The present application claims priority of U.S. patent application Ser. No. 13/088,512, filed Apr. 18, 2011, the disclosure of which is incorporated herein.
The present invention relates generally to the field of lavatory systems and, more particularly, to touch-free hand dryers that use proximity sensors to commence the blowing of air.
In an effort to reduce the waste and frequently the mess associated with paper toweling in public washrooms such as those found in high traffic areas like schools, libraries, airports, train and bus terminals, shopping centers, theaters, and sports venues, wall-mounted electric hand dryers have become prevalent. More recently, proximity sensors have allowed for touch-free hand dryers that can be activated automatically when a user places his hands in a drying zone adjacent the hand dryer; typically, below and/or in front of the hand dryer. For many installations, the hand dryer is mounted on a wall opposite the wash basin and, quite frequently, one or two hand dryers will be provided for a bank (more than two) of wash basins. As a result, a user after cleaning his hands must walk some distance to the hand dryer. This frequently results in water and/or soap dripping onto the floor as the user walks from the wash basin to the hand dryer. As there are typically more wash basins than hand dryers, it is possible that water could pool on the floor during high use periods. The accumulated water can create a slippery and, consequently, potentially unsafe condition. Additionally, the hand dryer can blow water from the user's hands onto the floor during the drying process further adding to the amount of water that accumulates on the floor. Moreover, water and/or soap can accumulate on the countertop supporting the wash basin which can be unsightly, if not quickly addressed. Additionally, the accumulation of water and/or soap on the floor and/or countertop may lead to germ-infested areas thus posing additional health risks as well as creating discomfort for users that are particularly germ sensitive.
One proposed solution is described in U.S. patent application Ser. No. 12/233,466, which is assigned to Bradley Fixtures Corporation, the assignee of this application and which is incorporated herein by reference. The aforementioned application describes a lavatory system in which a hand-washing station has a wash basin, a faucet, and an electric hand dryer. The integration of these components into a single wash station alleviates the need for a user to leave the wash station to access a hand dryer. That is, the hand dryer is adjacent the wash basin and (heated) air is blown into an area generally above the wash basin. Accordingly, a user can water and soap his hands in a conventional manner and then move his hands to the drying zone of the hand dryer. The user's hands do not need to leave the wash basin for the hands to be exposed to the drying air. Hence, water does not drip onto the floor as the user presents his hands to the dryer and water removed from the hands is blown into the wash basin rather than onto the floor.
The lavatory system described in the aforementioned application provides a significant improvement over conventional lavatory systems. However, the present inventor has discovered that many users of such an integrated wash station do not slide their hands over from below the faucet to the drying zone of the hand dryer. The inventor has found that some users, so conditioned to extract their hands from the wash basin entirely, will remove their hands from the wash basin and then present their hands to the front of the drying zone. As the hand dryer is activated when one or more proximity sensors sense the presence of the user's hands, it has been found that such a front-presentment can result in splashback of water onto the clothes of the user, the floor, or the countertop.
The present invention is directed to a hand dryer in which the point of entry into a drying zone is detected and used to selectively activate a delay before the hand dryer is activated. While not so limited, in one embodiment, the hand dryer is part of an integrated lavatory system having a wash basin with a faucet operably connected to the wash basin and a soap-dispensing system having a spout operably connected to the wash basin. The hand dryer defines a hand-receiving cavity above the wash basin so that a user does not need to remove his hands from the wash basin to place his hands in the hand-receiving cavity. The hand-receiving cavity has a top portion with an air outlet, and a bottom portion with an air outlet. A blower provides a volume of air to the air outlets which is ultimately presented to the hand-receiving cavity. Multiple proximity sensors are operably connected to the blower and turn the blower on and off when triggered by an object, i.e., detection of the user's hand(s). In one embodiment, a first proximity sensor is positioned adjacent a side of the hand-receiving cavity and thus senses the ingress of a user's hands into the hand-receiving cavity from the side. A second proximity sensor is positioned adjacent the front of the hand-receiving cavity and senses the ingress of a user's hands into the hand-receiving cavity from the front. Depending upon which sensor detects the user's hands, one of two different delays is observed before the blower is caused to force air to the air outlets. In a preferred implementation, a longer delay is observed if the second proximity sensor detects the user's hands.
In an alternate embodiment, each of the sensors has non-overlapping fields-of-view so that only one of the two sensors can detect the presentment of the user's hands.
In another alternate embodiment, detection by the first sensor results in a delay between zero and 300 milliseconds (ms) whereas detection by the second sensor results in a delay between 200 ms and 800 ms, and the delay resulting from detection by the second sensor is preferably selected to exceed the delay resulting from detection by the first sensor.
In a further embodiment, the two aforementioned sensors are replaced with a single sensor capable of discriminately sensing side-presentment or front-presentment of the user's hands to the hand-receiving cavity.
In another embodiment, an air filter and filter flow sensor are also provided.
These and other aspects and objects of the present invention will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. It should be understood, however, that the following description, while indicating preferred embodiments of the present invention, is given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.
A clear conception of the advantages and features constituting the present invention and of the construction and operation of typical mechanisms provided with the present invention, will become more readily apparent by referring to the exemplary, and therefore non-limiting, embodiments illustrated in the drawings accompanying and forming a part of this specification, wherein like reference numerals designate the same elements in the several views, and in which:
The present invention will be described with respect to a hand dryer that is part of an integrated lavatory system also having a wash basin, a water faucet, and, optionally, a soap dispenser. However, it is understood that the present invention is applicable with stand-alone hand dryers, such as conventional wall-mounted hand dryers, and may also be desirable for other types of dryers in which it is desirable to delay commencement of a drying cycle based on the presentment of an object for drying to a drying chamber, cavity, or zone. In one preferred embodiment, the present invention is applicable with an integrated lavatory system such as those described in U.S. patent application Ser. Nos. 12/233,466 and 13/122,368 and herein incorporated by reference; however, as noted above, the invention is not so limited.
Turning now to
A soap dispensing system 26 is near the faucet 24 and in the wash basin 20. The soap dispenser 26 includes a spout 28 and a soap-dispensing sensor (located behind sensor window 29) to detect an object, such as a user's hand 166 (See, e.g.,
As best seen in
As seen in
Referring now to
As best seen in
As best shown in
As best shown in
As shown in
As shown in
Bottom nozzles 160b are provided, again, preferably by molding into the lower plenum 144. Lower nozzles 160b, like the upper nozzles 160a, preferably have protruding frustoconical nozzle tips 162b each of which has a nozzle hole 164b therethrough. The shape of the nozzle tips 162b on the lower plenum 144 further acts as a flood prevention mechanism 40 to protect the motor 74.
The hand-dryer blower 71, motor 74, and motor housing 70 are best shown in
The intake air portion or lower portion of the motor housing cap 82 is configured with a solid center section 95 surrounded by a circular pattern of holes 94. This configuration is spaced at a distance similar to the half wave length of the fan blade passing frequency of the fan motor 74. As a result, acoustical waves are reflected off of the solid center section 95 on the bottom of the housing cap 82 at a fan cowling and the acoustical foam 83, and eventually propagate through the circular hole pattern 94 in an attenuated manner.
A filter or intake cover 96 may also be provided in the housing 70 to contain or to hold the filter 84 in place. To further attenuate sound generated by the fan motor 74, insulation or acoustical foam 97 is placed on the inside of the intake cover 96. The cover 96 is preferably further configured to redirect the intake air 90 degrees from the axial center of the fan 76 and motor 74. This design promotes reflection of acoustical waves off of the noise-reducing acoustical foam 97. A wire or other locking mechanism 87 is provided to keep the filter cover 96 in place.
As shown in
Referring to
As shown in
The frame 120 and drain pipe 127 are preferably covered by a lavatory system cover 130 (as best seen in
In a preferred embodiment, upper and lower nozzle tips 162a, 162b connected to the nozzles 160a, 160b emit high-speed colliding columns of air to shear water off the user's hand. The tips, holes, and resulting air columns are spaced and calibrated in such a way as to reduce forces on the user's hand which would otherwise move the hand toward the upper or lower plenums or the side surfaces. As mentioned, one way of accomplishing this spacing and calibration is to have the axis of the air flow from upper plenum 142 nozzle holes 164a angled about 1 degree from vertical and aimed toward the cavity back wall 60 (
In one embodiment, the nozzles 160a, 160b preferably have tips 162a, 162b that are pointed protrusions that help pull static air into the air columns, see, e.g.,
As discussed, in one embodiment, the nozzles and holes on the top blade and the nozzles and holes on the bottom blade are at different angles from the horizontal plane and vertically aligned with one another so that the collision of the upper and lower streams of air provide a unique air flow pattern. This configuration preferably helps to generate an s-shaped airflow pattern. However, in another alternative embodiment, the holes and nozzles are lined up directly across the cavity from each other.
In one embodiment, the preferred bidirectional or dual-sided air flow dryer uses 1600 watts (or 13.7 amps) and will dry hands in about 15 seconds at 80 decibels (dB) with 70 cubic feet per minute (CFM). In this embodiment, the dryer runs off a 120V outlet and requires a dedicated 20 ampere (amp) circuit. Ground fault interruption (GFI) circuit protection is preferred. It is understood, however, that the invention is not limited to the above-referenced parameters. For example, it is contemplated that the dryer could run on a 15 amp circuit.
Referring now primarily to
In one preferred embodiment, the LEDs 108a-m are operably connected to the hand dryer 50. For example, LEDs 108a-d continuously illuminate the hand-receiving cavity 52 at a low intensity level when a sensor does not detect the presence of an object for drying, i.e., the cavity is not in use or in “stand-by”. However, when a sensor detects that an object for drying has entered into the hand-receiving cavity 52, and during dryer 50 activation, preferably the LEDs 108e-h and 108i-l also illuminate cavity and thus increase the overall intensity level of light in the cavity. In another embodiment, LEDs 108a-d do not begin to illuminate the cavity until the soap is dispensed or the water begins to flow in the basin.
In a preferred embodiment, when a staff member wishes to clean and service the lavatory system 10, the staff member may engage a service mode. Here the LEDs 108a-d and 108e-h continuously illuminate the hand-receiving cavity 52. Activation of hand dryer 50 is also suppressed by communication between controller 78 and controller 99. In one embodiment, service mode activation is accomplished by triggering a sensor, e.g., the right-most sensor 103d in the upper portion of the hand-receiving cavity 52, for an extended time period. Thus, if this one sensor consistently detects an object for drying in the hand-receiving cavity 52, the hand dryer 50 is disabled for about 30 to 60 seconds and some of the LEDs, e.g., LEDs 108e-h, may be illuminated at a high-intensity level. This allows the hand-receiving cavity 52 to be temporarily cleaned without further engaging the hand dryer 50.
The LEDs, e.g., 108i-l, may flash in certain ways when the service mode has been started and/or is about to end. For example, in one embodiment, prior to the service mode, one row of four white LEDs provides lower level illumination of the hand dryer cavity. However, if the right-most sensor is triggered within the last 2 seconds, and if a hand is placed over the right-most sensor for the period of 3 seconds, a row of four amber LEDs will rapidly flash twice to designate that the unit is entering the service mode. At the same time, a second row of four white LEDs will turn on to increase the illumination of the hand cavity for approximately 30 seconds to assist in cleaning. After approximately 25 seconds from when the service mode was started, the row of four amber LEDs will flash three times to indicate that the service mode cycle is nearing completion. At the end of the service mode cycle (5 seconds after the four amber LEDs flash three times or about 30 seconds in total service cycle length), the second row of white LEDs will turn off and the hand dryer cavity will remain lit at the lower level of illumination by the first row of four LEDs.
In one embodiment, the service mode includes a controller 78, e.g., a microcontroller, with a programmed touchless cleaning mode feature wherein if one sensor is the only sensor activated within the last two seconds and if activated continuously for about three (3) seconds, the hand dryer 50 will enter the mode to allow cleaning of the hand dryer 50. This mode lasts for about 30 seconds, during which dryer activation is suppressed, and then the controller will return the system to normal operation. The controller will flash the LED lights twice when entering the cleaning mode and three times when approaching a time near the end of a cleaning cycle which is approximately 25 seconds into an about 30 second cleaning cycle. If the cleaning mode is longer in another embodiment, the lights will flash three times, 5 seconds before the end of the cleaning cycle.
The sensor detection modules 105a and 105b utilize an internal triangulation algorithm to sense IR light, 106a and 106b respectively, when an object for drying is in the sensor's field of view. When a user's hand 166 enters the hand-receiving cavity 52, the sensor detection modules 105a and 105b output an electrical signal (e.g. a 5 volt signal). This signal is used by the controller 78 to determine whether to activate the hand dryer (50) and LED lights 108e-l (see
A programmable unit may be present on the sensor control board 100 and/or motor control board 98 and preferably includes a time-delay mechanism, for example, in communication with an on/off switch for the motor 74. In this embodiment, when one of the sensors 103a-d is activated by an object for drying, e.g., a user's hands, in the hand-receiving cavity 52, the controller 78 rechecks the activated sensor multiple times to validate that hands are in the hand-receiving cavity 52. Then the delay mechanism allows users to enter their hands 166 fully into the hand-receiving cavity 52 prior to the hand dryer motor 74 achieving full speed. This minimizes the potential of any splashing of water back on the user as a result of the fully active hand dryer imposing a shearing action on water present on the user's hands. There may be additional sensors (not shown) that may inhibit the dispensing of water or soap or activation of the dryer when a critical water level is reached in the wash basin and thus prevent overflow, flooding, and/or motor damage.
In another embodiment, there is communication between the faucet sensor controller and the dryer sensor controller. For example, when the faucet is used, the lights on the dryer go from off to on, e.g., to white. This feature could be used to indicate to the user that the user should move from the faucet to the dryer next, and thus make the wash station use more intuitive. This feature could also lock the faucet off while the user's hands are being dried. This would save water as it would truncate the faucet turn off time. It would also eliminate any splashing due to the dryer air flow through the basin.
In one embodiment, multiple distance sensors 103a-d utilize triangulation one at a time and from left to right in their field of view to detect an object for drying. These sensors are preferably positioned so they are recessed in the upper portion 53 and aimed vertically into the hand-receiving cavity 52. Recessing is minimal, however, to avoid adversely impacting sensor operation. In one embodiment, the sensor board 100 is programmed to check all sensors at about 130 millisecond (ms) intervals. When a sensor flags a detection, it is then rechecked fifteen times over about a 15 ms period to ensure the detection was not a false trigger.
The temperature rise of the air during a drying cycle is dependent upon how long the user keeps the hand dryer 50 activated. Since the system 10 does not use an auxiliary air heater, the air temperature rise is a result of the heat generated by the inefficiency of the motor 74. The other factor dictating the motor temperature rise is how frequently the motor 74 is activated. In a high usage environment (airport, sports arena, etc.), the motor 74 will not typically cool down very much between cycles and the air temperature rise experienced by the user will be significantly higher than that of a hand dryer which operates infrequently. The following chart shows some typically-expected temperature rises.
In one embodiment, additional safety and cleaning features may be present. For example, UV lighting or some other sterilization technique to disinfect the hand-receiving cavity 52 may be provided. Further, only one drain may be provided between the wash basin 20 and outside of hand-receiving cavity 52 to eliminate the need for another device to catch water from the dryer 50 that must be emptied and can collect harmful molds or germs. Certain dryer components, like the nozzles 160a, 160b, may have an antimicrobial additive molded into the plastic. Further, the entire wash basin 20 and hand-receiving cavity 52 may be constructed, in part, of an antimicrobial material or may be coated with such a material during manufacture.
In one embodiment, a second row of holes, a slot, and a port are present to provide a lower velocity air stream to further minimize water splashing onto a user.
In the embodiment shown in
A bottom portion 255 includes a lower air outlet 256. The bottom portion 255 is formed, in part, by a bottom wall or side 259. The bottom portion 255 of the hand-receiving cavity 252 also includes a back wall or side 260, front wall or side 261, and side wall 262. A front ledge 263 is integral with the front wall 261. The hand-receiving cavity 252, therefore, is preferably configured to have a front opening 264 and a side opening 265 (shown on the left side). In this embodiment, the dryer's configuration and placement preferably allows the user to easily transition the hands from the wash basin to the dryer without dripping water onto the floor.
In one preferred embodiment, a mechanism 240 for preventing flooding and damage to the hand dryer motor is provided as well as to prevent water blown from a user's hands from falling to the floor and creating a slip hazard or unsanitary conditions. The mechanism 240 may include a flood relief rim 244 located on, for example, the left side of the hand-receiving cavity 252 at the opening 265. The flood relief rim 244 is provided below the lower portion's air outlet 256 and the nozzle tips 262b as shown. Thus, water flows over the flood relief rim 244 and not down the nozzle holes 264b and into the motor (not shown). In addition, another motor protection mechanism 240 may be the frustoconical lower nozzle tips 262b which resist the entry of water.
Other preferred embodiments of the hand dryer 250 may include a side wall 262 on the left side and an opening 265 on the right side. In yet another preferred embodiment, the hand dryer 250 may include both a left side, side wall and a right side, side wall.
The primary components of the inventive lavatory system including the dryer bottom wall, a back wall, and single side wall are preferably formed from a plastic and/or resin material. In one embodiment, the system components may be formed from a solid polymeric and/or a polymeric and stone material. In another embodiment, the system components may be manufactured from Terreon® or TerreonRE® which are low emitting, e.g., Greenguard™ materials and available from the Bradley Corporation of Wisconsin.
In another embodiment, as best shown in
As described above with respect to
As shown in
Therefore, in accordance with another embodiment of the invention, one of two motor delays is selectively observed depending on how the user presents his hand(s) for drying. Referring now to the embodiment shown in schematic view in
For example, and in one preferred embodiment, if the first hand sensor 103 detects hand presentment to the hand-receiving cavity 52, the sensor 103a provides a corresponding electrical signal to the controller 78. The controller 78 includes software or firmware that distinguishes between an electrical signal being received from first sensor 103a versus the second, third, and fourth sensors 103b, 103c, 103d. With knowledge that the first object detection signal came from sensor 103a, the controller 78 provides hand dryer motor activation signal to the hand dryer controller 99. This motor activation signal results in the hand dryer motor being activated after a first programmed delay period, e.g., 0-300 ms. However, if any of the other sensors 103b, 103c, 103d provides a first detection signal to the controller 78, the hand dryer controller 99 causes operation of the hand dryer motor 74 after a second programmed delay period, e.g., 200-800 ms. The first and second delay periods are selected such that the second delay period preferably exceeds the first delay period. Thus, in one embodiment, operation of the hand dryer motor is delayed further if a user presents his hand(s) to the hand-receiving cavity 52 from the front. This allows more time for the user to move his hands deeper into the hand-receiving cavity 52 before the blower provides drying air to the hand-receiving cavity. Preferably, the drying airstreams are provided at approximately wrist level in the hand-receiving cavity 52, and observing a longer delay before commencing drying when hands are front-presented allows the user sufficient time to insert his hands to the wrist level position before air is injected into the cavity 52.
It is contemplated that more than one controller may be used to provide command signals to the hand dryer controller 99. For example, the first hand dryer sensor 103a may be coupled to a dedicated controller whereas the other sensors 103b, 103c, 103d communicate with a shared controller, similar to that shown in
In accordance with an alternate embodiment of the present invention, the hand dryer 50 may include a second bank or set of sensors. These sensors are mounted along a side portion of the upper plenum and are designed to sense side-presentment 267 of a user's hand(s) to the hand-receiving cavity. The afore-described sensors 103a, 103b, 103c, 103d are mounted adjacent the front of the hand-receiving cavity. Preferably, the respective sets of sensors have mutually exclusive FOV so that side-presentment from opening 65 of a user's hand(s) is not detected by the front-facing sensors and front-presentment from opening 64 of the user's hand(s) is not detected by the side-facing sensors.
Each set of sensors is operative to provide activation commands to the motor to commence operation of the motor. However, the front-facing sensors, upon detecting an object for drying 166 within their FOV, instruct the motor to commence activation after observing a longer second delay period than that provided to the motor by the side-sensing sensors. In one embodiment, the longer second delay period falls in the range of approximately 200-800 ms whereas the shorter first delay period falls in the range of approximately 0-300 ms. Note that these values are merely exemplary, and the first and second delay periods are preferably selected such that the second delay period exceeds the first delay period.
In accordance with yet another embodiment of the present invention, a single sensor is used to detect side or front presentment of a user's hand(s) from openings 65 and 64 respectively into the hand-receiving cavity 52. In this embodiment, which is shown in
In yet another embodiment that is similar to that described above with respect to
It will also be appreciated that the present invention can be embodied in a method of controlling the drying operation of a hand dryer 50 based on the position at which a user presents his hand(s) to a drying cavity or chamber 52 having at least two points of entry, for example, the side opening of drying chamber 65 and the front opening of drying chamber 64. (See, e.g.,
It will be appreciated that infrared sensors for detecting the ingress and egress of hands to and from the front of drying chamber 64 and the side of drying chamber 65 are but one of a number of different object-detecting technologies that could be used to detect an object for drying 166 in the drying chamber 52. For example, it is contemplated that camera and image processing technology could be used.
Further, it is contemplated that the invention could be used with a lavatory system having a single dryer situated between a pair of wash basins. It is also contemplated that sensors remote from the hand dryer 50 could determine the direction of presentment. For example, sensors at or near the water faucet could detect motion of the hands after the water faucet has stopped dispensing water. If the hands are pulled away from the faucet, the hand dryer 50 could be caused to operate with a front-presentment (e.g., along 268) to the hand-drying cavity assumed. If the hands are moved sideways from the faucet, a side-presentment (e.g., along 267) to the hand-drying cavity could be presumed.
It is also noted that so-called “smart” technology could be incorporated into the lavatory system described herein to guide or sequence use of the various components of the lavatory system. For example, the lavatory system could be equipped with directional lights that guide (or at least remind) the user to apply soap and, after washing, slide his hands into the drying chamber. Similarly, it is contemplated that the various components could be selectively locked out to prevent simultaneous activation of two components. For instance, it may be undesirable to have the water faucet capable of being activated when the dryer is forcing air into the drying cavity. If the water faucet was dispensing water while the dryer was active, it could lead to undesirable splashing of the water. Additionally, locking out certain components or features of the lavatory system may also sequence use of the lavatory system. For example, water faucet and dryer operations may be locked out until the soap dispenser has been activated. In such a situation, the aforementioned lights or similar devices could be used to direct the user to first apply soap to his hands before watering or drying his hands. Such a system may be highly preferred in food-handling operations, such as restaurants.
Referring again to
In one preferred method of use, one of four actions is taken based on the output of the filter sensor 272 and thus, preferably, the output of the filter sensor 272 is compared by the logic to potentially three different predefined levels. When the filter sensor 272 output is below a first vacuum level, as detected by the filter sensor 272, an indicator, e.g., light 278 (
In an alternate embodiment, a small tube (not shown) has an inlet end that is in fluid communication with the intake cavity 274 and an outlet end that is vented to atmosphere. In this embodiment, the filter sensor 272 is fluidly connected to the tube. In this embodiment, it will be appreciated that the filter sensor 272 remotely monitors the pressure (vacuum) in the intake cavity.
While the preferred embodiments and best modes of utilizing the present invention have been disclosed above, other variations are also possible. For example, the materials, shape, and size of the components may be changed. Additionally, it is understood that a number of modifications may be made in keeping with the spirit of the system 10 of the present invention. For example, the system 10 may include features of the various embodiments set forth in PCT Publication Nos. WO2007/083092 and WO2007/015045 to Dyson, and US Publication Nos. US2008/0109956A1 published on May 15, 2008 and 2006/0185074 published on Aug. 24, 2006, all of which are expressly incorporated herein by reference. Further, a number of lavatory systems like the one shown in
As described herein, a motor driven blower or fan is used to force air into the drying zone of the hand dryer. It is recognized that several types of motors may be used to drive operation of the blower or fan. For example, in one embodiment, the motor is a brushless motor having a nominal input of 120V at 60 Hz. It is understood that the motor could have other operating parameters and that the motor could be designed to be workable with various input voltages, i.e., 230V, such as that commonly found in Europe and Australia.
It is preferred that the brushless motor has a pulse width modulated speed control to switch the motor between ON and OFF. It is also preferred that the motor is thermally protected against over-heating, such as may result from a blocked inlet, locked rotor, or heightened ambient temperature.
The invention is not limited to a particular motor size but in one embodiment the motor provides 78 cfm of air at 2.8 psi. Preferably, the motor accelerates from zero rpm to operating speed in approximately 350 ms or less. It is also contemplated that different fan types (e.g., axial, bypass, centrifugal compressor, etc.) may be used. An axial or turbine (volute) type pump is also preferred but not required. It is preferred that the fan has either an axial or tangential discharge air flow. It is also preferred that heat from the motor is used to increase the temperature of the air fed to the drying chamber. In addition to heating the air, passing the air about the motor also provides thermal regulation of the motor.
Thus, it is specifically intended that the present invention not be limited to the embodiments and illustrations contained herein, but includes modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
540235 | Clifford et al. | Jun 1895 | A |
D30136 | Eckerson | Feb 1899 | S |
D35574 | Thielke | Jan 1902 | S |
D36574 | Zipp | Oct 1903 | S |
D36575 | Zipp | Oct 1903 | S |
D36595 | Peet | Oct 1903 | S |
937509 | Carpenter | Oct 1909 | A |
1069972 | Metzaer | Aug 1913 | A |
1323398 | Leland | Dec 1919 | A |
1419712 | Bassette | Jun 1922 | A |
1423800 | Hibbard et al. | Jul 1922 | A |
1494883 | Bassette et al. | May 1924 | A |
1578047 | Lum | Mar 1926 | A |
1579705 | Hewitt | Apr 1926 | A |
1616313 | Farmer | Feb 1927 | A |
1659851 | Brewington | Feb 1928 | A |
1750094 | Emmrich | Mar 1930 | A |
1765915 | Haase | Jun 1930 | A |
D81754 | Mabee | Aug 1930 | S |
1816055 | Pfeifer | Jul 1931 | A |
2008183 | McCord | Feb 1934 | A |
1961179 | Tinkham | Jun 1934 | A |
2027605 | McCord et al. | Jan 1936 | A |
2041352 | Jordan | May 1936 | A |
D100310 | Blu | Jul 1936 | S |
2130196 | Sakier | Sep 1938 | A |
2192383 | Krolop | Mar 1940 | A |
2202107 | Korn | May 1940 | A |
2281370 | Morrison et al. | Apr 1942 | A |
2328129 | Earle | Aug 1943 | A |
2438762 | McLeckie | Mar 1948 | A |
2470187 | Price | May 1949 | A |
2479571 | Hewitt | Aug 1949 | A |
2498699 | Mullett et al. | Feb 1950 | A |
2504740 | Siegel | Apr 1950 | A |
2521769 | Arcularius | Sep 1950 | A |
2537821 | Fodor | Jan 1951 | A |
2591669 | Bucknell et al. | Apr 1952 | A |
2606274 | Spierer | Aug 1952 | A |
RE23674 | Spierer et al. | Jun 1953 | E |
2641679 | Brodbeck | Jun 1953 | A |
2646629 | Clemens | Jul 1953 | A |
D170204 | Long | Aug 1953 | S |
2651705 | Clemens | Sep 1953 | A |
2666837 | Brodbeck | Jan 1954 | A |
2677041 | Oliver et al. | Apr 1954 | A |
2698894 | Stein | Jan 1955 | A |
2714151 | Becker | Jul 1955 | A |
2761222 | Bennett | Sep 1956 | A |
2767407 | Weiss | Oct 1956 | A |
2777934 | Falkenthal | Jan 1957 | A |
2826763 | Bass | Mar 1958 | A |
2837835 | Hewitt et al. | Jun 1958 | A |
2853591 | Fine | Sep 1958 | A |
2853592 | Gravet | Sep 1958 | A |
2859535 | Carlson | Nov 1958 | A |
2906627 | Payton et al. | Sep 1959 | A |
2908019 | Lyon, Jr. | Oct 1959 | A |
2965906 | Mullett et al. | Dec 1960 | A |
2977455 | Murphy | Mar 1961 | A |
3059815 | Parsons, Jr. | Oct 1962 | A |
3065473 | Sporck et al. | Nov 1962 | A |
3076887 | Bulow | Feb 1963 | A |
3128161 | Hudon | Apr 1964 | A |
D201493 | Sundberg et al. | Jun 1965 | S |
3220424 | Nelson | Nov 1965 | A |
3305938 | Arthur | Feb 1967 | A |
D210131 | Rourke | Feb 1968 | S |
3384977 | Rosenberg | May 1968 | A |
3409995 | Greenwood et al. | Nov 1968 | A |
3415278 | Yamamoto et al. | Dec 1968 | A |
3449838 | Chancellor | Jun 1969 | A |
3480787 | Johansen | Nov 1969 | A |
3487477 | Classen | Jan 1970 | A |
3491381 | Catheart | Jan 1970 | A |
3502384 | Gipson | Mar 1970 | A |
3505692 | Forbes | Apr 1970 | A |
3523305 | Zom | Aug 1970 | A |
3536294 | Rodriguez | Oct 1970 | A |
3551919 | Forbes | Jan 1971 | A |
3556158 | Schneider | Jan 1971 | A |
3575583 | Brown | Apr 1971 | A |
3575640 | Ishikawa | Apr 1971 | A |
3576277 | Blackmon | Apr 1971 | A |
3585652 | Forbes et al. | Jun 1971 | A |
3585653 | Forbes et al. | Jun 1971 | A |
3587177 | Overly et al. | Jun 1971 | A |
3588038 | Tanaka | Jun 1971 | A |
3603002 | Spierer | Sep 1971 | A |
3613124 | Ichimori et al. | Oct 1971 | A |
3621199 | Goldstein | Nov 1971 | A |
3639920 | Griffin et al. | Feb 1972 | A |
3643346 | Lester | Feb 1972 | A |
3699984 | Davis | Oct 1972 | A |
3724001 | Ichimori et al. | Apr 1973 | A |
3744149 | Helbling | Jul 1973 | A |
3746035 | Singer | Jul 1973 | A |
3757806 | Bhaskar et al. | Sep 1973 | A |
3817651 | Law et al. | Jun 1974 | A |
3878621 | Duerre | Apr 1975 | A |
3904167 | Touch et al. | Sep 1975 | A |
3906795 | Kask | Sep 1975 | A |
3918987 | Kopfer | Nov 1975 | A |
D238075 | Harris | Dec 1975 | S |
3975781 | Klimboff et al. | Aug 1976 | A |
3992730 | Davis | Nov 1976 | A |
4072157 | Wines, Jr. et al. | Feb 1978 | A |
4120180 | Jedora | Oct 1978 | A |
4144596 | MacFarlane et al. | Mar 1979 | A |
4145602 | Lee | Mar 1979 | A |
4145769 | MacFarlane et al. | Mar 1979 | A |
D251795 | McCann | May 1979 | S |
4193209 | Lovison et al. | Mar 1980 | A |
4195416 | Hall | Apr 1980 | A |
4219367 | Cary, Jr. et al. | Aug 1980 | A |
4239555 | Scharlack et al. | Dec 1980 | A |
4256133 | Coward et al. | Mar 1981 | A |
D260678 | Hiller | Sep 1981 | S |
4295233 | Hinkel et al. | Oct 1981 | A |
4309781 | Lissau | Jan 1982 | A |
4336619 | Hinkel et al. | Jun 1982 | A |
4375847 | Leotta et al. | Mar 1983 | A |
4383377 | Crafton | May 1983 | A |
4398310 | Lienhard | Aug 1983 | A |
4402095 | Pepper | Sep 1983 | A |
4402331 | Taldo et al. | Sep 1983 | A |
D272263 | Lienhard | Jan 1984 | S |
4429422 | Wareham | Feb 1984 | A |
4453286 | Wieland | Jun 1984 | A |
4461439 | Rose | Jul 1984 | A |
4497999 | Postbeschild | Feb 1985 | A |
4509543 | Livingston et al. | Apr 1985 | A |
D279404 | Hiller | Jun 1985 | S |
4520516 | Parsons | Jun 1985 | A |
4541563 | Uetsuhara | Sep 1985 | A |
4570823 | Arabian et al. | Feb 1986 | A |
4594797 | Houck | Jun 1986 | A |
4598726 | Pepper | Jul 1986 | A |
4604764 | Enzo | Aug 1986 | A |
4606085 | Davies | Aug 1986 | A |
4610165 | Duffy et al. | Sep 1986 | A |
4611768 | Voss et al. | Sep 1986 | A |
4624017 | Foletta | Nov 1986 | A |
4637254 | Dyben et al. | Jan 1987 | A |
4642821 | Zanuso et al. | Feb 1987 | A |
4642909 | Garcia | Feb 1987 | A |
4644256 | Farias et al. | Feb 1987 | A |
4651777 | Hardman | Mar 1987 | A |
4653201 | Seaman | Mar 1987 | A |
4670010 | Dragone | Jun 1987 | A |
4671121 | Schieler | Jun 1987 | A |
4681141 | Wang | Jul 1987 | A |
4682628 | Hill | Jul 1987 | A |
4685222 | Houck | Aug 1987 | A |
4688277 | Kakinoki et al. | Aug 1987 | A |
4688585 | Vetter | Aug 1987 | A |
4700049 | Rubin | Oct 1987 | A |
4702107 | Guerrini et al. | Oct 1987 | A |
4707867 | Kawabe et al. | Nov 1987 | A |
4707933 | Keck et al. | Nov 1987 | A |
4709728 | Ying-Chung | Dec 1987 | A |
4716605 | Shepherd et al. | Jan 1988 | A |
4722372 | Hoffman et al. | Feb 1988 | A |
4735002 | Rath | Apr 1988 | A |
4735357 | Gregory et al. | Apr 1988 | A |
4741363 | Hu | May 1988 | A |
4742583 | Yoshida et al. | May 1988 | A |
4742836 | Buehler | May 1988 | A |
4744515 | Watanabe | May 1988 | A |
4746090 | Hamilton | May 1988 | A |
4762273 | Gregory et al. | Aug 1988 | A |
4765003 | Chang | Aug 1988 | A |
4767922 | Stauffer | Aug 1988 | A |
4769863 | Tegg et al. | Sep 1988 | A |
4780595 | Alban | Oct 1988 | A |
4785162 | Kuo | Nov 1988 | A |
4823414 | Piersimoni et al. | Apr 1989 | A |
4826129 | Fong et al. | May 1989 | A |
4839039 | Parsons et al. | Jun 1989 | A |
4848599 | Kano et al. | Jul 1989 | A |
4852802 | Iggulden et al. | Aug 1989 | A |
4856122 | Pilolla | Aug 1989 | A |
4857112 | Franninge | Aug 1989 | A |
4857705 | Blevins | Aug 1989 | A |
4872485 | Laverty, Jr. | Oct 1989 | A |
4876435 | Hawkins | Oct 1989 | A |
4882467 | Dimick | Nov 1989 | A |
4883749 | Roberts et al. | Nov 1989 | A |
4889315 | Imanaga | Dec 1989 | A |
4894874 | Wilson | Jan 1990 | A |
4909580 | Mitchell | Mar 1990 | A |
4914758 | Shaw | Apr 1990 | A |
4914833 | Pilolla et al. | Apr 1990 | A |
4915347 | Iqbal et al. | Apr 1990 | A |
4916382 | Kent | Apr 1990 | A |
4916613 | Lange et al. | Apr 1990 | A |
4921129 | Jones et al. | May 1990 | A |
4921131 | Binderbauer et al. | May 1990 | A |
4921211 | Novak et al. | May 1990 | A |
4940298 | Jackson et al. | Jul 1990 | A |
4941219 | Van Marcke | Jul 1990 | A |
4942631 | Rosa | Jul 1990 | A |
4948090 | Chen | Aug 1990 | A |
4953236 | Lee et al. | Sep 1990 | A |
4954179 | Franninge | Sep 1990 | A |
4955535 | Tsutsui et al. | Sep 1990 | A |
4959603 | Yamamoto et al. | Sep 1990 | A |
4963780 | Hochstrasser | Oct 1990 | A |
4967425 | Kawamura et al. | Nov 1990 | A |
4971106 | Tsutsui et al. | Nov 1990 | A |
4980474 | Hayasjo et al. | Dec 1990 | A |
4980574 | Cirrito | Dec 1990 | A |
4984314 | Weigert | Jan 1991 | A |
4986221 | Shaw | Jan 1991 | A |
4989755 | Shiau | Feb 1991 | A |
4995585 | Gruber et al. | Feb 1991 | A |
4998673 | Pilolla | Mar 1991 | A |
5000044 | Duffy et al. | Mar 1991 | A |
5008963 | Stein | Apr 1991 | A |
5018550 | Burdorff | May 1991 | A |
5018885 | Uggetti | May 1991 | A |
5025516 | Wilson | Jun 1991 | A |
5031258 | Shaw | Jul 1991 | A |
5031337 | Pilolla et al. | Jul 1991 | A |
5033508 | Laverty, Jr. | Jul 1991 | A |
5033715 | Chiang et al. | Jul 1991 | A |
5060323 | Shaw | Oct 1991 | A |
5062164 | Lee et al. | Nov 1991 | A |
5063622 | Tsutsui et al. | Nov 1991 | A |
5063955 | Sakakibara | Nov 1991 | A |
5072618 | Taylor et al. | Dec 1991 | A |
5074322 | Jaw | Dec 1991 | A |
5074520 | Lee et al. | Dec 1991 | A |
5076424 | Nakamura | Dec 1991 | A |
5080324 | Chi | Jan 1992 | A |
RE33810 | Strieter | Feb 1992 | E |
5084984 | Duchoud et al. | Feb 1992 | A |
5086526 | Van Marcke | Feb 1992 | A |
5092560 | Chen | Mar 1992 | A |
5095941 | Betz | Mar 1992 | A |
5099587 | Jarosch | Mar 1992 | A |
5111594 | Allen | May 1992 | A |
D326711 | Lotito et al. | Jun 1992 | S |
5117693 | Duksa | Jun 1992 | A |
5133095 | Shiba et al. | Jul 1992 | A |
5144757 | Sasso | Sep 1992 | A |
5146695 | Yang | Sep 1992 | A |
5158114 | Botsolas | Oct 1992 | A |
5163234 | Tsukamoto et al. | Nov 1992 | A |
5169118 | Whiteside | Dec 1992 | A |
5170944 | Shirai | Dec 1992 | A |
D332194 | Hines | Jan 1993 | S |
D332195 | Hines | Jan 1993 | S |
D332365 | Hines | Jan 1993 | S |
D332366 | Hines | Jan 1993 | S |
D332369 | Hanna et al. | Jan 1993 | S |
D332370 | Hanna et al. | Jan 1993 | S |
D332542 | Hines | Jan 1993 | S |
D332679 | Hines | Jan 1993 | S |
D332849 | Hines | Jan 1993 | S |
5175892 | Shaw | Jan 1993 | A |
5177879 | Muta | Jan 1993 | A |
5181328 | Bouverie | Jan 1993 | A |
D332889 | Hines | Feb 1993 | S |
5184642 | Powell | Feb 1993 | A |
5186360 | Mease et al. | Feb 1993 | A |
D334266 | Hines | Mar 1993 | S |
5193563 | Melech | Mar 1993 | A |
5199116 | Fischer | Apr 1993 | A |
5199118 | Cole et al. | Apr 1993 | A |
5199188 | Franz | Apr 1993 | A |
5202666 | Knippscheer | Apr 1993 | A |
D336572 | Gunderson et al. | Jun 1993 | S |
5216251 | Matschke | Jun 1993 | A |
5217035 | Van Marcke | Jun 1993 | A |
5224685 | Chiang et al. | Jul 1993 | A |
5226629 | Millman et al. | Jul 1993 | A |
5230109 | Zaccai et al. | Jul 1993 | A |
D338361 | Hines | Aug 1993 | S |
5239610 | Shao | Aug 1993 | A |
5243717 | Yasuo | Sep 1993 | A |
D340374 | Hines | Oct 1993 | S |
D340375 | Hines | Oct 1993 | S |
5251872 | Kodaira | Oct 1993 | A |
5253376 | Fait | Oct 1993 | A |
5255822 | Mease et al. | Oct 1993 | A |
D341724 | Hines | Nov 1993 | S |
5257423 | Jacobsen et al. | Nov 1993 | A |
5259410 | Trueb et al. | Nov 1993 | A |
5265288 | Allison | Nov 1993 | A |
5265628 | Sage et al. | Nov 1993 | A |
D342175 | Hines | Dec 1993 | S |
D342177 | Hanna et al. | Dec 1993 | S |
5267475 | Gaston | Dec 1993 | A |
5269071 | Hamabe et al. | Dec 1993 | A |
5272918 | Gaston et al. | Dec 1993 | A |
D342992 | Robertson | Jan 1994 | S |
5280679 | Edelman | Jan 1994 | A |
5282812 | Suarez, Jr. | Feb 1994 | A |
D344830 | Carter et al. | Mar 1994 | S |
5341839 | Kobayashi et al. | Aug 1994 | A |
5347864 | Senghaas et al. | Sep 1994 | A |
5351347 | Kunkel | Oct 1994 | A |
5351417 | Rubin | Oct 1994 | A |
5362026 | Kobayashi et al. | Nov 1994 | A |
5363517 | Botsolas | Nov 1994 | A |
5367442 | Frost et al. | Nov 1994 | A |
5369818 | Barnum et al. | Dec 1994 | A |
5377424 | Albanes | Jan 1995 | A |
5377427 | Mashata | Jan 1995 | A |
D355949 | Laughton | Feb 1995 | S |
5397099 | Pilolla | Mar 1995 | A |
5404419 | Artis, Jr. | Apr 1995 | A |
5412816 | Paterson et al. | May 1995 | A |
5412818 | Chen | May 1995 | A |
5426271 | Clark et al. | Jun 1995 | A |
D361372 | Enthoven | Aug 1995 | S |
5438714 | Shaw | Aug 1995 | A |
5438763 | Yang | Aug 1995 | A |
5442867 | Robinson | Aug 1995 | A |
D362901 | Dannenberg et al. | Oct 1995 | S |
5459944 | Tatsutani et al. | Oct 1995 | A |
D364675 | Tebbe | Nov 1995 | S |
5477984 | Sayama et al. | Dec 1995 | A |
5482250 | Kodaira | Jan 1996 | A |
5497135 | Wisskirchen et al. | Mar 1996 | A |
5504950 | Natalizia et al. | Apr 1996 | A |
5514346 | Fujita | May 1996 | A |
5522411 | Johnson | Jun 1996 | A |
5548119 | Nortier | Aug 1996 | A |
5555912 | Saadi et al. | Sep 1996 | A |
5561871 | Laughton | Oct 1996 | A |
5566404 | Laughton | Oct 1996 | A |
5570869 | Diaz et al. | Nov 1996 | A |
5586746 | Humpert et al. | Dec 1996 | A |
5588636 | Eichholz et al. | Dec 1996 | A |
5595216 | Pilolla | Jan 1997 | A |
5610591 | Gallagher | Mar 1997 | A |
5611093 | Barnum et al. | Mar 1997 | A |
5611517 | Saadi et al. | Mar 1997 | A |
5625908 | Shaw | May 1997 | A |
5627375 | Hsieh | May 1997 | A |
5640781 | Carson | Jun 1997 | A |
5642462 | Huff | Jun 1997 | A |
D380529 | Laughton | Jul 1997 | S |
5651189 | Coykendall et al. | Jul 1997 | A |
5651384 | Rudrich | Jul 1997 | A |
5670945 | Applonie | Sep 1997 | A |
D387144 | Flaherty | Dec 1997 | S |
5694653 | Harald | Dec 1997 | A |
5699833 | Tsataros | Dec 1997 | A |
5701929 | Helmsderfer | Dec 1997 | A |
5727579 | Chardack | Mar 1998 | A |
5730165 | Philipp | Mar 1998 | A |
D393700 | Trueb et al. | Apr 1998 | S |
5743511 | Eichholz et al. | Apr 1998 | A |
D394495 | Hauser, II | May 1998 | S |
5758688 | Hamanaka et al. | Jun 1998 | A |
5765242 | Marciano | Jun 1998 | A |
5769120 | Laverty, Jr. et al. | Jun 1998 | A |
5781942 | Allen et al. | Jul 1998 | A |
5782382 | Van Marcke | Jul 1998 | A |
D398969 | Barnum et al. | Sep 1998 | S |
5813047 | Teichroeb | Sep 1998 | A |
5819335 | Hennessy | Oct 1998 | A |
5819336 | Gilliam et al. | Oct 1998 | A |
5829072 | Hirsch et al. | Nov 1998 | A |
D402358 | Bonnell | Dec 1998 | S |
5855356 | Fait | Jan 1999 | A |
5868311 | Cretu-Petra | Feb 1999 | A |
5873178 | Johnson | Feb 1999 | A |
5873179 | Gregory et al. | Feb 1999 | A |
5875562 | Fogarty | Mar 1999 | A |
5893387 | Paterson et al. | Apr 1999 | A |
5915417 | Diaz et al. | Jun 1999 | A |
5915851 | Wattrick et al. | Jun 1999 | A |
D411876 | Hafner et al. | Jul 1999 | S |
5918855 | Hamanaka et al. | Jul 1999 | A |
5924148 | Flowers, Sr. | Jul 1999 | A |
5943712 | Van Marcke | Aug 1999 | A |
5943713 | Paterson et al. | Aug 1999 | A |
5945068 | Ferone | Aug 1999 | A |
5945913 | Gallagher | Aug 1999 | A |
5950983 | Jahrling | Sep 1999 | A |
5954069 | Foster | Sep 1999 | A |
5961095 | Schrott | Oct 1999 | A |
5966753 | Gauthier et al. | Oct 1999 | A |
5972126 | Fernie | Oct 1999 | A |
5974685 | Hironaka | Nov 1999 | A |
5979500 | Jahrling et al. | Nov 1999 | A |
5984262 | Parsons et al. | Nov 1999 | A |
5988588 | Allen et al. | Nov 1999 | A |
5992430 | Chardack et al. | Nov 1999 | A |
6000429 | Van Marcke | Dec 1999 | A |
6003170 | Humpert et al. | Dec 1999 | A |
6006388 | Young | Dec 1999 | A |
6006784 | Tsutsui et al. | Dec 1999 | A |
D420727 | Hundley | Feb 2000 | S |
6018885 | Hill | Feb 2000 | A |
6029292 | Leiferman et al. | Feb 2000 | A |
6029293 | Paterson et al. | Feb 2000 | A |
6038786 | Aisenberg et al. | Mar 2000 | A |
D422346 | Svendsen | Apr 2000 | S |
6056261 | Aparicio et al. | May 2000 | A |
6059192 | Zosimadis | May 2000 | A |
6067673 | Paese et al. | May 2000 | A |
D428477 | O'Connell et al. | Jul 2000 | S |
6082407 | Paterson et al. | Jul 2000 | A |
6089086 | Swindler et al. | Jul 2000 | A |
6110292 | Jewett et al. | Aug 2000 | A |
D431288 | Helmsderfer | Sep 2000 | S |
6119285 | Kim | Sep 2000 | A |
D433109 | Wilke et al. | Oct 2000 | S |
6125482 | Foster | Oct 2000 | A |
6127671 | Parsons et al. | Oct 2000 | A |
6128826 | Robinson | Oct 2000 | A |
6131587 | Chardack et al. | Oct 2000 | A |
6142342 | Lewis | Nov 2000 | A |
6161227 | Bargenquast | Dec 2000 | A |
6161814 | Jahrling | Dec 2000 | A |
D435893 | Helmsderfer | Jan 2001 | S |
6178572 | Van Marcke | Jan 2001 | B1 |
6185838 | Moore | Feb 2001 | B1 |
6189163 | Van Marcke | Feb 2001 | B1 |
6189230 | Huen | Feb 2001 | B1 |
6192530 | Dai | Feb 2001 | B1 |
6199428 | Estevez-Garcia et al. | Mar 2001 | B1 |
6202980 | Vincent et al. | Mar 2001 | B1 |
6206340 | Paese et al. | Mar 2001 | B1 |
6209392 | Rapala | Apr 2001 | B1 |
6212707 | Thompson et al. | Apr 2001 | B1 |
6216534 | Ross, Jr. et al. | Apr 2001 | B1 |
6219857 | Wu | Apr 2001 | B1 |
6219859 | Derakhshan | Apr 2001 | B1 |
6236317 | Cohen et al. | May 2001 | B1 |
6250601 | Kolar et al. | Jun 2001 | B1 |
6253609 | Ross, Jr. et al. | Jul 2001 | B1 |
6253611 | Varga et al. | Jul 2001 | B1 |
6257264 | Sturman et al. | Jul 2001 | B1 |
6267007 | Gunther | Jul 2001 | B1 |
D446664 | Petri | Aug 2001 | S |
D447224 | Barnum et al. | Aug 2001 | S |
6269695 | Cesternino et al. | Aug 2001 | B1 |
6273394 | Vincent et al. | Aug 2001 | B1 |
6279179 | Register | Aug 2001 | B1 |
6279587 | Yamamoto | Aug 2001 | B1 |
6282812 | Wee et al. | Sep 2001 | B1 |
6286153 | Keller | Sep 2001 | B1 |
6289728 | Wilkins | Sep 2001 | B1 |
6294786 | Marcichow et al. | Sep 2001 | B1 |
6295410 | Helms et al. | Sep 2001 | B1 |
D448585 | Petri | Oct 2001 | S |
6298502 | Brown | Oct 2001 | B1 |
6317717 | Lindsey et al. | Nov 2001 | B1 |
6321785 | Bergmann | Nov 2001 | B1 |
6322005 | Kern et al. | Nov 2001 | B1 |
6340032 | Zosimadis | Jan 2002 | B1 |
6341389 | Philipps-Liebich et al. | Jan 2002 | B2 |
D453882 | Petri | Feb 2002 | S |
6349484 | Cohen | Feb 2002 | B1 |
6351866 | Bragulla | Mar 2002 | B1 |
6363549 | Humpert et al. | Apr 2002 | B2 |
6370951 | Kerchaert et al. | Apr 2002 | B1 |
6386390 | Tinker | May 2002 | B1 |
6390125 | Pawelzik et al. | May 2002 | B2 |
6393634 | Kodaira et al. | May 2002 | B1 |
6401274 | Brown | Jun 2002 | B1 |
6408881 | Lorenzelli et al. | Jun 2002 | B2 |
6418788 | Articolo | Jul 2002 | B2 |
6426701 | Levy et al. | Jul 2002 | B1 |
6431189 | Deibert | Aug 2002 | B1 |
D462195 | Wang | Sep 2002 | S |
RE37888 | Cretu-Petra | Oct 2002 | E |
6467514 | Korst et al. | Oct 2002 | B1 |
6467651 | Muderlak et al. | Oct 2002 | B1 |
6481040 | McIntyre | Nov 2002 | B1 |
6481634 | Zosimadis | Nov 2002 | B1 |
6484965 | Reaves | Nov 2002 | B1 |
6508121 | Eck | Jan 2003 | B2 |
6523193 | Saraya | Feb 2003 | B2 |
6523404 | Murphy et al. | Feb 2003 | B1 |
6568655 | Paese et al. | May 2003 | B2 |
6572207 | Hase et al. | Jun 2003 | B2 |
D477060 | Loberger et al. | Jul 2003 | S |
6598245 | Nishioka | Jul 2003 | B2 |
6619320 | Parsons | Sep 2003 | B2 |
6624606 | Kushida et al. | Sep 2003 | B2 |
6639209 | Patterson et al. | Oct 2003 | B1 |
D481826 | Martinuzzo et al. | Nov 2003 | S |
6641002 | Gerenraich et al. | Nov 2003 | B2 |
6643865 | Bork et al. | Nov 2003 | B2 |
6651851 | Muderlak et al. | Nov 2003 | B2 |
D483152 | Martinuzzo et al. | Dec 2003 | S |
6658934 | Housey et al. | Dec 2003 | B1 |
D484958 | Loberger et al. | Jan 2004 | S |
6671890 | Nishioka | Jan 2004 | B2 |
6671898 | Eggenberger et al. | Jan 2004 | B1 |
6679285 | Pablo | Jan 2004 | B2 |
6691340 | Honda et al. | Feb 2004 | B2 |
6691724 | Ford | Feb 2004 | B2 |
6711949 | Sorenson | Mar 2004 | B1 |
6711950 | Yamaura et al. | Mar 2004 | B1 |
6715730 | Ehr | Apr 2004 | B2 |
6766589 | Bory et al. | Jul 2004 | B1 |
6769197 | Tai | Aug 2004 | B1 |
6769443 | Bush | Aug 2004 | B2 |
6770869 | Patterson et al. | Aug 2004 | B2 |
D496450 | Loberger et al. | Sep 2004 | S |
6789197 | Saito | Sep 2004 | B1 |
6812657 | Raimondi | Nov 2004 | B2 |
6827294 | Fan et al. | Dec 2004 | B1 |
6843079 | Hird | Jan 2005 | B2 |
6857314 | Ohhashi et al. | Feb 2005 | B2 |
6871541 | Weisse | Mar 2005 | B2 |
6882278 | Winings et al. | Apr 2005 | B2 |
6883563 | Smith | Apr 2005 | B2 |
D507634 | Loberger et al. | Jul 2005 | S |
6912864 | Roche et al. | Jul 2005 | B2 |
6915690 | Okada et al. | Jul 2005 | B2 |
6922144 | Bulin et al. | Jul 2005 | B2 |
D508117 | Loberger et al. | Aug 2005 | S |
6922912 | Phillips | Aug 2005 | B2 |
6928235 | Pollack | Aug 2005 | B2 |
6929150 | Muderlak et al. | Aug 2005 | B2 |
D509577 | Loberger et al. | Sep 2005 | S |
6950606 | Logan et al. | Sep 2005 | B2 |
D511205 | Loberger et al. | Nov 2005 | S |
D511821 | Loberger et al. | Nov 2005 | S |
6962005 | Khosropour et al. | Nov 2005 | B1 |
6962168 | McDaniel et al. | Nov 2005 | B2 |
6964405 | Marcichow et al. | Nov 2005 | B2 |
6966334 | Bolster | Nov 2005 | B2 |
6968860 | Haenlein et al. | Nov 2005 | B1 |
D512648 | Smith et al. | Dec 2005 | S |
6980126 | Fournier | Dec 2005 | B2 |
6986171 | Perrin | Jan 2006 | B1 |
6993968 | Kogure | Feb 2006 | B2 |
6996863 | Kaneko | Feb 2006 | B2 |
7007318 | Bork et al. | Mar 2006 | B1 |
7014166 | Wang | Mar 2006 | B1 |
7018473 | Shadrach, III | Mar 2006 | B2 |
7025227 | Oliver et al. | Apr 2006 | B2 |
7039301 | Aisenberg et al. | May 2006 | B1 |
7039963 | Loberger et al. | May 2006 | B2 |
7079037 | Ross, Jr. et al. | Jul 2006 | B2 |
D526394 | Loberger et al. | Aug 2006 | S |
D527085 | Loberger et al. | Aug 2006 | S |
7082828 | Wilkins | Aug 2006 | B1 |
7093485 | Newman et al. | Aug 2006 | B2 |
D527809 | Loberger et al. | Sep 2006 | S |
7104519 | O'Maley et al. | Sep 2006 | B2 |
7107631 | Lang et al. | Sep 2006 | B2 |
7114510 | Peters et al. | Oct 2006 | B2 |
7150293 | Jonte | Dec 2006 | B2 |
7165450 | Jamnia et al. | Jan 2007 | B2 |
7174577 | Jost et al. | Feb 2007 | B2 |
D537927 | Loberger et al. | Mar 2007 | S |
D538898 | Trepanier | Mar 2007 | S |
D539400 | Loberger et al. | Mar 2007 | S |
7191484 | Dawe | Mar 2007 | B2 |
7191920 | Boll et al. | Mar 2007 | B2 |
7198175 | Ophardt | Apr 2007 | B2 |
7201052 | Lee | Apr 2007 | B2 |
D542474 | Churchill et al. | May 2007 | S |
7219686 | Schmitz et al. | May 2007 | B2 |
7228874 | Bolderheij et al. | Jun 2007 | B2 |
7228984 | Tack et al. | Jun 2007 | B2 |
7232111 | McDaniel et al. | Jun 2007 | B2 |
7242307 | LeBlond et al. | Jul 2007 | B1 |
7271728 | Taylor et al. | Sep 2007 | B2 |
7278624 | Iott et al. | Oct 2007 | B2 |
7296765 | Rodrian | Nov 2007 | B2 |
7305722 | Sha et al. | Dec 2007 | B2 |
7315165 | Kleinen et al. | Jan 2008 | B2 |
7318949 | Shadrach, III | Jan 2008 | B2 |
7320146 | Nortier et al. | Jan 2008 | B2 |
D561315 | Loberger et al. | Feb 2008 | S |
7343799 | Nagakura et al. | Mar 2008 | B2 |
7350245 | Giagni | Apr 2008 | B2 |
7350413 | Nagakura et al. | Apr 2008 | B2 |
7364053 | Ophardt | Apr 2008 | B2 |
7377163 | Miyagawa | May 2008 | B2 |
7396000 | Parsons et al. | Jul 2008 | B2 |
7406722 | Fukuizumi et al. | Aug 2008 | B2 |
7409860 | Ferreira et al. | Aug 2008 | B2 |
7437833 | Sato et al. | Oct 2008 | B2 |
7443305 | Verdiramo | Oct 2008 | B2 |
7451894 | Ophardt | Nov 2008 | B2 |
7455197 | Ophardt | Nov 2008 | B2 |
7458261 | Miyagawa | Dec 2008 | B2 |
7464418 | Seggio et al. | Dec 2008 | B2 |
7467550 | Betz, et al. | Dec 2008 | B2 |
7471883 | Seutter et al. | Dec 2008 | B2 |
7472433 | Rodenbeck et al. | Jan 2009 | B2 |
7477148 | Lynn et al. | Jan 2009 | B2 |
7484409 | Dykstra et al. | Feb 2009 | B2 |
D588676 | Loberger et al. | Mar 2009 | S |
7516939 | Bailey | Apr 2009 | B2 |
D591838 | Coleman | May 2009 | S |
7527174 | Meehan et al. | May 2009 | B2 |
7530269 | Newman et al. | May 2009 | B2 |
7533787 | Muderlak et al. | May 2009 | B2 |
7537195 | McDaniel et al. | May 2009 | B2 |
7555209 | Pradas Diez et al. | Jun 2009 | B2 |
7588168 | Bagwell et al. | Sep 2009 | B2 |
7596883 | Kameishi | Oct 2009 | B2 |
7597122 | Smith | Oct 2009 | B1 |
7607442 | Barnhill et al. | Oct 2009 | B2 |
7607443 | Barnhill et al. | Oct 2009 | B2 |
7614096 | Vincent | Nov 2009 | B2 |
7614160 | Kameishi et al. | Nov 2009 | B2 |
7617830 | Barnhill et al. | Nov 2009 | B2 |
7627909 | Esche | Dec 2009 | B2 |
7631372 | Marty et al. | Dec 2009 | B2 |
7641173 | Goodman | Jan 2010 | B2 |
7641740 | Barnhill et al. | Jan 2010 | B2 |
7650653 | Johnson et al. | Jan 2010 | B2 |
7651068 | Bailey | Jan 2010 | B2 |
D610242 | Loberger et al. | Feb 2010 | S |
7657162 | Itoigawa et al. | Feb 2010 | B2 |
7659824 | Prodanovich et al. | Feb 2010 | B2 |
7681447 | Nagakura et al. | Mar 2010 | B2 |
7682464 | Glenn et al. | Mar 2010 | B2 |
D614273 | Loberger et al. | Apr 2010 | S |
7690395 | Jonte et al. | Apr 2010 | B2 |
7690623 | Parsons et al. | Apr 2010 | B2 |
7698770 | Barnhill et al. | Apr 2010 | B2 |
7701164 | Clothier et al. | Apr 2010 | B2 |
7721602 | Benner et al. | May 2010 | B2 |
7726334 | Ross, Jr. et al. | Jun 2010 | B2 |
7731154 | Parsons et al. | Jun 2010 | B2 |
7743438 | Chen | Jun 2010 | B2 |
7743782 | Jost | Jun 2010 | B2 |
7750594 | Clothier et al. | Jul 2010 | B2 |
7754021 | Barnhill et al. | Jul 2010 | B2 |
7754022 | Barnhill et al. | Jul 2010 | B2 |
7757700 | Barnhill et al. | Jul 2010 | B2 |
7758701 | Barnhill et al. | Jul 2010 | B2 |
7766026 | Boey | Aug 2010 | B2 |
7766194 | Boll et al. | Aug 2010 | B2 |
7774953 | Duran | Aug 2010 | B1 |
7784481 | Kunkel | Aug 2010 | B2 |
7786628 | Childe et al. | Aug 2010 | B2 |
7789095 | Barnhill et al. | Sep 2010 | B2 |
7797769 | Ozenick | Sep 2010 | B2 |
7804409 | Munro et al. | Sep 2010 | B2 |
D625792 | Rundberg et al. | Oct 2010 | S |
7812598 | Yasuda et al. | Oct 2010 | B2 |
7814582 | Reddy et al. | Oct 2010 | B2 |
7815134 | Hohl | Oct 2010 | B2 |
7818083 | Glenn et al. | Oct 2010 | B2 |
7819136 | Eddy | Oct 2010 | B1 |
D628280 | Loberger et al. | Nov 2010 | S |
7825564 | Croft et al. | Nov 2010 | B2 |
RE42005 | Jost et al. | Dec 2010 | E |
D629877 | Rundberg et al. | Dec 2010 | S |
7856736 | Churchill et al. | Dec 2010 | B2 |
7860671 | LaCaze | Dec 2010 | B1 |
D633992 | Rundberg et al. | Mar 2011 | S |
D637350 | Kato et al. | May 2011 | S |
7944116 | Causier | May 2011 | B2 |
7946055 | Churchill et al. | May 2011 | B2 |
7971368 | Fukaya et al. | Jul 2011 | B2 |
8037619 | Liu | Oct 2011 | B2 |
8064756 | Liu | Nov 2011 | B2 |
8128465 | Collins | Mar 2012 | B2 |
8155508 | Caine et al. | Apr 2012 | B2 |
8201344 | Sawabe et al. | Jun 2012 | B2 |
20010011389 | Philipps-Liebich et al. | Aug 2001 | A1 |
20010011390 | Humpert et al. | Aug 2001 | A1 |
20010020619 | Pfeifer et al. | Sep 2001 | A1 |
20020006275 | Pollack | Jan 2002 | A1 |
20020019709 | Segal | Feb 2002 | A1 |
20020104159 | Nishioka | Aug 2002 | A1 |
20020157176 | Wawrla et al. | Oct 2002 | A1 |
20020171056 | Paese et al. | Nov 2002 | A1 |
20030037612 | Nagakura et al. | Feb 2003 | A1 |
20030172547 | Shephard, II | Sep 2003 | A1 |
20030188380 | Loberger et al. | Oct 2003 | A1 |
20030210140 | Menard et al. | Nov 2003 | A1 |
20030213062 | Honda et al. | Nov 2003 | A1 |
20040016296 | Weisse | Jan 2004 | A1 |
20040025248 | Lang et al. | Feb 2004 | A1 |
20040083547 | Mercier | May 2004 | A1 |
20040128755 | Loberger et al. | Jul 2004 | A1 |
20040129075 | Sorenson | Jul 2004 | A1 |
20040143898 | Jost et al. | Jul 2004 | A1 |
20040149779 | Boll et al. | Aug 2004 | A1 |
20040182151 | Meure | Sep 2004 | A1 |
20040221645 | Brzozowski et al. | Nov 2004 | A1 |
20040221646 | Ohhashi et al. | Nov 2004 | A1 |
20040221647 | Sabatino | Nov 2004 | A1 |
20040238660 | Fan et al. | Dec 2004 | A1 |
20050000015 | Kaneko | Jan 2005 | A1 |
20050087557 | Oliver et al. | Apr 2005 | A1 |
20050098968 | Dyson et al. | May 2005 | A1 |
20050199843 | Jost et al. | Sep 2005 | A1 |
20050205818 | Bayley et al. | Sep 2005 | A1 |
20060098961 | Seutter et al. | May 2006 | A1 |
20060101575 | Louis | May 2006 | A1 |
20060102642 | Muntzing et al. | May 2006 | A1 |
20060145111 | Lang et al. | Jul 2006 | A1 |
20060150316 | Fukuizumi et al. | Jul 2006 | A1 |
20060151513 | Shadrach, III | Jul 2006 | A1 |
20060185074 | Loberger et al. | Aug 2006 | A1 |
20060200903 | Rodenbeck et al. | Sep 2006 | A1 |
20060207019 | Vincent | Sep 2006 | A1 |
20060225200 | Wierenga | Oct 2006 | A1 |
20070023565 | Babikian | Feb 2007 | A1 |
20070079524 | Sato et al. | Apr 2007 | A1 |
20070094787 | Hwang | May 2007 | A1 |
20070144034 | Kameishi | Jun 2007 | A1 |
20070151338 | Benner et al. | Jul 2007 | A1 |
20070194637 | Childe et al. | Aug 2007 | A1 |
20070230839 | Childe et al. | Oct 2007 | A1 |
20070252551 | Clothier et al. | Nov 2007 | A1 |
20070261162 | Atkinson | Nov 2007 | A1 |
20070263994 | Diez et al. | Nov 2007 | A1 |
20070278983 | Clothier et al. | Dec 2007 | A1 |
20080005833 | Bayley et al. | Jan 2008 | A1 |
20080018995 | Baun | Jan 2008 | A1 |
20080072668 | Miyagawa | Mar 2008 | A1 |
20080078019 | Allen, Jr. et al. | Apr 2008 | A1 |
20080083786 | Marin | Apr 2008 | A1 |
20080098950 | Gudjohnsen et al. | May 2008 | A1 |
20080099088 | Boey | May 2008 | A1 |
20080109956 | Bayley et al. | May 2008 | A1 |
20080127410 | Schmitt et al. | Jun 2008 | A1 |
20080185396 | Yang et al. | Aug 2008 | A1 |
20080185398 | Yang et al. | Aug 2008 | A1 |
20080185399 | Yang et al. | Aug 2008 | A1 |
20080189850 | Seggio et al. | Aug 2008 | A1 |
20080193111 | Seutter et al. | Aug 2008 | A1 |
20080209760 | French et al. | Sep 2008 | A1 |
20080213644 | Shindoh et al. | Sep 2008 | A1 |
20080216343 | Churchill et al. | Sep 2008 | A1 |
20080216344 | Churchill et al. | Sep 2008 | A1 |
20080222910 | Churchill et al. | Sep 2008 | A1 |
20080253754 | Rubin | Oct 2008 | A1 |
20080256825 | Hsu | Oct 2008 | A1 |
20080271527 | Hewitt | Nov 2008 | A1 |
20080285134 | Closset et al. | Nov 2008 | A1 |
20080289098 | Kunkel | Nov 2008 | A1 |
20080301970 | Hackwell et al. | Dec 2008 | A1 |
20080313918 | Dyson et al. | Dec 2008 | A1 |
20080313919 | Churchill et al. | Dec 2008 | A1 |
20080317448 | Brown et al. | Dec 2008 | A1 |
20090000023 | Wegelinn et al. | Jan 2009 | A1 |
20090000024 | Louis et al. | Jan 2009 | A1 |
20090000142 | Churchill et al. | Jan 2009 | A1 |
20090000147 | Collins | Jan 2009 | A1 |
20090031493 | Tsujita et al. | Feb 2009 | A1 |
20090034946 | Caine et al. | Feb 2009 | A1 |
20090049599 | Parsons et al. | Feb 2009 | A1 |
20090056011 | Wolf et al. | Mar 2009 | A1 |
20090058666 | Clabaugh | Mar 2009 | A1 |
20090069870 | Haase et al. | Mar 2009 | A1 |
20090077736 | Loberger et al. | Mar 2009 | A1 |
20090094740 | Ji | Apr 2009 | A1 |
20090100593 | Lincoln et al. | Apr 2009 | A1 |
20090113746 | Churchill et al. | May 2009 | A1 |
20090113748 | Dyson et al. | May 2009 | A1 |
20090119832 | Conroy | May 2009 | A1 |
20090119942 | Aisenberg et al. | May 2009 | A1 |
20090126103 | Dietrich et al. | May 2009 | A1 |
20090159612 | Beavis et al. | Jun 2009 | A1 |
20090236358 | Rippl et al. | Sep 2009 | A1 |
20090243243 | Watson | Oct 2009 | A1 |
20090266157 | Maruo et al. | Oct 2009 | A1 |
20090293190 | Ringelstetter et al. | Dec 2009 | A1 |
20090293192 | Pons | Dec 2009 | A1 |
20100014844 | Dannenberg et al. | Jan 2010 | A1 |
20100132112 | Bayley et al. | Jun 2010 | A1 |
20100139394 | Pauer et al. | Jun 2010 | A1 |
20100154239 | Hutchinson | Jun 2010 | A1 |
20100168926 | Bayley et al. | Jul 2010 | A1 |
20100192399 | Sawabe et al. | Aug 2010 | A1 |
20100199759 | Prasad | Aug 2010 | A1 |
20100213208 | Bem et al. | Aug 2010 | A1 |
20100219013 | Liddell | Sep 2010 | A1 |
20100223993 | Shimizu et al. | Sep 2010 | A1 |
20100231392 | Sherron | Sep 2010 | A1 |
20100236092 | Causier | Sep 2010 | A1 |
20100252759 | Guler et al. | Oct 2010 | A1 |
20100269364 | Liu | Oct 2010 | A1 |
20100276529 | Nguyen | Nov 2010 | A1 |
20100296799 | Liu | Nov 2010 | A1 |
20110006083 | Walters et al. | Jan 2011 | A1 |
20110023319 | Fukaya et al. | Feb 2011 | A1 |
20110171083 | Swistak | Jul 2011 | A1 |
20110277342 | Ishii et al. | Nov 2011 | A1 |
20120011739 | Nakamura | Jan 2012 | A1 |
20120017459 | Kikuchi et al. | Jan 2012 | A1 |
20120017460 | Kikuchi et al. | Jan 2012 | A1 |
20120055557 | Belz et al. | Mar 2012 | A1 |
20130025045 | Gagnon et al. | Jan 2013 | A1 |
20130055588 | Nakamura et al. | Mar 2013 | A1 |
20130139400 | Fukano | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
141398 | Aug 1995 | AT |
2005203363 | Feb 2006 | AU |
2006274708 | Feb 2007 | AU |
2006274715 | Feb 2007 | AU |
647407 | Jan 1928 | BE |
504089 | Jul 1930 | DE |
2018695 | Oct 1971 | DE |
2304815 | Aug 1974 | DE |
2657164 | Jun 1978 | DE |
3036623 | Feb 1982 | DE |
4218658 | Dec 1992 | DE |
9304270 | Sep 1993 | DE |
9304160 | Jul 1994 | DE |
19608157 | Jul 1997 | DE |
10210474 | Sep 2002 | DE |
69821140 | Nov 2004 | DE |
202004012352 | Dec 2004 | DE |
0 274 785 | Jul 1988 | EP |
1057942 | Dec 2000 | EP |
1241301 | Sep 2002 | EP |
1250876 | Oct 2002 | EP |
1258568 | Nov 2002 | EP |
1057441 | Sep 2006 | EP |
1912549 | Mar 2010 | EP |
2177142 | Apr 2010 | EP |
2277424 | Jan 2011 | EP |
2554085 | Feb 2013 | EP |
737054 | Sep 1955 | GB |
909069 | Oct 1962 | GB |
2249026 | Apr 1992 | GB |
2428569 | Feb 2007 | GB |
2450563 | Dec 2008 | GB |
49-037685 | Jul 1947 | JP |
1256632 | Oct 1989 | JP |
04-136195 | Dec 1992 | JP |
5163748 | Jun 1993 | JP |
05-055988 | Jul 1993 | JP |
06-062977 | Mar 1994 | JP |
8-140891 | Jun 1996 | JP |
08164088 | Jun 1996 | JP |
08-196470 | Aug 1996 | JP |
9-056640 | Mar 1997 | JP |
9-135788 | May 1997 | JP |
9242155 | Sep 1997 | JP |
10-113304 | May 1998 | JP |
10-113305 | May 1998 | JP |
10-257992 | Sep 1998 | JP |
10248748 | Sep 1998 | JP |
11-000283 | Jan 1999 | JP |
2000-157448 | Jun 2000 | JP |
2000000178 | Jul 2000 | JP |
2000-300461 | Oct 2000 | JP |
2000271039 | Oct 2000 | JP |
2000282528 | Oct 2000 | JP |
2001-104213 | Apr 2001 | JP |
2001140305 | May 2001 | JP |
2002-136448 | May 2002 | JP |
2002-345682 | Dec 2002 | JP |
2003153823 | May 2003 | JP |
2004-261510 | Sep 2004 | JP |
2006-081925 | Mar 2006 | JP |
2006101987 | Apr 2006 | JP |
2006-192250 | Jul 2006 | JP |
2006-204738 | Aug 2006 | JP |
2006-304926 | Nov 2006 | JP |
2007054670 | Mar 2007 | JP |
2007-082904 | Apr 2007 | JP |
2007-098106 | Apr 2007 | JP |
2007082904 | Apr 2007 | JP |
2008-005883 | Jan 2008 | JP |
2008-110240 | May 2008 | JP |
200899797 | May 2008 | JP |
2008272086 | Nov 2008 | JP |
2010-046238 | Mar 2010 | JP |
2010-110450 | May 2010 | JP |
2011019606 | Feb 2011 | JP |
2011-055859 | Mar 2011 | JP |
10-0711544 | Apr 2007 | KR |
9626795 | Sep 1996 | WO |
WO 0116436 | Mar 2001 | WO |
WO 2006055681 | May 2006 | WO |
WO 2007011747 | Jan 2007 | WO |
WO 2007015046 | Feb 2007 | WO |
WO 2009039290 | Mar 2009 | WO |
WO 2009062546 | May 2009 | WO |
WO 2010088975 | Aug 2010 | WO |
WO 2010089927 | Aug 2010 | WO |
WO 2010095250 | Aug 2010 | WO |
WO 2010095251 | Aug 2010 | WO |
WO 2010119536 | Oct 2010 | WO |
WO 2011009156 | Jan 2011 | WO |
WO 2011044247 | Apr 2011 | WO |
2011074018 | Jun 2011 | WO |
WO 2011077625 | Jun 2011 | WO |
Entry |
---|
U.S. Appl. No. 29/306,946, filed Oct. 2, 2008, Thielke et al. |
Bradley Corporation, “Plumbing Fixtures,” believed to be publicly available by Mar. 2006, 3 pages. |
U.S. Appl. No. 61/198,293 of William M. Louis, Dispenser That Cantilevers Flexible Sheet Material for Horizontal Presentation, filing date unavailable, 16 pages. |
U.S. Appl. No. 61/206,768 of William M. Louis, “Swingarm Loading Mechanism for Paper Towel Dispensing Systems,” filing date unavailable, 13 pages. |
Bradley Corporation, “Bradpack Preassembled Wash Centers,” dated Jan. 1986, 12 pages. |
“Innovative Applications in Solid Surface,” The Journal of the Solid Surface Industry, Jan./Feb. 2002, vol. 8, No. 1, 3 pages. |
Brueton advertisement for Undulatus bench, Home Design—The New York Times magazine, 2 pages. |
Bradley Corporation, The Bradley Express Lavatory System: “A look, a feel, an idea as solid as granite,” healing a designation “© 1996 Bradley Corporation,” 4 pages. |
Bradley Corporation, Terreon: “Shaping your designs,” bearing a designation © 1998 Bradley Fixtures Corporation, 8 pages. |
Bradley Corporation, “Plumbing Fixtures,” bearing a designation “2001,” 11 pages. |
International Search Report for International Application No. PCT/US2004/07675 including written opinion of the International Searching Authority, mail date Aug. 6,2004, 7 pages. |
International Search Report and Written Opinion for Application No. PCT/US2005/002194, date of mailing May 12, 2005, date received May 18, 2005, 9 pages. |
Bradley Corporation, “School Solutions, A higher Dedication to, your Design Needs,” © 1999 Bradley Corporation, 6 pages. |
Bradley Corporation, “Frequency Lavatory Systems,” © Bradley Corp 2005, 4 pages. |
Bradley Corporation, “Plumbing Fixtures,” publicly available by Feb. 14, 2008, 12 pages. |
Bradley Corporation, The ndite™ story, publicly available by Feb. 14, 2008, 2 pages. |
Bobrick Technical Data, “Contura ™ Series Surface-Mounted Soap Dispenser B-4112” dated May 2006, 1 pages. |
Bradley Corporation, Total Terreon Concept, © Bradley Corp 2004,2 pages. |
Bradley Corporation, Terreon Lav Decks, © Bradley Corp 2004, 2 pages. |
Bradley Corporetion, “Express Lavatory Systems,” © Bradley Corp 2004, 4 pages. |
Bradley Corporation, “Frequency Lavatory Systems,” © Bradley Corp 2004, 4 pages. |
Bradley Corporation, “Terreon Washfountains,” © Bradley Corp 2004, 2 pages. |
Bradley Corporation, “Sentry Washfountains,” © Bradley Corp 2004, 2 pages. |
Bradley Corporation, “Classic Washfountains,” © Bradley Corp 2004, 2 pages. |
Bradley Corporation, “Multi-Fount WashFountains,” © Bradley Corp 2004, 2 pages. |
Bradley Corporation, “Application Guide,” © Bradley Corp 2004, 2 pages. |
Bradley Corporation, Washroom Accessories, believed to be publicly available by Jul. 2007,4 pages. |
Bradley Corporation, Commercial Washroom Solutions, believed to be publicly available by Jan. 2006, 4 pages. |
Bradley Corporation, Washroom Accessories, believed to be publicly available by Aug. 2003, 8 pages. |
Bradley Corporation, Washroom Accessories, believed to be publicly available by Jan. 2006,4 pages. |
Bradley Corporation, Plumbing Fixtures, believed to be publicly available by Aug. 2002, 12 pages. |
Bradley Corporation, Washroom Accessories, believed to be publicly available by Jan. 2008,4 pages. |
Bradley Corporation, “Installation Instructions 2483 Surface-Mounted Towel Dispenser,” dated Sep. 4, 2003, 1 page. |
Bradley Corporation, “Installation 270 Towel Dispenser/Waste Receptacle,” dated Jun. 15, 2008, 2 pages. |
Bradley Corporation, “Towel Dispenser/Waste Receptacle Model 227,” believed to be publicly available by Jun. 2002, 2 pages. |
Bradley Corporation, “Towel Dispenser—Center Pull/Waste Receptacle Model 236,” dated Feb. 11, 2005, 1 page. |
Bradley Corporation, “Installation 236 Towel/Waste Unit with Center Pull,” dated Mar. 9, 2005, 2 pages. |
Bradley Corporation, Towel Dispenser Model 2481, dated Dec. 21, 2004,2 pages. |
Bradley Corporation, Towel Dispenser Model 2479-000000, dated Mar. 31, 2006, 1 page. |
Bradley Corporation, Towel Dispenser Model 2479-110000, dated Feb. 11, 2005, 1 page. |
Bradley Corporation, Installation Instructions 2479 Recess-Mounted Towel Dispenser, dated Mar. 3, 2004, 1 page. |
Bradley Corporation, “Installation Instructions 2479-11 Surface-Mounted Towel Dispenser,” dated Feb. 27, 2004,2 pages. |
Bradley Corporation, Towel Dispenser Model 2490, dated Nov. 21, 2005,3 pages. |
Bobrick Technical Data, “Contura™ Series Surface-Mounted Paper Towel Dispenser B-4262,” dated Jun. 2006, 1 page. |
Bobrick Technical Data, “Contura™ Series Surface-Mounted Multi-Roll Toilet Tissue Dispenser B4288,” dated May 2006, 1 page. |
Bobrick Technical Data, “Contura™ Series Recessed Multi-Roll Toilet Tissue Dispenser B-4388,” dated May 2006, 1 page. |
Bobrick Technical Data, “Contura™ Series Recessed Paper Towel Dispenser B-4362,” dated Nov. 2006, 1 page. |
Bobrick Technical Data, “Contura™ Series Recessed Waste Receptacle B-43644,” dated Nov. 2006, 1 page. |
Bobrick Technical Data, “Contura™ Series Recessed Paper Towel Dispenser and Waste Receptacle B-43944,” dated Nov. 2006, 2 pages. |
Bobrick Technical Data, “Contura™ Series Surface-Mounted Sanitary Napkin Disposal B-270,” dated May 2006, 1 page. |
Bobrick Technical Data, “Contura™ Series Recessed Soap Dispenser B-4063,” accessed on Mar. 28, 2007, 1 page. |
International Search Report for International Application No. PCT/US2008/076875, dated Apr. 3, 2009, 4 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2008/076875, mail date Jul. 6, 2009, 21 pages. |
Bradley Corporation, “All-In-One-Of-A-Kind” Advocate™ Sell Sheet Brochure. Accessed Apr. 2011at http://bradleycorp.com/advocate/Advocate—Sell—Sheet.pdf. 6 pages. |
Bradley Corporation Advocate™ Lavatory System—LA90 Series Manual, document No. 1068. Accessed Apr. 2011at http://www/bradleycorp.com/products/fixtures/lavsystems/advocate/viewproduct.jsp?pgid=1724, © Bradley Corp 2010, 8 pages. |
Bradley Corporation Advocate™ Lavatory System—LA60 Series Manual, document No. 1066, Accessed Apr. 2011at http://www.bradleycorp.com/products/fixtures/lavsystem/advocate/viewproduct.jsp?pgid=1724, © Bradley Corp 2010, 7 pages. |
Bradley Corporation Advocate™ Lavatory System—LA30 Installation Manual, document No. 215-1657 Rev. A; ECM 09-08-0026. Accessed Apr. 2011at http://www.bradleycorp.com/products/fixtures/lavsystems/advocate/viewproduct.jsp?pgid=1724 , dated Oct. 7, 2009 © Bradley Corp 2009, 20 pages. |
PCT/International Search Report and Written Opinion—(Application No. PCT/US2010/051647)—11 pages. |
Number | Date | Country | |
---|---|---|---|
20130086741 A1 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13088512 | Apr 2011 | US |
Child | 13267429 | US |