentability for International Application No. PCT/US08/63445, entitled “Surgical Retractor with Gel Pad”, dated Nov. 17, 2009.
International Searching Authority—European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2011/054266, mailed Feb. 9, 2012.
European Patent Office, European Search Report for European Patent No. 11172709.5, dated Aug. 16, 2011.
European Patent Office, European Search Report for European Patent No. 11172706.1, dated Aug. 16, 2011.
European Patent Office, European Search Report for European Patent No. 12151288, dated Feb. 10, 2012.
European Patent Office, European Search Report for European Patent No. 08755332, dated Apr. 18, 2012.
European Patent Office, Supplementary European Search Report for European Patent Application No. 08755322, dated Apr. 18, 2012.
European Patent Office, Supplementary European Search Report for European Patent Application No. 08755336, dated Jun. 15, 2012.
Harold W. Harrower, M.D., Isolation of Incisions into Body Cavities, The American Journal of Surgery, vol. 116, pp. 824-826, Dec. 1968.
International Searching Authority—European Patent Office, The International Search Report and Written Opinion for International Application No. PCT/US2013/037213, mailed Jul. 3, 2013.
Related Publications (1)
Number Date Country
20140135586 A1 May 2014 US
Provisional Applications (5)
Number Date Country
60745730 Apr 2006 US
60803346 May 2006 US
60803965 Jun 2006 US
60828089 Oct 2006 US
60726826 Oct 2005 US
Divisions (1)
Number Date Country
Parent 11548955 Oct 2006 US
Child 12815986 US
Continuations (2)
Number Date Country
Parent 13006727 Jan 2011 US
Child 14149497 US
Parent 12815986 Jun 2010 US
Child 13006727 US