Hand dryer with point of ingress dependent air delay and filter sensor

Information

  • Patent Grant
  • 9267736
  • Patent Number
    9,267,736
  • Date Filed
    Thursday, October 6, 2011
    13 years ago
  • Date Issued
    Tuesday, February 23, 2016
    8 years ago
Abstract
A lavatory system includes a hand dryer with at least a first proximity sensor and a second proximity sensor to detect an object for drying. A controller is communicatively linked to the first and second proximity sensors. The controller activates a drying operation after a first delay period if the first proximity sensor first detects the object for drying and activates a drying operation after a second delay period if the second proximity sensor first detects the object for drying. A filter flow sensor may also be provided to ensure proper filtering of the dryer's air.
Description
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims priority of U.S. patent application Ser. No. 13/088,512, filed Apr. 18, 2011, the disclosure of which is incorporated herein.


BACKGROUND OF THE INVENTION

The present invention relates generally to the field of lavatory systems and, more particularly, to touch-free hand dryers that use proximity sensors to commence the blowing of air.


In an effort to reduce the waste and frequently the mess associated with paper toweling in public washrooms such as those found in high traffic areas like schools, libraries, airports, train and bus terminals, shopping centers, theaters, and sports venues, wall-mounted electric hand dryers have become prevalent. More recently, proximity sensors have allowed for touch-free hand dryers that can be activated automatically when a user places his hands in a drying zone adjacent the hand dryer; typically, below and/or in front of the hand dryer. For many installations, the hand dryer is mounted on a wall opposite the wash basin and, quite frequently, one or two hand dryers will be provided for a bank (more than two) of wash basins. As a result, a user after cleaning his hands must walk some distance to the hand dryer. This frequently results in water and/or soap dripping onto the floor as the user walks from the wash basin to the hand dryer. As there are typically more wash basins than hand dryers, it is possible that water could pool on the floor during high use periods. The accumulated water can create a slippery and, consequently, potentially unsafe condition. Additionally, the hand dryer can blow water from the user's hands onto the floor during the drying process further adding to the amount of water that accumulates on the floor. Moreover, water and/or soap can accumulate on the countertop supporting the wash basin which can be unsightly, if not quickly addressed. Additionally, the accumulation of water and/or soap on the floor and/or countertop may lead to germ-infested areas thus posing additional health risks as well as creating discomfort for users that are particularly germ sensitive.


One proposed solution is described in U.S. patent application Ser. No. 12/233,466, which is assigned to Bradley Fixtures Corporation, the assignee of this application and which is incorporated herein by reference. The aforementioned application describes a lavatory system in which a hand-washing station has a wash basin, a faucet, and an electric hand dryer. The integration of these components into a single wash station alleviates the need for a user to leave the wash station to access a hand dryer. That is, the hand dryer is adjacent the wash basin and (heated) air is blown into an area generally above the wash basin. Accordingly, a user can water and soap his hands in a conventional manner and then move his hands to the drying zone of the hand dryer. The user's hands do not need to leave the wash basin for the hands to be exposed to the drying air. Hence, water does not drip onto the floor as the user presents his hands to the dryer and water removed from the hands is blown into the wash basin rather than onto the floor.


The lavatory system described in the aforementioned application provides a significant improvement over conventional lavatory systems. However, the present inventor has discovered that many users of such an integrated wash station do not slide their hands over from below the faucet to the drying zone of the hand dryer. The inventor has found that some users, so conditioned to extract their hands from the wash basin entirely, will remove their hands from the wash basin and then present their hands to the front of the drying zone. As the hand dryer is activated when one or more proximity sensors sense the presence of the user's hands, it has been found that such a front-presentment can result in splashback of water onto the clothes of the user, the floor, or the countertop.


SUMMARY OF THE INVENTION

The present invention is directed to a hand dryer in which the point of entry into a drying zone is detected and used to selectively activate a delay before the hand dryer is activated. While not so limited, in one embodiment, the hand dryer is part of an integrated lavatory system having a wash basin with a faucet operably connected to the wash basin and a soap-dispensing system having a spout operably connected to the wash basin. The hand dryer defines a hand-receiving cavity above the wash basin so that a user does not need to remove his hands from the wash basin to place his hands in the hand-receiving cavity. The hand-receiving cavity has a top portion with an air outlet, and a bottom portion with an air outlet. A blower provides a volume of air to the air outlets which is ultimately presented to the hand-receiving cavity. Multiple proximity sensors are operably connected to the blower and turn the blower on and off when triggered by an object, i.e., detection of the user's hand(s). In one embodiment, a first proximity sensor is positioned adjacent a side of the hand-receiving cavity and thus senses the ingress of a user's hands into the hand-receiving cavity from the side. A second proximity sensor is positioned adjacent the front of the hand-receiving cavity and senses the ingress of a user's hands into the hand-receiving cavity from the front. Depending upon which sensor detects the user's hands, one of two different delays is observed before the blower is caused to force air to the air outlets. In a preferred implementation, a longer delay is observed if the second proximity sensor detects the user's hands.


In an alternate embodiment, each of the sensors has non-overlapping fields-of-view so that only one of the two sensors can detect the presentment of the user's hands.


In another alternate embodiment, detection by the first sensor results in a delay between zero and 300 milliseconds (ms) whereas detection by the second sensor results in a delay between 200 ms and 800 ms, and the delay resulting from detection by the second sensor is preferably selected to exceed the delay resulting from detection by the first sensor.


In a further embodiment, the two aforementioned sensors are replaced with a single sensor capable of discriminately sensing side-presentment or front-presentment of the user's hands to the hand-receiving cavity.


In another embodiment, an air filter and filter flow sensor are also provided.


These and other aspects and objects of the present invention will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. It should be understood, however, that the following description, while indicating preferred embodiments of the present invention, is given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications.





BRIEF DESCRIPTION OF THE DRAWINGS

A clear conception of the advantages and features constituting the present invention and of the construction and operation of typical mechanisms provided with the present invention, will become more readily apparent by referring to the exemplary, and therefore non-limiting, embodiments illustrated in the drawings accompanying and forming a part of this specification, wherein like reference numerals designate the same elements in the several views, and in which:



FIG. 1 illustrates a front view of a lavatory system of the present invention;



FIG. 2 is a front elevation view of a lavatory system according to the present invention;



FIG. 3 is a front elevation cutaway view of a lavatory system according to the present invention showing upper portion and hand-washing features;



FIG. 4 is a front elevation view of a cutaway portion of the lavatory system according to the present invention showing the faucet and soap dispenser;



FIG. 5 is a front elevation view of a cutaway portion of the lavatory system according to the present invention showing the upper portion and upper air outlet;



FIG. 6A is a side view of a cutaway portion of the lavatory system according to the present invention showing the upper portion, lower nozzles, and basin;



FIG. 6B is a side view of a cutaway portion of the lavatory system according to the present invention illustrating the hand dryer and lower nozzle tips;



FIG. 7 is a partially exploded lower view of the hand dryer showing the top portion, upper air outlet, and hand dryer sensors;



FIG. 8 is a partially exploded upper view of the top portion showing the upper plenum;



FIG. 9 is a side cross-sectional view of the lavatory system showing the hand dryer, motor, upper plenum, and lower plenum;



FIG. 10 is a view of the lavatory system showing the hand dryer motor, upper plenum, and lower plenum;



FIG. 11 is a lower view of the hand dryer upper plenum of the lavatory system according to the present invention;



FIG. 12 is a side cross-sectional view of the hand dryer upper plenum of the lavatory system according to the present invention;



FIG. 13 is a view of the hand dryer lower plenum of the lavatory system according to the present invention;



FIG. 14 is a side view of the hand dryer lower plenum of the lavatory system according to the present invention;



FIG. 15 is a view of the hand dryer motor of the lavatory system according to the present invention;



FIG. 16 is a side cross-sectional view of the hand dryer motor of the lavatory system according to the present invention;



FIG. 17 is a view of the sensor board of the lavatory system according to the present invention;



FIG. 18 is a lower front view of the lavatory system according to the present invention with a cover removed to show the mounting hardware;



FIG. 19 is a block diagram showing a preferred air flow path from the hand dryer motor;



FIG. 20 is a diagram showing the hand dryer sensors according to the present invention interacting with a hand;



FIG. 21 is a block diagram showing the hand dryer electrical components;



FIG. 22 is a front elevation view of another embodiment of a lavatory system according to the present invention;



FIG. 23 is a side view of a cutaway portion of still another embodiment of the lavatory system according to the present invention illustrating a hand dryer, drain hole, and lower nozzle portion;



FIG. 24 is a lower front view of the embodiment of FIG. 23 according to the present invention with a cover removed to show a drain tube and drainpipe;



FIG. 25 is a schematic view of the fields-of-view provided by a bank of proximity sensors according to one embodiment of the invention including first and second proximity sensors;



FIG. 26 is a schematic view of the fields-of-view provided by a bank of proximity sensors according to an alternate embodiment of the invention including first and second proximity sensors; and



FIG. 27 is a front elevation cutaway view of a lavatory system according to a further embodiment of the present invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention will be described with respect to a hand dryer that is part of an integrated lavatory system also having a wash basin, a water faucet, and, optionally, a soap dispenser. However, it is understood that the present invention is applicable with stand-alone hand dryers, such as conventional wall-mounted hand dryers, and may also be desirable for other types of dryers in which it is desirable to delay commencement of a drying cycle based on the presentment of an object for drying to a drying chamber, cavity, or zone. In one preferred embodiment, the present invention is applicable with an integrated lavatory system such as those described in U.S. patent application Ser. Nos. 12/233,466 and 13/122,368 and herein incorporated by reference; however, as noted above, the invention is not so limited.


Turning now to FIGS. 1-24, a lavatory system 10, preferably, has a wash basin 20, including a wash basin wall 22. As shown in FIGS. 1-4, faucet 24 is provided within the wash basin 20. The faucet 24 may include indicia etched thereon such as a water droplet symbol or a faucet light 23 for directing a user. Such indicia may be particularly helpful to a user that has poor eyesight. The faucet 24 may also include a sensor located behind a sensor window 25 which automatically engages a faucet control to provide water to the user. The faucet 24 is connected to plumbing to provide hot and/or cold water to the faucet. Preferably, the water is provided at a comfortable temperature for the user's hands.


A soap dispensing system 26 is near the faucet 24 and in the wash basin 20. The soap dispenser 26 includes a spout 28 and a soap-dispensing sensor (located behind sensor window 29) to detect an object, such as a user's hand 166 (See, e.g., FIG. 20), and to provide soap thereto. Indicia, such as soap bubbles, or a light 27 may also be provided on the spout 28. As best shown in FIG. 1, a countertop 30 is preferably provided above and around the wash basin 20. The soap dispenser or system 26 includes a liquid soap container (not shown) located under the wash basin 20 and countertop 30 and that is connected to the spout 28. A backsplash 32 may also be present and integral with the countertop 30. Thus, the soap container is masked, in part, also by the backsplash 32. Further disclosure of embodiments of the soap dispensing system 26 may be found in co-pending U.S. patent application Ser. Nos. 12/233,466 and 13/088,512 further incorporated herein by reference.


As best seen in FIG. 2, preferably a single drain 42, preferably with drain cap, is provided in the wash basin 20. This drain 42 takes soap and water from the wash basin 20 down to a drainpipe (not shown). The drainpipe 127 is preferably located directly under the wash basin 20 (see, e.g., FIG. 18).


As seen in FIGS. 5-9, the lavatory system 10 preferably includes an integral drying system, e.g., a hand dryer 50. The dryer 50 has a hand-receiving cavity 52 and a motor 74. In one preferred embodiment, a mechanism 40 for preventing flooding and damage to the motor 74 is provided. The mechanism 40 may include a flood relief rim or overflow lip 44 located on the wash basin 20, see, e.g., FIG. 6A. The flood relief rim 44 is provided below the lower portion's air outlet 56 and the nozzle tips 162b as shown. Thus, water that cannot make it down the drain 42 will flow over the flood relief rim 44 and not down the nozzle holes 162b and into the motor 74. Other motor protection and flood prevention mechanisms 40 will be described further below.


Referring now to FIG. 2, the hand dryer 50 may be provided with etched instructional indicia, a heat wave symbol, or light 31. A drain conduit 47 is preferably present to fluidly connect the hand-receiving cavity 52 and wash basin 20. The conduit 47 removes excess water left from the user's hands through the hand-receiving cavity 52 down toward the single drain 42 in the wash basin 20. This water then travels down the drainpipe 127, see, e.g., FIG. 18.


As best seen in FIG. 5, the hand dryer 50 is preferably provided with a top portion 53 and a bottom portion 55. The top portion 53 may also include a hood 51 with a base which forms a top wall 57 of the cavity 52. The top portion hood 51 may also include a top portion cover which may form a shelf 58. An upper air outlet 54 is also provided in the upper portion 53.


As best shown in FIGS. 5, 6A, and 6B, a bottom portion 55 includes a lower air outlet 56. The bottom portion 55 is formed, in part, by bottom wall 59. The bottom portion 55 of the hand-receiving cavity 52 preferably also includes a back wall 60, front wall 61, and single side wall 62 (see, e.g., FIG. 5). A front ledge 63 is preferably integral with the front wall 61. The hand-receiving cavity 52, therefore, is preferably configured to have a front opening 64 and a single side opening 65 (herein the left side) and to allow users to enter their hands at a generally oblique angle. Further, instructions 69 for using the hand dryer may provided on the front ledge 63 as shown in FIG. 6B.


As best shown in FIG. 7, one embodiment includes a top wall or base 57 that attaches to the backsplash 32 (not shown) and countertop 30 (not shown) preferably with bolts 68a and 68b. A side anchoring screw 68c is also provided to attach the top portion 53 to side wall 62 (see, e.g., FIG. 9). The top portion 53 preferably also has multiple sensors 103a-d and LED lights, e.g., 108a-e located therein and preferably covered by a window to protect them from splashing water and debris.



FIG. 8 shows the top portion 53 of the hand dryer 50 with the top cover 58 removed. Inside the top portion 53 is a hose 140a which attaches to a first or upper plenum 142. The hose 140a is connected to the first or upper plenum air inlet 143 (see, e.g., FIG. 11) to provide air to the upper plenum 142.


As shown in FIGS. 9 and 10, a second, or lower plenum 144, is also provided. The lower plenum 144 is connected to a hose 140b which delivers air to the lower plenum 144 via a lower plenum air inlet 145. The preferably flexible hoses 140a and 140b are attached to a first outlet port 88 and a second outlet port 90 which are preferably on or part of a motor housing 70. A blower 71 including a motor 74 with a fan 76 (see, e.g. FIGS. 15 and 16), provides air to the hand dryer 50. The air outlets 54, 56 are configured in such a way so that they provide air into the hand-receiving cavity 52 (see, e.g., FIGS. 5 and 6B) downwardly and back toward the back wall 60. For example, in one embodiment, the two outlet or exhaust ports 54, 56 are offset from one another in horizontal planes, i.e., the lower plenum 144 nozzle holes 164b are at about a 37 degree angle from horizontal and located closer to the user than the upper plenum 142 nozzle holes 164a which are at about an angle of 1 degree rearward from vertical and located closer to the backsplash 32 of the hand dryer cavity 52. This configuration prevents water from splashing onto the user once it is removed from the user's hands. FIG. 10 shows the motor 74 and motor housing 70 operably connected to plenums 142, 144. As shown, the motor housing 70 preferably has an aluminum cover plate 72 and an intake cover 96.



FIGS. 11 and 12 show the upper plenum 142 in detail. The upper plenum 142, preferably, is constructed of top piece 146 and a bottom piece 148. The upper plenum air inlet 143 is preferably integral with the upper plenum's 142 top piece 146 and bottom piece 148. A center post 150 and a screw 152 may be used to connect the top piece 146 to the bottom piece 148. Plastic bonding techniques, such as adhesives, may also be used. Additional screws and posts may also be provided along the outside of the plenum 142. The plenum 142 preferably has top nozzles 160a molded into it to provide the top portion upper air outlet 54. The top nozzles 160a preferably include pointed or frustoconical nozzle tips 162a that have nozzle holes 164a therethrough. The upper plenum 142 has multiple projections or tabs 147a protruding therefrom. The projections 147a act as connecting points for screws to attach the plenum to the lavatory system 10.


As shown in FIGS. 13 and 14, the lower plenum 144 is similarly configured. The lower plenum 144 has a top piece 147 connected to a bottom piece 149, preferably, by bonding and/or posts and screws. A lower plenum air inlet 145 is also provided. The lower plenum air inlet 145 is preferably integral with the rest of the lower plenum 144. The lower plenum 144 also has multiple projections or tabs 147b protruding therefrom which act as connecting points for screws to attach the plenum 144 to the lavatory system 10. The upper plenum 142 and the lower plenum 144 are preferably each constructed of two injection-molded plastic top and bottom pieces bonded and/or screwed together. Each plenum may also contain a center post screw (not shown) to minimize deflection of the plenum when pressurized.


Bottom nozzles 160b are provided, again, preferably by molding into the lower plenum 144. Lower nozzles 160b, like the upper nozzles 160a, preferably have protruding frustoconical nozzle tips 162b each of which has a nozzle hole 164b therethrough. The shape of the nozzle tips 162b on the lower plenum 144 further acts as a flood prevention mechanism 40 to protect the motor 74.


The hand-dryer blower 71, motor 74, and motor housing 70 are best shown in FIGS. 15 and 16. Motor housing 70 includes an aluminum cover plate 72 and an upper or outer casement 80. An intake air manifold cap or housing cap 82 is provided toward a lower end of the motor housing 70. The motor 74 is inside the motor housing 70 and has a fan 76 with blades (not shown) to blow air. Preferably, a rubber motor mounting ring and/or housing isolation gasket 86 is also provided. This gasket 86 helps reduce vibrations and deaden the motor's sound. A filter 84 is preferably provided within the housing 70 to filter the intake air. The filter 84 is preferably constructed of HEPA media or some other suitable media. Also contained within the motor housing 70 is acoustic insulation foam 83 to further isolate and lessen motor noise. The motor may be electronically commutated to eliminate the exhaust of worn carbon through the air passages of the hand dryer system and toward the hand dryer user's hands.


The intake air portion or lower portion of the motor housing cap 82 is configured with a solid center section 95 surrounded by a circular pattern of holes 94. This configuration is spaced at a distance similar to the half wave length of the fan blade passing frequency of the fan motor 74. As a result, acoustical waves are reflected off of the solid center section 95 on the bottom of the housing cap 82 at a fan cowling and the acoustical foam 83, and eventually propagate through the circular hole pattern 94 in an attenuated manner.


A filter or intake cover 96 may also be provided in the housing 70 to contain or to hold the filter 84 in place. To further attenuate sound generated by the fan motor 74, insulation or acoustical foam 97 is placed on the inside of the intake cover 96. The cover 96 is preferably further configured to redirect the intake air 90 degrees from the axial center of the fan 76 and motor 74. This design promotes reflection of acoustical waves off of the noise-reducing acoustical foam 97. A wire or other locking mechanism 87 is provided to keep the filter cover 96 in place.


As shown in FIG. 15, the first outlet port 88 and second outlet port 90 may include first outlet port grate 92a and second outlet port grate 92b, respectively, to prevent fingers or hands from accidentally being pushed into the motor 74 (not shown). These grates are preferably integrally molded into the port outlets.


Referring to FIG. 16, in one preferred embodiment, a motor control board or circuit board 98 is contained in the housing 70 and includes a motor control, a controller 99, or, e.g., a microcontroller, for turning the motor on/off and further controlling the motor 74. This controller 99 may be in communication with several other sensors and/or subsystems, as will be described more fully below. The board 98 is preferably in communication with aluminum plate 72 which acts as a heat sink to channel heat away from the board 98. The plate 72 also acts as mounting platform for the board 98.


As shown in FIG. 18, the lavatory system 10 is preferably attached to a lavatory wall 118 and can be mounted at different heights to accommodate adults, children, and those with disabilities. A frame 120 may be connected to the lavatory wall to support the lavatory system 10. The frame 120 preferably has two triangular-shaped brackets 121, 122 having flat surfaces, support columns 126, 128 on an underside of the wash basin 20 and hand dryer portion 50. A drain pipe 127 connects the drain 42 (see, e.g., FIG. 2) to the lavatory's plumbing behind the lavatory wall 118. Screws or other fastening means secure the brackets in place.


The frame 120 and drain pipe 127 are preferably covered by a lavatory system cover 130 (as best seen in FIGS. 1 and 2). The lavatory system cover 130 not only conceals the frame, motor, electrical connections, and plumbing, but it also preferably reduces the sound level experienced by the user. The cover 130 preferably also has brand indicia 131 and other user instructional indicia contained thereon. First end cap 115a and second end cap 115b help secure the cover 130 to lavatory system 10. The end caps 115a, 115b are preferably made of stainless steel and the cover 130 is preferably made of a plastic and/or resin material, e.g., a Class A fire-rated polymer. A primary air inlet 136 (see, e.g., FIG. 9) is preferably provided by creating a small gap between the lavatory wall 118 and the cover 130. The gap provides noise attenuation and also prevents foreign objects from getting sucked into the primary air inlet 136.



FIG. 19 is a diagram showing a preferred air flow for the blower 71 from the motor 74 and fan 76 out the first outlet port 88 and second outlet port 90. From the first outlet port 88, the air travels up through a grate 92a and via a hose 140a to a first or upper plenum 142 and out an air outlet 54. The air outlet 54 channels the air through individual upper nozzles 160a having upper nozzle tips 162a with air holes and into columns of air directed downwardly at a user's hands in the cavity. From the second outlet port 90, the air travels through a second outlet port grate 92b and via a hose 140b to a second or lower plenum 144 and out an air outlet 56. The air outlet 56 channels the air up through lower nozzles 160b having lower nozzle tips 162b with air holes and into columns of air directed outwardly at a user's hands in the cavity.


In a preferred embodiment, upper and lower nozzle tips 162a, 162b connected to the nozzles 160a, 160b emit high-speed colliding columns of air to shear water off the user's hand. The tips, holes, and resulting air columns are spaced and calibrated in such a way as to reduce forces on the user's hand which would otherwise move the hand toward the upper or lower plenums or the side surfaces. As mentioned, one way of accomplishing this spacing and calibration is to have the axis of the air flow from upper plenum 142 nozzle holes 164a angled about 1 degree from vertical and aimed toward the cavity back wall 60 (FIG. 9) and the axis of the air flow from lower plenum 144 nozzle holes 164b angled about 37 degrees from horizontal and aimed toward the cavity back wall 60. Moreover, the upper to lower nozzle tip spacing may be about 3.5 inches apart and the hand-receiving cavity 52 (see, e.g., FIG. 5) may have width of about 9.5 to 10 inches to provide the user with optimal comfort when using.


In one embodiment, the nozzles 160a, 160b preferably have tips 162a, 162b that are pointed protrusions that help pull static air into the air columns, see, e.g., FIGS. 12 and 14. These rows of nozzles are preferably mounted on two, approximately ten (10) inch, rectangular blocks or blades that fit, respectively, into the top and bottom air outlets 54, 56. The blades are preferably integral with the upper and lower plenums 142, 144. There are approximately 20 nozzles with tips formed or molded into each blade. These tips are approximately 0.050-0.060 inches long and have a diameter at the base of approximately 0.160-0.220 inches. The holes therein are preferably about 0.101 inches in diameter. From the center of one nozzle hole to the center of the next nozzle hole, it is preferably about 0.50 inches. As mentioned, the tips 162a, 162b preferably have a generally frustoconical shape to help prevent water from entering the nozzles 160a, 160b and also have about a 6 degree taper. In one preferred embodiment, the tips have a smooth, slightly rounded side wall to prevent catching of clothing or jewelry. When the dryer 50 is in use, the user's hands are preferably about 0.75 inches away from the nozzle tips.


As discussed, in one embodiment, the nozzles and holes on the top blade and the nozzles and holes on the bottom blade are at different angles from the horizontal plane and vertically aligned with one another so that the collision of the upper and lower streams of air provide a unique air flow pattern. This configuration preferably helps to generate an s-shaped airflow pattern. However, in another alternative embodiment, the holes and nozzles are lined up directly across the cavity from each other.


In one embodiment, the preferred bidirectional or dual-sided air flow dryer uses 1600 watts (or 13.7 amps) and will dry hands in about 15 seconds at 80 decibels (dB) with 70 cubic feet per minute (CFM). In this embodiment, the dryer runs off a 120V outlet and requires a dedicated 20 ampere (amp) circuit. Ground fault interruption (GFI) circuit protection is preferred. It is understood, however, that the invention is not limited to the above-referenced parameters. For example, it is contemplated that the dryer could run on a 15 amp circuit.


Referring now primarily to FIG. 17, a sensor control board 100 is preferably provided in the top portion 53 near the upper plenum 142 (see, e.g. FIG. 9). The sensor control board 100 includes a controller 78, e.g., a microcontroller, and a multitude of sensors 103a, 103b, 103c, 103d. In the preferred embodiment, four proximity sensors (e.g., first, second, third, fourth proximity sensors) are provided in series. These work independently through triangulation to detect an object for drying 166, e.g., a user's hands, in the cavity 52 (see, e.g., FIG. 5). Lights or LEDs 108a-m may also be mounted to the control board 100. Some or all of the LEDs, e.g., LEDs 108a-l, may be activated when the first through fourth proximity sensors 103a-d detect an object for drying in the hand-receiving cavity 52.


In one preferred embodiment, the LEDs 108a-m are operably connected to the hand dryer 50. For example, LEDs 108a-d continuously illuminate the hand-receiving cavity 52 at a low intensity level when a sensor does not detect the presence of an object for drying, i.e., the cavity is not in use or in “stand-by”. However, when a sensor detects that an object for drying has entered into the hand-receiving cavity 52, and during dryer 50 activation, preferably the LEDs 108e-h and 108i-l also illuminate cavity and thus increase the overall intensity level of light in the cavity. In another embodiment, LEDs 108a-d do not begin to illuminate the cavity until the soap is dispensed or the water begins to flow in the basin.


In a preferred embodiment, when a staff member wishes to clean and service the lavatory system 10, the staff member may engage a service mode. Here the LEDs 108a-d and 108e-h continuously illuminate the hand-receiving cavity 52. Activation of hand dryer 50 is also suppressed by communication between controller 78 and controller 99. In one embodiment, service mode activation is accomplished by triggering a sensor, e.g., the right-most sensor 103d in the upper portion of the hand-receiving cavity 52, for an extended time period. Thus, if this one sensor consistently detects an object for drying in the hand-receiving cavity 52, the hand dryer 50 is disabled for about 30 to 60 seconds and some of the LEDs, e.g., LEDs 108e-h, may be illuminated at a high-intensity level. This allows the hand-receiving cavity 52 to be temporarily cleaned without further engaging the hand dryer 50.


The LEDs, e.g., 108i-l, may flash in certain ways when the service mode has been started and/or is about to end. For example, in one embodiment, prior to the service mode, one row of four white LEDs provides lower level illumination of the hand dryer cavity. However, if the right-most sensor is triggered within the last 2 seconds, and if a hand is placed over the right-most sensor for the period of 3 seconds, a row of four amber LEDs will rapidly flash twice to designate that the unit is entering the service mode. At the same time, a second row of four white LEDs will turn on to increase the illumination of the hand cavity for approximately 30 seconds to assist in cleaning. After approximately 25 seconds from when the service mode was started, the row of four amber LEDs will flash three times to indicate that the service mode cycle is nearing completion. At the end of the service mode cycle (5 seconds after the four amber LEDs flash three times or about 30 seconds in total service cycle length), the second row of white LEDs will turn off and the hand dryer cavity will remain lit at the lower level of illumination by the first row of four LEDs.


In one embodiment, the service mode includes a controller 78, e.g., a microcontroller, with a programmed touchless cleaning mode feature wherein if one sensor is the only sensor activated within the last two seconds and if activated continuously for about three (3) seconds, the hand dryer 50 will enter the mode to allow cleaning of the hand dryer 50. This mode lasts for about 30 seconds, during which dryer activation is suppressed, and then the controller will return the system to normal operation. The controller will flash the LED lights twice when entering the cleaning mode and three times when approaching a time near the end of a cleaning cycle which is approximately 25 seconds into an about 30 second cleaning cycle. If the cleaning mode is longer in another embodiment, the lights will flash three times, 5 seconds before the end of the cleaning cycle.



FIG. 20 is a diagram showing triangulation of the sensors 103a-103d in detecting an object for drying in the hand-receiving cavity 52, e.g., a user's hand 166. In a preferred embodiment, it should be noted that hand entry occurs at an oblique angle. Hand 166 entry angles range from approximately 5 to 50 degrees from horizontal depending on the user's height and the mounting height of the lavatory system 10. For example, sensors 103a-d may be infrared (IR) sensors with emitter sections emitting IR light 104a-d, respectively. The IR light 104a and 104b may be reflected by hand 166. Each IR sensor 103a-d also has a detection module 105a-d, respectively.


The sensor detection modules 105a and 105b utilize an internal triangulation algorithm to sense IR light, 106a and 106b respectively, when an object for drying is in the sensor's field of view. When a user's hand 166 enters the hand-receiving cavity 52, the sensor detection modules 105a and 105b output an electrical signal (e.g. a 5 volt signal). This signal is used by the controller 78 to determine whether to activate the hand dryer (50) and LED lights 108e-l (see FIG. 17).



FIG. 21 is a diagram showing a preferred electronic control communications embodiment. In this embodiment, at least one controller 78 communicates with the various subsystems, e.g., the first, second, third, and fourth hand dryer sensors 103a-d, LED lights 108a-1, and hand dryer 50 (including hand dryer motor's controller 99). In this embodiment, the controller 78 may include a pre-programmed programmable unit having a time delay mechanism for turning the subsystems on and off in a certain sequence. Of course, it is appreciated that one or more controllers may be used, for example, one for each subsystem, and may therefore be configured to communicate with each other. In one embodiment, a sensor control board or circuit board 100 (see, e.g., FIG. 17) is provided and includes a controller 78 and a single bank of sensors (103a-d) to measure distance by triangulation. There may also be present on this sensor control board 100, LEDs 108a-d that will continuously illuminate the hand-receiving cavity 52. LEDs 108e-h and LEDs 108i-l may also be present and illuminate when the sensors 103a-d detect a user's hand 166 in the cavity. In one embodiment, white lights are used when the dryer is in standby, and amber lights are used when the dryer is in use.


A programmable unit may be present on the sensor control board 100 and/or motor control board 98 and preferably includes a time-delay mechanism, for example, in communication with an on/off switch for the motor 74. In this embodiment, when one of the sensors 103a-d is activated by an object for drying, e.g., a user's hands, in the hand-receiving cavity 52, the controller 78 rechecks the activated sensor multiple times to validate that hands are in the hand-receiving cavity 52. Then the delay mechanism allows users to enter their hands 166 fully into the hand-receiving cavity 52 prior to the hand dryer motor 74 achieving full speed. This minimizes the potential of any splashing of water back on the user as a result of the fully active hand dryer imposing a shearing action on water present on the user's hands. There may be additional sensors (not shown) that may inhibit the dispensing of water or soap or activation of the dryer when a critical water level is reached in the wash basin and thus prevent overflow, flooding, and/or motor damage.


In another embodiment, there is communication between the faucet sensor controller and the dryer sensor controller. For example, when the faucet is used, the lights on the dryer go from off to on, e.g., to white. This feature could be used to indicate to the user that the user should move from the faucet to the dryer next, and thus make the wash station use more intuitive. This feature could also lock the faucet off while the user's hands are being dried. This would save water as it would truncate the faucet turn off time. It would also eliminate any splashing due to the dryer air flow through the basin.


In one embodiment, multiple distance sensors 103a-d utilize triangulation one at a time and from left to right in their field of view to detect an object for drying. These sensors are preferably positioned so they are recessed in the upper portion 53 and aimed vertically into the hand-receiving cavity 52. Recessing is minimal, however, to avoid adversely impacting sensor operation. In one embodiment, the sensor board 100 is programmed to check all sensors at about 130 millisecond (ms) intervals. When a sensor flags a detection, it is then rechecked fifteen times over about a 15 ms period to ensure the detection was not a false trigger.


The temperature rise of the air during a drying cycle is dependent upon how long the user keeps the hand dryer 50 activated. Since the system 10 does not use an auxiliary air heater, the air temperature rise is a result of the heat generated by the inefficiency of the motor 74. The other factor dictating the motor temperature rise is how frequently the motor 74 is activated. In a high usage environment (airport, sports arena, etc.), the motor 74 will not typically cool down very much between cycles and the air temperature rise experienced by the user will be significantly higher than that of a hand dryer which operates infrequently. The following chart shows some typically-expected temperature rises.
















Expected Temperature Rise Above




Ambient Temperature (F.) @ 120 V


Drying Cycle
Cycle Length
(rated operating voltage)


















Normal
12-15
seconds
12-50


Maximum
30
seconds
22-50









In one embodiment, additional safety and cleaning features may be present. For example, UV lighting or some other sterilization technique to disinfect the hand-receiving cavity 52 may be provided. Further, only one drain may be provided between the wash basin 20 and outside of hand-receiving cavity 52 to eliminate the need for another device to catch water from the dryer 50 that must be emptied and can collect harmful molds or germs. Certain dryer components, like the nozzles 160a, 160b, may have an antimicrobial additive molded into the plastic. Further, the entire wash basin 20 and hand-receiving cavity 52 may be constructed, in part, of an antimicrobial material or may be coated with such a material during manufacture.


In one embodiment, a second row of holes, a slot, and a port are present to provide a lower velocity air stream to further minimize water splashing onto a user.


In the embodiment shown in FIG. 22, the drying system or dryer 250 may be a stand-alone unit but still mounted in close proximity to the wash basin. In this embodiment, lavatory hand dryer 250 includes a hand-receiving cavity 252, a top portion 253, a bottom portion 255, a back side or wall 260, and at least one side wall 262. Note that while a right side wall is shown, the dryer may have only a left side wall. Alternatively, two side walls or partial side walls may be present. The top portion 253 may also include a hood 251 which forms a top wall or side 257 of the cavity 252. The top portion hood 251 may also include a top portion cover which may form a shelf 258. An upper air outlet 254 is also provided in the top or upper portion 253 and incorporates nozzle holes 262a.


A bottom portion 255 includes a lower air outlet 256. The bottom portion 255 is formed, in part, by a bottom wall or side 259. The bottom portion 255 of the hand-receiving cavity 252 also includes a back wall or side 260, front wall or side 261, and side wall 262. A front ledge 263 is integral with the front wall 261. The hand-receiving cavity 252, therefore, is preferably configured to have a front opening 264 and a side opening 265 (shown on the left side). In this embodiment, the dryer's configuration and placement preferably allows the user to easily transition the hands from the wash basin to the dryer without dripping water onto the floor.


In one preferred embodiment, a mechanism 240 for preventing flooding and damage to the hand dryer motor is provided as well as to prevent water blown from a user's hands from falling to the floor and creating a slip hazard or unsanitary conditions. The mechanism 240 may include a flood relief rim 244 located on, for example, the left side of the hand-receiving cavity 252 at the opening 265. The flood relief rim 244 is provided below the lower portion's air outlet 256 and the nozzle tips 262b as shown. Thus, water flows over the flood relief rim 244 and not down the nozzle holes 264b and into the motor (not shown). In addition, another motor protection mechanism 240 may be the frustoconical lower nozzle tips 262b which resist the entry of water.


Other preferred embodiments of the hand dryer 250 may include a side wall 262 on the left side and an opening 265 on the right side. In yet another preferred embodiment, the hand dryer 250 may include both a left side, side wall and a right side, side wall.


The primary components of the inventive lavatory system including the dryer bottom wall, a back wall, and single side wall are preferably formed from a plastic and/or resin material. In one embodiment, the system components may be formed from a solid polymeric and/or a polymeric and stone material. In another embodiment, the system components may be manufactured from Terreon® or TerreonRE® which are low emitting, e.g., Greenguard™ materials and available from the Bradley Corporation of Wisconsin.


In another embodiment, as best shown in FIGS. 23 and 24, lavatory system 310 has another mechanism 340 to prevent flooding of the motor (not shown). For example, as shown a drainage hole 350 is present in a lower portion of the hand-receiving cavity 352 to preferably provide an integrated overflow drain. Hole 350 is connected to a drainage tube 360 and is located slightly below the plenum 365 and plenum outlet 355 and nozzle holes to prevent flooding of the motor. The drainage tube 360 connects to the drainpipe 347 located beneath the basin 320. Of course, as is know in the art, traditional drainage systems, like weep holes in the basin itself, may also be provided.


As described above with respect to FIG. 17, the top portion 53 of the upper plenum 142 has, in one embodiment, first, second, third, and fourth proximity sensors 103a, 103b, 103c, 103d, respectively, that work independently through triangulation to detect an object for drying, i.e., user's hand(s), in the hand-receiving cavity 52. In one embodiment of the lavatory system 10, as shown particularly in FIG. 7, the sensors 103a, 103b, 103c, 103d are positioned adjacent the leading edge of the top portion 53 of the upper plenum 142. As described above, the sensors use triangulation to detect an object for drying being presented to and present within the hand-receiving cavity 52. With additional reference to the schematic view in FIG. 25, the sensors 103a, 103b, 103c, 103d are configured and arranged to have non-overlapping fields of view (“FOV”) 266a, 266b, 266c, 266d, respectively. When a user's hand(s) are presented to the hand-receiving cavity 52, the left-most sensor 103a first detects the presentment and provides a corresponding electrical signal to the controller 78, which in turn provides a command signal to the hand dryer controller 99. As described above, in one preferred embodiment, operation of the hand dryer is delayed by a preset value, e.g., 400 ms, upon detection of a user's hand being presented to the hand-receiving cavity.


As shown in FIG. 5, the configuration of the hand-receiving cavity 52 allows a user to present his hand(s) for drying from the side opening 65 of the hand-receiving cavity 52, such as along arrow 267 of FIG. 1, or from the front opening 64 of the hand-receiving cavity 52, such as along arrow 268 of FIG. 9. In the case of the latter, depending upon the lateral position of the user's hand(s), any of the sensors may first detect the user's hand(s) and provide a corresponding activation signal, as described above. It has been found that when hand(s) are front-presented (e.g., along 268), as opposed to side-presented (e.g., along 267), the observed inherent motor delay that results from sampling, detection, and processing times is insufficient to avoid splashback onto the user. That is, a single motor delay based solely on side-presentment to the hand-receiving cavity can result in splashback onto the user when the user presents his hand(s) to the hand-receiving cavity 52 from the front.


Therefore, in accordance with another embodiment of the invention, one of two motor delays is selectively observed depending on how the user presents his hand(s) for drying. Referring now to the embodiment shown in schematic view in FIG. 26, the sensors 103a, 103b, 103c, 103d are arranged such that the FOV 266a for sensor 103a is rotated approximately 90 degrees from the FOVs 266b, 266c, 266d. In this regard, sensor 103a is arranged to only detect side-presentment along arrow 267 to the hand-receiving cavity 52. The FOVs 266b, 266c, 266d for the other sensors 103b, 103c, 103d can detect front-presentment along arrow 268 as well as detect a user's hand(s) within the hand-receiving cavity 52, as described above. As sensor 103a only detects side-presentment along arrow 267 to the hand-receiving cavity 52, actuation of the hand dryer motor 74 can be controlled based on which sensor detects presentment to the hand-receiving cavity.


For example, and in one preferred embodiment, if the first hand sensor 103 detects hand presentment to the hand-receiving cavity 52, the sensor 103a provides a corresponding electrical signal to the controller 78. The controller 78 includes software or firmware that distinguishes between an electrical signal being received from first sensor 103a versus the second, third, and fourth sensors 103b, 103c, 103d. With knowledge that the first object detection signal came from sensor 103a, the controller 78 provides hand dryer motor activation signal to the hand dryer controller 99. This motor activation signal results in the hand dryer motor being activated after a first programmed delay period, e.g., 0-300 ms. However, if any of the other sensors 103b, 103c, 103d provides a first detection signal to the controller 78, the hand dryer controller 99 causes operation of the hand dryer motor 74 after a second programmed delay period, e.g., 200-800 ms. The first and second delay periods are selected such that the second delay period preferably exceeds the first delay period. Thus, in one embodiment, operation of the hand dryer motor is delayed further if a user presents his hand(s) to the hand-receiving cavity 52 from the front. This allows more time for the user to move his hands deeper into the hand-receiving cavity 52 before the blower provides drying air to the hand-receiving cavity. Preferably, the drying airstreams are provided at approximately wrist level in the hand-receiving cavity 52, and observing a longer delay before commencing drying when hands are front-presented allows the user sufficient time to insert his hands to the wrist level position before air is injected into the cavity 52.


It is contemplated that more than one controller may be used to provide command signals to the hand dryer controller 99. For example, the first hand dryer sensor 103a may be coupled to a dedicated controller whereas the other sensors 103b, 103c, 103d communicate with a shared controller, similar to that shown in FIG. 21.


In accordance with an alternate embodiment of the present invention, the hand dryer 50 may include a second bank or set of sensors. These sensors are mounted along a side portion of the upper plenum and are designed to sense side-presentment 267 of a user's hand(s) to the hand-receiving cavity. The afore-described sensors 103a, 103b, 103c, 103d are mounted adjacent the front of the hand-receiving cavity. Preferably, the respective sets of sensors have mutually exclusive FOV so that side-presentment from opening 65 of a user's hand(s) is not detected by the front-facing sensors and front-presentment from opening 64 of the user's hand(s) is not detected by the side-facing sensors.


Each set of sensors is operative to provide activation commands to the motor to commence operation of the motor. However, the front-facing sensors, upon detecting an object for drying 166 within their FOV, instruct the motor to commence activation after observing a longer second delay period than that provided to the motor by the side-sensing sensors. In one embodiment, the longer second delay period falls in the range of approximately 200-800 ms whereas the shorter first delay period falls in the range of approximately 0-300 ms. Note that these values are merely exemplary, and the first and second delay periods are preferably selected such that the second delay period exceeds the first delay period.


In accordance with yet another embodiment of the present invention, a single sensor is used to detect side or front presentment of a user's hand(s) from openings 65 and 64 respectively into the hand-receiving cavity 52. In this embodiment, which is shown in FIG. 27, a single sensor 270 with a rotating FOV is positioned at a corner of the top portion 53 near the upper plenum 142. The single sensor 270 has a continuously rotating or wide FOV that travels across the area adjacent the side of the hand-receiving cavity 52, the front side of the hand-receiving cavity, and the within the hand-receiving cavity. As the FOV is rotated across the side and the front of the hand-receiving cavity, correlating the position of the FOV when the sensor 270 detects an object for drying can be used to determine if the user is presenting his hand(s) in a side-presentment or a front-presentment manner. For example, in one embodiment, the sensor 270 has a pulsating emitter and a detector. The emitter is configured to iteratively pulse an IR beam beside, in front of, and within the hand-receiving cavity. Based on which reflected pulse is detected by the detector, the controller 78, e.g., microcontroller, can determine the presentment position of the user's hand(s) and control the hand dryer motor controller 99 accordingly. It is contemplated that other types of means may be used to sweep the FOV of the sensor 270 across the drying zone 266.


In yet another embodiment that is similar to that described above with respect to FIG. 26, it is contemplated that the sensors are sequentially pulsed to determine the position of the user's hand(s).


It will also be appreciated that the present invention can be embodied in a method of controlling the drying operation of a hand dryer 50 based on the position at which a user presents his hand(s) to a drying cavity or chamber 52 having at least two points of entry, for example, the side opening of drying chamber 65 and the front opening of drying chamber 64. (See, e.g., FIGS. 5 and 6A). The first point of entry or ingress 65 is the side of the drying chamber 52 while the second point of entry or ingress 64 is the front of the drying chamber 52. In accordance with one embodiment of this method, as shown in FIG. 25, the method includes iteratively scanning a first detection zone 266a including near the first point of ingress 65, iteratively scanning a second detection zone 266b including near the second point of ingress 64, supplying drying air with a first delay if an object is detected in the first zone 266a, and supplying drying air with a second delay if an object is detected in the second zone 266b, wherein the second delay period is greater than the first delay period In one implementation, the first delay period is a value between zero and 300 ms whereas the second delay period is a value between 200 and 800 ms, and the first and second delay periods are selected such that the second delay period exceeds the first delay period.


It will be appreciated that infrared sensors for detecting the ingress and egress of hands to and from the front of drying chamber 64 and the side of drying chamber 65 are but one of a number of different object-detecting technologies that could be used to detect an object for drying 166 in the drying chamber 52. For example, it is contemplated that camera and image processing technology could be used.


Further, it is contemplated that the invention could be used with a lavatory system having a single dryer situated between a pair of wash basins. It is also contemplated that sensors remote from the hand dryer 50 could determine the direction of presentment. For example, sensors at or near the water faucet could detect motion of the hands after the water faucet has stopped dispensing water. If the hands are pulled away from the faucet, the hand dryer 50 could be caused to operate with a front-presentment (e.g., along 268) to the hand-drying cavity assumed. If the hands are moved sideways from the faucet, a side-presentment (e.g., along 267) to the hand-drying cavity could be presumed.


It is also noted that so-called “smart” technology could be incorporated into the lavatory system described herein to guide or sequence use of the various components of the lavatory system. For example, the lavatory system could be equipped with directional lights that guide (or at least remind) the user to apply soap and, after washing, slide his hands into the drying chamber. Similarly, it is contemplated that the various components could be selectively locked out to prevent simultaneous activation of two components. For instance, it may be undesirable to have the water faucet capable of being activated when the dryer is forcing air into the drying cavity. If the water faucet was dispensing water while the dryer was active, it could lead to undesirable splashing of the water. Additionally, locking out certain components or features of the lavatory system may also sequence use of the lavatory system. For example, water faucet and dryer operations may be locked out until the soap dispenser has been activated. In such a situation, the aforementioned lights or similar devices could be used to direct the user to first apply soap to his hands before watering or drying his hands. Such a system may be highly preferred in food-handling operations, such as restaurants.


Referring again to FIG. 16, in a preferred embodiment of the invention, a filter, i.e., HEPA filter 84, is provided within the motor housing 70 to filter the intake air. In a further embodiment, a filter sensor 272 is provided to monitor the condition of the filter 84, e.g., by analyzing air flow through the filter. In one embodiment, the filter sensor 272 is a differential pressure (or vacuum) transducer that is located between the filter 84 and the intake to the motor 74, such as in intake cavity 274. The transducer measures the difference in pressure between atmospheric pressure and the vacuum in the intake cavity 274. As such, the filter sensor 272 is also fluidly connected to a vent hose 276 that is vented to atmosphere. The filter sensor 272 is connected to logic (not shown) of the motor control 98 in a conventional manner such that operation of the motor 74 can be controlled based on the condition of the filter 84.


In one preferred method of use, one of four actions is taken based on the output of the filter sensor 272 and thus, preferably, the output of the filter sensor 272 is compared by the logic to potentially three different predefined levels. When the filter sensor 272 output is below a first vacuum level, as detected by the filter sensor 272, an indicator, e.g., light 278 (FIG. 1), is illuminated to indicate a “missing filter” condition has been detected and thus, signals a user or maintenance personnel that the filter 84 needs to be installed to prevent the ingress of foreign objects into the hand dryer apparatus. When filter sensor 272 output is between the first and a second vacuum level, no action is taken, thereby indicating that the filter 84 is operating properly. However, if the filter sensor 272 output reaches a second vacuum level, an indicator, e.g., light 278 (FIG. 1), is illuminated to indicate a “dirty filter” condition has been detected and, thus, signals a user or maintenance personnel that the filter 84 must be replaced. An audible alarm may also sound. At a third vacuum level, as detected by the filter sensor 272, the motor controller 98 can shut down and disable operation of the motor 74 to prevent damage to the motor 74 or other components of the dryer. Maintenance personnel will then know to replace the filter. In addition, if a non filter related obstruction occurs in the air intake system upstream of the air filter sensor 272 (e.g., bathroom tissue plugging an inlet), and causes the output of the air filter sensor 272 to exceed a predetermined vacuum level, the air filter sensor 272 can trigger a service requirement, indicate a blocked inlet condition, and/or disable operation of the motor 74. Because the air filter sensor 272 detects the operating characteristics of the air flow within the motor air intake, the sensor provides feedback on the actual condition of the air filter. It will be appreciated that the invention actively monitors the operability of the filter rather than relying upon a predetermined number of cycles to indicate that a filter service is required.


In an alternate embodiment, a small tube (not shown) has an inlet end that is in fluid communication with the intake cavity 274 and an outlet end that is vented to atmosphere. In this embodiment, the filter sensor 272 is fluidly connected to the tube. In this embodiment, it will be appreciated that the filter sensor 272 remotely monitors the pressure (vacuum) in the intake cavity.


While the preferred embodiments and best modes of utilizing the present invention have been disclosed above, other variations are also possible. For example, the materials, shape, and size of the components may be changed. Additionally, it is understood that a number of modifications may be made in keeping with the spirit of the system 10 of the present invention. For example, the system 10 may include features of the various embodiments set forth in PCT Publication Nos. WO2007/083092 and WO2007/015045 to Dyson, and US Publication Nos. US2008/0109956A1 published on May 15, 2008 and 2006/0185074 published on Aug. 24, 2006, all of which are expressly incorporated herein by reference. Further, a number of lavatory systems like the one shown in FIG. 1 can be mounted in a row or otherwise joined together as needed.


As described herein, a motor driven blower or fan is used to force air into the drying zone of the hand dryer. It is recognized that several types of motors may be used to drive operation of the blower or fan. For example, in one embodiment, the motor is a brushless motor having a nominal input of 120V at 60 Hz. It is understood that the motor could have other operating parameters and that the motor could be designed to be workable with various input voltages, i.e., 230V, such as that commonly found in Europe and Australia.


It is preferred that the brushless motor has a pulse width modulated speed control to switch the motor between ON and OFF. It is also preferred that the motor is thermally protected against over-heating, such as may result from a blocked inlet, locked rotor, or heightened ambient temperature.


The invention is not limited to a particular motor size but in one embodiment the motor provides 78 cfm of air at 2.8 psi. Preferably, the motor accelerates from zero rpm to operating speed in approximately 350 ms or less. It is also contemplated that different fan types (e.g., axial, bypass, centrifugal compressor, etc.) may be used. An axial or turbine (volute) type pump is also preferred but not required. It is preferred that the fan has either an axial or tangential discharge air flow. It is also preferred that heat from the motor is used to increase the temperature of the air fed to the drying chamber. In addition to heating the air, passing the air about the motor also provides thermal regulation of the motor.


Thus, it is specifically intended that the present invention not be limited to the embodiments and illustrations contained herein, but includes modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims.

Claims
  • 1. A lavatory system comprising: a wash basin with a back wall, a front wall, and side walls joining the back and front walls;a faucet operably connected to the wash basin;a hand dryer in fluid communication with the wash basin and including a hand-receiving cavity, a top portion with an air outlet, and a bottom portion with an air outlet;a first point of entry configured to receive a user's hands along the front wall of the wash basin such that when drying hands, the user presents hands to be dried into a front of the hand-receiving cavity and draws the hands out of the hand-receiving cavity back toward the front wall of the wash basin;a second point of entry configured to receive the user's hands between the side walls such that when drying hands, the user presents hands to be dried into a side of the hand-receiving cavity and draws the hands out of the hand-receiving cavity toward the front wall of the wash basin;a blower motor in fluid communication with the air outlets for blowing air through the air outlets; anda controller that activates the blower motor after observance of a first delay period of a predetermined time if an object to be dried is presented to the hand-receiving cavity at the first point of entry and activates the blower motor after observance of a second delay period of a predetermined time longer than the predetermined time of the first delay period if an object to be dried is presented to the hand-receiving cavity at the second point of entry.
  • 2. The lavatory system of claim 1 further comprising a first sensor that detects side-presentment of the object to be dried to the hand dryer and a second sensor that detects front-presentment of the object to he dried to the hand dryer.
  • 3. The lavatory system of claim 1 further comprising a soap dispenser having a spout in fluid communication with the wash basin.
  • 4. The lavatory system of claim 1 wherein the first delay period is between zero and 300 milliseconds; and wherein the second delay period is between 200 and 800 milliseconds.
  • 5. A lavatory system comprising: a wash basin with side walls along a front and sides of the wash basin and a backsplash along a back side of the wash basin;a hand dryer in fluid communication with the wash basin and including a hand-receiving cavity, a generally horizontal top portion extending from the backsplash above the wash basin with a first outlet port, and a bottom portion extending from the wash basin with a second outlet port, the hand-receiving cavity having a front opening point of entry and a side opening point of entry;a blower motor for blowing air through the outlet ports in fluid communication with the first and second outlet ports with a first and second hose, respectively;a faucet extending from the backsplash between the side walls;a controller that activates the blower motor after an object is placed between the outlet ports, wherein the contoller activates the blower motor after observance of a first delay period if an object to be dried is presented to the front opening point of entry and a second delay period if an object to be dried is presented to the side opening point of entry, wherein the second period of time is greater than the first period of time.
  • 6. The lavatory system of claim 5, wherein the first hose is behind the back splash and a back wall of the hand-receiving cavity and wherein the second hose is underneath the basin.
  • 7. The lavatory system of claim 5, further comprising a plurality of nozzles on each one of the first and second outlet ports holes wherein the nozzles on the first outlet port and second outlet port are vertically aligned and at different angles from the horizontal plane with one another such that an s-shaped airflow pattern forms from air exiting the nozzles.
  • 8. The lavatory system of claim 5, further comprising a plurality of nozzles on each one of the first and second outlet ports holes wherein the nozzles on the first outlet port and second outlet port are vertically and horizontally aligned on opposing sides of the hand-receiving cavity.
  • 9. The lavatory system of claim 5, wherein the top portion of the hand dryer includes the first hose joining the blower motor to the first outlet port and the bottom portion includes the second hose joining the blower motor to the second outlet port.
  • 10. The lavatory system of claim 5, wherein the hand dryer is situated between the wash basin and a second wash basin.
  • 11. The lavatory system of claim 5, further comprising a display screen configured to display at least one of a blower motor run time, a blower motor cycles, and a time between cycles.
  • 12. A lavatory system comprising: a wash basin with side walls along a front and sides of the wash basin and a backsplash along a back side of the wash basin;a hand dryer in fluid communication with the wash basin and including a hand-receiving cavity, a generally horizontal top portion extending from the backsplash above the wash basin with a first outlet port, and a bottom portion extending from the wash basin with a second outlet port, the hand-receiving cavity having first and second points of entry;a blower motor in fluid communication with the first and second outlet ports for blowing air through the outlet ports;a faucet extending from the backsplash between the side walls; anda controller communicatively linked to a first and a second proximity sensor that activates the blower motor after an object is placed between the first and second outlet ports, wherein the controller delays the start of the blower motor when the object is presented in the second point of entry, and wherein the blower motor is started without a delay when the object is presented in the first point of entry; andwherein the first point of entry is defined generally at a side of the hand-receiving cavity and the second point of entry is defined at a front of the hand-receiving cavity.
  • 13. The lavatory system of claim 12, further comprising: a generally horizontal surface on the bottom portion that is level with an upper edge of the side walls; anda vertically sloped surface on the bottom portion integrated with the vertically sloped portion, wherein the second outlet port is located on the vertically sloped portion.
  • 14. The lavatory system of claim 12, further comprising an internal power circuit configured to adapt an amperage and voltage available to the blower motor to a functional amperage and voltage required by the blower motor.
  • 15. The lavatory system of claim 12, wherein the second delay period exceeds the first delay period.
  • 16. The lavatory system of claim 12, further comprising: a generally horizontal surface on the bottom portion that is level with an upper edge of the side walls;a vertically sloped surface on the bottom portion integrated with the vertically sloped portion, wherein the second outlet port is located on the vertically sloped portion; andan internal power circuit configured to adapt an amperage and voltage available to the blower motor to a functional amperage and voltage required by the blower motor.
  • 17. The lavatory system of claim 12, further comprising: a generally horizontal surface on the bottom portion that is level with an upper edge of the side walls;a vertically sloped surface on the bottom portion integrated with the vertically sloped portion, wherein the second outlet port is located on the vertically sloped portion; andwherein the controller commences activation of a drying operation after a first delay period if the first proximity sensor first detects the object for drying and commences activation of a drying operation after a second delay period if the second proximity sensor first detects the object for drying and wherein the second delay period exceeds the first delay period.
US Referenced Citations (798)
Number Name Date Kind
540235 Clifford et al. Jun 1895 A
D30136 Eckerson Feb 1899 S
D35574 Thielke Jan 1902 S
D36574 Zipp Oct 1903 S
D36575 Zipp Oct 1903 S
D36595 Peet Oct 1903 S
937509 Carpenter Oct 1909 A
1069972 Metzaer Aug 1913 A
1323398 Leland Dec 1919 A
1419712 Bassette Jun 1922 A
1423800 Hibbard et al. Jul 1922 A
1494883 Bassette et al. May 1924 A
1578047 Lum Mar 1926 A
1579705 Hewitt Apr 1926 A
1616313 Farmer Feb 1927 A
1659851 Brewington Feb 1928 A
1750094 Emmrich Mar 1930 A
1765915 Haase Jun 1930 A
D81754 Mabee Aug 1930 S
1816055 Pfeifer Jul 1931 A
2008183 McCord Feb 1934 A
1961179 Tinkham Jun 1934 A
2027605 McCord et al. Jan 1936 A
2041352 Jordan May 1936 A
D100310 Blu Jul 1936 S
2130196 Sakier Sep 1938 A
2192383 Krolop Mar 1940 A
2202107 Korn May 1940 A
2281370 Morrison et al. Apr 1942 A
2328129 Earle Aug 1943 A
2438762 McLeckie Mar 1948 A
2470187 Price May 1949 A
2479571 Hewitt Aug 1949 A
2498699 Mullett et al. Feb 1950 A
2504740 Siegel Apr 1950 A
2521769 Arcularius Sep 1950 A
2537821 Fodor Jan 1951 A
2591669 Bucknell et al. Apr 1952 A
2606274 Spierer Aug 1952 A
RE23674 Spierer et al. Jun 1953 E
2641679 Brodbeck Jun 1953 A
2646629 Clemens Jul 1953 A
D170204 Long Aug 1953 S
2651705 Clemens Sep 1953 A
2666837 Brodbeck Jan 1954 A
2677041 Oliver et al. Apr 1954 A
2698894 Stein Jan 1955 A
2714151 Becker Jul 1955 A
2761222 Bennett Sep 1956 A
2767407 Weiss Oct 1956 A
2777934 Falkenthal Jan 1957 A
2826763 Bass Mar 1958 A
2837835 Hewitt et al. Jun 1958 A
2853591 Fine Sep 1958 A
2853592 Gravet Sep 1958 A
2859535 Carlson Nov 1958 A
2906627 Payton et al. Sep 1959 A
2908019 Lyon, Jr. Oct 1959 A
2965906 Mullett et al. Dec 1960 A
2977455 Murphy Mar 1961 A
3059815 Parsons, Jr. Oct 1962 A
3065473 Sporck et al. Nov 1962 A
3076887 Bulow Feb 1963 A
3128161 Hudon Apr 1964 A
D201493 Sundberg et al. Jun 1965 S
3220424 Nelson Nov 1965 A
3305938 Arthur Feb 1967 A
D210131 Rourke Feb 1968 S
3384977 Rosenberg May 1968 A
3409995 Greenwood et al. Nov 1968 A
3415278 Yamamoto et al. Dec 1968 A
3449838 Chancellor Jun 1969 A
3480787 Johansen Nov 1969 A
3487477 Classen Jan 1970 A
3491381 Catheart Jan 1970 A
3502384 Gipson Mar 1970 A
3505692 Forbes Apr 1970 A
3523305 Zom Aug 1970 A
3536294 Rodriguez Oct 1970 A
3551919 Forbes Jan 1971 A
3556158 Schneider Jan 1971 A
3575583 Brown Apr 1971 A
3575640 Ishikawa Apr 1971 A
3576277 Blackmon Apr 1971 A
3585652 Forbes et al. Jun 1971 A
3585653 Forbes et al. Jun 1971 A
3587177 Overly et al. Jun 1971 A
3588038 Tanaka Jun 1971 A
3603002 Spierer Sep 1971 A
3613124 Ichimori et al. Oct 1971 A
3621199 Goldstein Nov 1971 A
3639920 Griffin et al. Feb 1972 A
3643346 Lester Feb 1972 A
3699984 Davis Oct 1972 A
3724001 Ichimori et al. Apr 1973 A
3744149 Helbling Jul 1973 A
3746035 Singer Jul 1973 A
3757806 Bhaskar et al. Sep 1973 A
3817651 Law et al. Jun 1974 A
3878621 Duerre Apr 1975 A
3904167 Touch et al. Sep 1975 A
3906795 Kask Sep 1975 A
3918987 Kopfer Nov 1975 A
D238075 Harris Dec 1975 S
3975781 Klimboff et al. Aug 1976 A
3992730 Davis Nov 1976 A
4072157 Wines, Jr. et al. Feb 1978 A
4120180 Jedora Oct 1978 A
4144596 MacFarlane et al. Mar 1979 A
4145602 Lee Mar 1979 A
4145769 MacFarlane et al. Mar 1979 A
D251795 McCann May 1979 S
4193209 Lovison et al. Mar 1980 A
4195416 Hall Apr 1980 A
4219367 Cary, Jr. et al. Aug 1980 A
4239555 Scharlack et al. Dec 1980 A
4256133 Coward et al. Mar 1981 A
D260678 Hiller Sep 1981 S
4295233 Hinkel et al. Oct 1981 A
4309781 Lissau Jan 1982 A
4336619 Hinkel et al. Jun 1982 A
4375847 Leotta et al. Mar 1983 A
4383377 Crafton May 1983 A
4398310 Lienhard Aug 1983 A
4402095 Pepper Sep 1983 A
4402331 Taldo et al. Sep 1983 A
D272263 Lienhard Jan 1984 S
4429422 Wareham Feb 1984 A
4453286 Wieland Jun 1984 A
4461439 Rose Jul 1984 A
4497999 Postbeschild Feb 1985 A
4509543 Livingston et al. Apr 1985 A
D279404 Hiller Jun 1985 S
4520516 Parsons Jun 1985 A
4541563 Uetsuhara Sep 1985 A
4570823 Arabian et al. Feb 1986 A
4594797 Houck Jun 1986 A
4598726 Pepper Jul 1986 A
4604764 Enzo Aug 1986 A
4606085 Davies Aug 1986 A
4610165 Duffy et al. Sep 1986 A
4611768 Voss et al. Sep 1986 A
4624017 Foletta Nov 1986 A
4637254 Dyben et al. Jan 1987 A
4642821 Zanuso et al. Feb 1987 A
4642909 Garcia Feb 1987 A
4644256 Farias et al. Feb 1987 A
4651777 Hardman Mar 1987 A
4653201 Seaman Mar 1987 A
4670010 Dragone Jun 1987 A
4671121 Schieler Jun 1987 A
4681141 Wang Jul 1987 A
4682628 Hill Jul 1987 A
4685222 Houck Aug 1987 A
4688277 Kakinoki et al. Aug 1987 A
4688585 Vetter Aug 1987 A
4700049 Rubin Oct 1987 A
4702107 Guerrini et al. Oct 1987 A
4707867 Kawabe et al. Nov 1987 A
4707933 Keck et al. Nov 1987 A
4709728 Ying-Chung Dec 1987 A
4716605 Shepherd et al. Jan 1988 A
4722372 Hoffman et al. Feb 1988 A
4735002 Rath Apr 1988 A
4735357 Gregory et al. Apr 1988 A
4741363 Hu May 1988 A
4742583 Yoshida et al. May 1988 A
4742836 Buehler May 1988 A
4744515 Watanabe May 1988 A
4746090 Hamilton May 1988 A
4762273 Gregory et al. Aug 1988 A
4765003 Chang Aug 1988 A
4767922 Stauffer Aug 1988 A
4769863 Tegg et al. Sep 1988 A
4780595 Alban Oct 1988 A
4785162 Kuo Nov 1988 A
4823414 Piersimoni et al. Apr 1989 A
4826129 Fong et al. May 1989 A
4839039 Parsons et al. Jun 1989 A
4848599 Kano et al. Jul 1989 A
4852802 Iggulden et al. Aug 1989 A
4856122 Pilolla Aug 1989 A
4857112 Franninge Aug 1989 A
4857705 Blevins Aug 1989 A
4872485 Laverty, Jr. Oct 1989 A
4876435 Hawkins Oct 1989 A
4882467 Dimick Nov 1989 A
4883749 Roberts et al. Nov 1989 A
4889315 Imanaga Dec 1989 A
4894874 Wilson Jan 1990 A
4909580 Mitchell Mar 1990 A
4914758 Shaw Apr 1990 A
4914833 Pilolla et al. Apr 1990 A
4915347 Iqbal et al. Apr 1990 A
4916382 Kent Apr 1990 A
4916613 Lange et al. Apr 1990 A
4921129 Jones et al. May 1990 A
4921131 Binderbauer et al. May 1990 A
4921211 Novak et al. May 1990 A
4940298 Jackson et al. Jul 1990 A
4941219 Van Marcke Jul 1990 A
4942631 Rosa Jul 1990 A
4948090 Chen Aug 1990 A
4953236 Lee et al. Sep 1990 A
4954179 Franninge Sep 1990 A
4955535 Tsutsui et al. Sep 1990 A
4959603 Yamamoto et al. Sep 1990 A
4963780 Hochstrasser Oct 1990 A
4967425 Kawamura et al. Nov 1990 A
4971106 Tsutsui et al. Nov 1990 A
4980474 Hayasjo et al. Dec 1990 A
4980574 Cirrito Dec 1990 A
4984314 Weigert Jan 1991 A
4986221 Shaw Jan 1991 A
4989755 Shiau Feb 1991 A
4995585 Gruber et al. Feb 1991 A
4998673 Pilolla Mar 1991 A
5000044 Duffy et al. Mar 1991 A
5008963 Stein Apr 1991 A
5018550 Burdorff May 1991 A
5018885 Uggetti May 1991 A
5025516 Wilson Jun 1991 A
5031258 Shaw Jul 1991 A
5031337 Pilolla et al. Jul 1991 A
5033508 Laverty, Jr. Jul 1991 A
5033715 Chiang et al. Jul 1991 A
5060323 Shaw Oct 1991 A
5062164 Lee et al. Nov 1991 A
5063622 Tsutsui et al. Nov 1991 A
5063955 Sakakibara Nov 1991 A
5072618 Taylor et al. Dec 1991 A
5074322 Jaw Dec 1991 A
5074520 Lee et al. Dec 1991 A
5076424 Nakamura Dec 1991 A
5080324 Chi Jan 1992 A
RE33810 Strieter Feb 1992 E
5084984 Duchoud et al. Feb 1992 A
5086526 Van Marcke Feb 1992 A
5092560 Chen Mar 1992 A
5095941 Betz Mar 1992 A
5099587 Jarosch Mar 1992 A
5111594 Allen May 1992 A
D326711 Lotito et al. Jun 1992 S
5117693 Duksa Jun 1992 A
5133095 Shiba et al. Jul 1992 A
5144757 Sasso Sep 1992 A
5146695 Yang Sep 1992 A
5158114 Botsolas Oct 1992 A
5163234 Tsukamoto et al. Nov 1992 A
5169118 Whiteside Dec 1992 A
5170944 Shirai Dec 1992 A
D332194 Hines Jan 1993 S
D332195 Hines Jan 1993 S
D332365 Hines Jan 1993 S
D332366 Hines Jan 1993 S
D332369 Hanna et al. Jan 1993 S
D332370 Hanna et al. Jan 1993 S
D332542 Hines Jan 1993 S
D332679 Hines Jan 1993 S
D332849 Hines Jan 1993 S
5175892 Shaw Jan 1993 A
5177879 Muta Jan 1993 A
5181328 Bouverie Jan 1993 A
D332889 Hines Feb 1993 S
5184642 Powell Feb 1993 A
5186360 Mease et al. Feb 1993 A
D334266 Hines Mar 1993 S
5193563 Melech Mar 1993 A
5199116 Fischer Apr 1993 A
5199118 Cole et al. Apr 1993 A
5199188 Franz Apr 1993 A
5202666 Knippscheer Apr 1993 A
D336572 Gunderson et al. Jun 1993 S
5216251 Matschke Jun 1993 A
5217035 Van Marcke Jun 1993 A
5224685 Chiang et al. Jul 1993 A
5226629 Millman et al. Jul 1993 A
5230109 Zaccai et al. Jul 1993 A
D338361 Hines Aug 1993 S
5239610 Shao Aug 1993 A
5243717 Yasuo Sep 1993 A
D340374 Hines Oct 1993 S
D340375 Hines Oct 1993 S
5251872 Kodaira Oct 1993 A
5253376 Fait Oct 1993 A
5255822 Mease et al. Oct 1993 A
D341724 Hines Nov 1993 S
5257423 Jacobsen et al. Nov 1993 A
5259410 Trueb et al. Nov 1993 A
5265288 Allison Nov 1993 A
5265628 Sage et al. Nov 1993 A
D342175 Hines Dec 1993 S
D342177 Hanna et al. Dec 1993 S
5267475 Gaston Dec 1993 A
5269071 Hamabe et al. Dec 1993 A
5272918 Gaston et al. Dec 1993 A
D342992 Robertson Jan 1994 S
5280679 Edelman Jan 1994 A
5282812 Suarez, Jr. Feb 1994 A
D344830 Carter et al. Mar 1994 S
5341839 Kobayashi et al. Aug 1994 A
5347864 Senghaas et al. Sep 1994 A
5351347 Kunkel Oct 1994 A
5351417 Rubin Oct 1994 A
5362026 Kobayashi et al. Nov 1994 A
5363517 Botsolas Nov 1994 A
5367442 Frost et al. Nov 1994 A
5369818 Barnum et al. Dec 1994 A
5377424 Albanes Jan 1995 A
5377427 Mashata Jan 1995 A
D355949 Laughton Feb 1995 S
5397099 Pilolla Mar 1995 A
5404419 Artis, Jr. Apr 1995 A
5412816 Paterson et al. May 1995 A
5412818 Chen May 1995 A
5426271 Clark et al. Jun 1995 A
D361372 Enthoven Aug 1995 S
5438714 Shaw Aug 1995 A
5438763 Yang Aug 1995 A
5442867 Robinson Aug 1995 A
D362901 Dannenberg et al. Oct 1995 S
5459944 Tatsutani et al. Oct 1995 A
D364675 Tebbe Nov 1995 S
5477984 Sayama et al. Dec 1995 A
5482250 Kodaira Jan 1996 A
5497135 Wisskirchen et al. Mar 1996 A
5504950 Natalizia et al. Apr 1996 A
5514346 Fujita May 1996 A
5522411 Johnson Jun 1996 A
5548119 Nortier Aug 1996 A
5555912 Saadi et al. Sep 1996 A
5561871 Laughton Oct 1996 A
5566404 Laughton Oct 1996 A
5570869 Diaz et al. Nov 1996 A
5586746 Humpert et al. Dec 1996 A
5588636 Eichholz et al. Dec 1996 A
5595216 Pilolla Jan 1997 A
5610591 Gallagher Mar 1997 A
5611093 Barnum et al. Mar 1997 A
5611517 Saadi et al. Mar 1997 A
5625908 Shaw May 1997 A
5627375 Hsieh May 1997 A
5640781 Carson Jun 1997 A
5642462 Huff Jun 1997 A
D380529 Laughton Jul 1997 S
5651189 Coykendall et al. Jul 1997 A
5651384 Rudrich Jul 1997 A
5670945 Applonie Sep 1997 A
D387144 Flaherty Dec 1997 S
5694653 Harald Dec 1997 A
5699833 Tsataros Dec 1997 A
5701929 Helmsderfer Dec 1997 A
5727579 Chardack Mar 1998 A
5730165 Philipp Mar 1998 A
D393700 Trueb et al. Apr 1998 S
5743511 Eichholz et al. Apr 1998 A
D394495 Hauser, II May 1998 S
5758688 Hamanaka et al. Jun 1998 A
5765242 Marciano Jun 1998 A
5769120 Laverty, Jr. et al. Jun 1998 A
5781942 Allen et al. Jul 1998 A
5782382 Van Marcke Jul 1998 A
D398969 Barnum et al. Sep 1998 S
5813047 Teichroeb Sep 1998 A
5819335 Hennessy Oct 1998 A
5819336 Gilliam et al. Oct 1998 A
5829072 Hirsch et al. Nov 1998 A
D402358 Bonnell Dec 1998 S
5855356 Fait Jan 1999 A
5868311 Cretu-Petra Feb 1999 A
5873178 Johnson Feb 1999 A
5873179 Gregory et al. Feb 1999 A
5875562 Fogarty Mar 1999 A
5893387 Paterson et al. Apr 1999 A
5915417 Diaz et al. Jun 1999 A
5915851 Wattrick et al. Jun 1999 A
D411876 Hafner et al. Jul 1999 S
5918855 Hamanaka et al. Jul 1999 A
5924148 Flowers, Sr. Jul 1999 A
5943712 Van Marcke Aug 1999 A
5943713 Paterson et al. Aug 1999 A
5945068 Ferone Aug 1999 A
5945913 Gallagher Aug 1999 A
5950983 Jahrling Sep 1999 A
5954069 Foster Sep 1999 A
5961095 Schrott Oct 1999 A
5966753 Gauthier et al. Oct 1999 A
5972126 Fernie Oct 1999 A
5974685 Hironaka Nov 1999 A
5979500 Jahrling et al. Nov 1999 A
5984262 Parsons et al. Nov 1999 A
5988588 Allen et al. Nov 1999 A
5992430 Chardack et al. Nov 1999 A
6000429 Van Marcke Dec 1999 A
6003170 Humpert et al. Dec 1999 A
6006388 Young Dec 1999 A
6006784 Tsutsui et al. Dec 1999 A
D420727 Hundley Feb 2000 S
6018885 Hill Feb 2000 A
6029292 Leiferman et al. Feb 2000 A
6029293 Paterson et al. Feb 2000 A
6038786 Aisenberg et al. Mar 2000 A
D422346 Svendsen Apr 2000 S
6056261 Aparicio et al. May 2000 A
6059192 Zosimadis May 2000 A
6067673 Paese et al. May 2000 A
D428477 O'Connell et al. Jul 2000 S
6082407 Paterson et al. Jul 2000 A
6089086 Swindler et al. Jul 2000 A
6110292 Jewett et al. Aug 2000 A
D431288 Helmsderfer Sep 2000 S
6119285 Kim Sep 2000 A
D433109 Wilke et al. Oct 2000 S
6125482 Foster Oct 2000 A
6127671 Parsons et al. Oct 2000 A
6128826 Robinson Oct 2000 A
6131587 Chardack et al. Oct 2000 A
6142342 Lewis Nov 2000 A
6161227 Bargenquast Dec 2000 A
6161814 Jahrling Dec 2000 A
D435893 Helmsderfer Jan 2001 S
6178572 Van Marcke Jan 2001 B1
6185838 Moore Feb 2001 B1
6189163 Van Marcke Feb 2001 B1
6189230 Huen Feb 2001 B1
6192530 Dai Feb 2001 B1
6199428 Estevez-Garcia et al. Mar 2001 B1
6202980 Vincent et al. Mar 2001 B1
6206340 Paese et al. Mar 2001 B1
6209392 Rapala Apr 2001 B1
6212707 Thompson et al. Apr 2001 B1
6216534 Ross, Jr. et al. Apr 2001 B1
6219857 Wu Apr 2001 B1
6219859 Derakhshan Apr 2001 B1
6236317 Cohen et al. May 2001 B1
6250601 Kolar et al. Jun 2001 B1
6253609 Ross, Jr. et al. Jul 2001 B1
6253611 Varga et al. Jul 2001 B1
6257264 Sturman et al. Jul 2001 B1
6267007 Gunther Jul 2001 B1
D446664 Petri Aug 2001 S
D447224 Barnum et al. Aug 2001 S
6269695 Cesternino et al. Aug 2001 B1
6273394 Vincent et al. Aug 2001 B1
6279179 Register Aug 2001 B1
6279587 Yamamoto Aug 2001 B1
6282812 Wee et al. Sep 2001 B1
6286153 Keller Sep 2001 B1
6289728 Wilkins Sep 2001 B1
6294786 Marcichow et al. Sep 2001 B1
6295410 Helms et al. Sep 2001 B1
D448585 Petri Oct 2001 S
6298502 Brown Oct 2001 B1
6317717 Lindsey et al. Nov 2001 B1
6321785 Bergmann Nov 2001 B1
6322005 Kern et al. Nov 2001 B1
6340032 Zosimadis Jan 2002 B1
6341389 Philipps-Liebich et al. Jan 2002 B2
D453882 Petri Feb 2002 S
6349484 Cohen Feb 2002 B1
6351866 Bragulla Mar 2002 B1
6363549 Humpert et al. Apr 2002 B2
6370951 Kerchaert et al. Apr 2002 B1
6386390 Tinker May 2002 B1
6390125 Pawelzik et al. May 2002 B2
6393634 Kodaira et al. May 2002 B1
6401274 Brown Jun 2002 B1
6408881 Lorenzelli et al. Jun 2002 B2
6418788 Articolo Jul 2002 B2
6426701 Levy et al. Jul 2002 B1
6431189 Deibert Aug 2002 B1
D462195 Wang Sep 2002 S
RE37888 Cretu-Petra Oct 2002 E
6467514 Korst et al. Oct 2002 B1
6467651 Muderlak et al. Oct 2002 B1
6481040 McIntyre Nov 2002 B1
6481634 Zosimadis Nov 2002 B1
6484965 Reaves Nov 2002 B1
6508121 Eck Jan 2003 B2
6523193 Saraya Feb 2003 B2
6523404 Murphy et al. Feb 2003 B1
6568655 Paese et al. May 2003 B2
6572207 Hase et al. Jun 2003 B2
D477060 Loberger et al. Jul 2003 S
6598245 Nishioka Jul 2003 B2
6619320 Parsons Sep 2003 B2
6624606 Kushida et al. Sep 2003 B2
6639209 Patterson et al. Oct 2003 B1
D481826 Martinuzzo et al. Nov 2003 S
6641002 Gerenraich et al. Nov 2003 B2
6643865 Bork et al. Nov 2003 B2
6651851 Muderlak et al. Nov 2003 B2
D483152 Martinuzzo et al. Dec 2003 S
6658934 Housey et al. Dec 2003 B1
D484958 Loberger et al. Jan 2004 S
6671890 Nishioka Jan 2004 B2
6671898 Eggenberger et al. Jan 2004 B1
6679285 Pablo Jan 2004 B2
6691340 Honda et al. Feb 2004 B2
6691724 Ford Feb 2004 B2
6711949 Sorenson Mar 2004 B1
6711950 Yamaura et al. Mar 2004 B1
6715730 Ehr Apr 2004 B2
6766589 Bory et al. Jul 2004 B1
6769197 Tai Aug 2004 B1
6769443 Bush Aug 2004 B2
6770869 Patterson et al. Aug 2004 B2
D496450 Loberger et al. Sep 2004 S
6789197 Saito Sep 2004 B1
6812657 Raimondi Nov 2004 B2
6827294 Fan et al. Dec 2004 B1
6843079 Hird Jan 2005 B2
6857314 Ohhashi et al. Feb 2005 B2
6871541 Weisse Mar 2005 B2
6882278 Winings et al. Apr 2005 B2
6883563 Smith Apr 2005 B2
D507634 Loberger et al. Jul 2005 S
6912864 Roche et al. Jul 2005 B2
6915690 Okada et al. Jul 2005 B2
6922144 Bulin et al. Jul 2005 B2
D508117 Loberger et al. Aug 2005 S
6922912 Phillips Aug 2005 B2
6928235 Pollack Aug 2005 B2
6929150 Muderlak et al. Aug 2005 B2
D509577 Loberger et al. Sep 2005 S
6950606 Logan et al. Sep 2005 B2
D511205 Loberger et al. Nov 2005 S
D511821 Loberger et al. Nov 2005 S
6962005 Khosropour et al. Nov 2005 B1
6962168 McDaniel et al. Nov 2005 B2
6964405 Marcichow et al. Nov 2005 B2
6966334 Bolster Nov 2005 B2
6968860 Haenlein et al. Nov 2005 B1
D512648 Smith et al. Dec 2005 S
6980126 Fournier Dec 2005 B2
6986171 Perrin Jan 2006 B1
6993968 Kogure Feb 2006 B2
6996863 Kaneko Feb 2006 B2
7007318 Bork et al. Mar 2006 B1
7014166 Wang Mar 2006 B1
7018473 Shadrach, III Mar 2006 B2
7025227 Oliver et al. Apr 2006 B2
7039301 Aisenberg et al. May 2006 B1
7039963 Loberger et al. May 2006 B2
7079037 Ross, Jr. et al. Jul 2006 B2
D526394 Loberger et al. Aug 2006 S
D527085 Loberger et al. Aug 2006 S
7082828 Wilkins Aug 2006 B1
7093485 Newman et al. Aug 2006 B2
D527809 Loberger et al. Sep 2006 S
7104519 O'Maley et al. Sep 2006 B2
7107631 Lang et al. Sep 2006 B2
7114510 Peters et al. Oct 2006 B2
7150293 Jonte Dec 2006 B2
7165450 Jamnia et al. Jan 2007 B2
7174577 Jost et al. Feb 2007 B2
D537927 Loberger et al. Mar 2007 S
D538898 Trepanier Mar 2007 S
D539400 Loberger et al. Mar 2007 S
7191484 Dawe Mar 2007 B2
7191920 Boll et al. Mar 2007 B2
7198175 Ophardt Apr 2007 B2
7201052 Lee Apr 2007 B2
D542474 Churchill et al. May 2007 S
7219686 Schmitz et al. May 2007 B2
7228874 Bolderheij et al. Jun 2007 B2
7228984 Tack et al. Jun 2007 B2
7232111 McDaniel et al. Jun 2007 B2
7242307 LeBlond et al. Jul 2007 B1
7271728 Taylor et al. Sep 2007 B2
7278624 Iott et al. Oct 2007 B2
7296765 Rodrian Nov 2007 B2
7305722 Sha et al. Dec 2007 B2
7315165 Kleinen et al. Jan 2008 B2
7318949 Shadrach, III Jan 2008 B2
7320146 Nortier et al. Jan 2008 B2
D561315 Loberger et al. Feb 2008 S
7343799 Nagakura et al. Mar 2008 B2
7350245 Giagni Apr 2008 B2
7350413 Nagakura et al. Apr 2008 B2
7364053 Ophardt Apr 2008 B2
7377163 Miyagawa May 2008 B2
7396000 Parsons et al. Jul 2008 B2
7406722 Fukuizumi et al. Aug 2008 B2
7409860 Ferreira et al. Aug 2008 B2
7437833 Sato et al. Oct 2008 B2
7443305 Verdiramo Oct 2008 B2
7451894 Ophardt Nov 2008 B2
7455197 Ophardt Nov 2008 B2
7458261 Miyagawa Dec 2008 B2
7464418 Seggio et al. Dec 2008 B2
7467550 Betz, et al. Dec 2008 B2
7471883 Seutter et al. Dec 2008 B2
7472433 Rodenbeck et al. Jan 2009 B2
7477148 Lynn et al. Jan 2009 B2
7484409 Dykstra et al. Feb 2009 B2
D588676 Loberger et al. Mar 2009 S
7516939 Bailey Apr 2009 B2
D591838 Coleman May 2009 S
7527174 Meehan et al. May 2009 B2
7530269 Newman et al. May 2009 B2
7533787 Muderlak et al. May 2009 B2
7537195 McDaniel et al. May 2009 B2
7555209 Pradas Diez et al. Jun 2009 B2
7588168 Bagwell et al. Sep 2009 B2
7596883 Kameishi Oct 2009 B2
7597122 Smith Oct 2009 B1
7607442 Barnhill et al. Oct 2009 B2
7607443 Barnhill et al. Oct 2009 B2
7614096 Vincent Nov 2009 B2
7614160 Kameishi et al. Nov 2009 B2
7617830 Barnhill et al. Nov 2009 B2
7627909 Esche Dec 2009 B2
7631372 Marty et al. Dec 2009 B2
7641173 Goodman Jan 2010 B2
7641740 Barnhill et al. Jan 2010 B2
7650653 Johnson et al. Jan 2010 B2
7651068 Bailey Jan 2010 B2
D610242 Loberger et al. Feb 2010 S
7657162 Itoigawa et al. Feb 2010 B2
7659824 Prodanovich et al. Feb 2010 B2
7681447 Nagakura et al. Mar 2010 B2
7682464 Glenn et al. Mar 2010 B2
D614273 Loberger et al. Apr 2010 S
7690395 Jonte et al. Apr 2010 B2
7690623 Parsons et al. Apr 2010 B2
7698770 Barnhill et al. Apr 2010 B2
7701164 Clothier et al. Apr 2010 B2
7721602 Benner et al. May 2010 B2
7726334 Ross, Jr. et al. Jun 2010 B2
7731154 Parsons et al. Jun 2010 B2
7743438 Chen Jun 2010 B2
7743782 Jost Jun 2010 B2
7750594 Clothier et al. Jul 2010 B2
7754021 Barnhill et al. Jul 2010 B2
7754022 Barnhill et al. Jul 2010 B2
7757700 Barnhill et al. Jul 2010 B2
7758701 Barnhill et al. Jul 2010 B2
7766026 Boey Aug 2010 B2
7766194 Boll et al. Aug 2010 B2
7774953 Duran Aug 2010 B1
7784481 Kunkel Aug 2010 B2
7786628 Childe et al. Aug 2010 B2
7789095 Barnhill et al. Sep 2010 B2
7797769 Ozenick Sep 2010 B2
7804409 Munro et al. Sep 2010 B2
D625792 Rundberg et al. Oct 2010 S
7812598 Yasuda et al. Oct 2010 B2
7814582 Reddy et al. Oct 2010 B2
7815134 Hohl Oct 2010 B2
7818083 Glenn et al. Oct 2010 B2
7819136 Eddy Oct 2010 B1
D628280 Loberger et al. Nov 2010 S
7825564 Croft et al. Nov 2010 B2
RE42005 Jost et al. Dec 2010 E
D629877 Rundberg et al. Dec 2010 S
7856736 Churchill et al. Dec 2010 B2
7860671 LaCaze Dec 2010 B1
D633992 Rundberg et al. Mar 2011 S
D637350 Kato et al. May 2011 S
7944116 Causier May 2011 B2
7946055 Churchill et al. May 2011 B2
7971368 Fukaya et al. Jul 2011 B2
8037619 Liu Oct 2011 B2
8064756 Liu Nov 2011 B2
8128465 Collins Mar 2012 B2
8155508 Caine et al. Apr 2012 B2
8201344 Sawabe et al. Jun 2012 B2
20010011389 Philipps-Liebich et al. Aug 2001 A1
20010011390 Humpert et al. Aug 2001 A1
20010020619 Pfeifer et al. Sep 2001 A1
20020006275 Pollack Jan 2002 A1
20020019709 Segal Feb 2002 A1
20020104159 Nishioka Aug 2002 A1
20020157176 Wawrla et al. Oct 2002 A1
20020171056 Paese et al. Nov 2002 A1
20030037612 Nagakura et al. Feb 2003 A1
20030172547 Shephard, II Sep 2003 A1
20030188380 Loberger et al. Oct 2003 A1
20030210140 Menard et al. Nov 2003 A1
20030213062 Honda et al. Nov 2003 A1
20040016296 Weisse Jan 2004 A1
20040025248 Lang et al. Feb 2004 A1
20040083547 Mercier May 2004 A1
20040128755 Loberger et al. Jul 2004 A1
20040129075 Sorenson Jul 2004 A1
20040143898 Jost et al. Jul 2004 A1
20040149779 Boll et al. Aug 2004 A1
20040182151 Meure Sep 2004 A1
20040221645 Brzozowski et al. Nov 2004 A1
20040221646 Ohhashi et al. Nov 2004 A1
20040221647 Sabatino Nov 2004 A1
20040238660 Fan et al. Dec 2004 A1
20050000015 Kaneko Jan 2005 A1
20050087557 Oliver et al. Apr 2005 A1
20050098968 Dyson et al. May 2005 A1
20050199843 Jost et al. Sep 2005 A1
20050205818 Bayley et al. Sep 2005 A1
20060098961 Seutter et al. May 2006 A1
20060101575 Louis May 2006 A1
20060102642 Muntzing et al. May 2006 A1
20060145111 Lang et al. Jul 2006 A1
20060150316 Fukuizumi et al. Jul 2006 A1
20060151513 Shadrach, III Jul 2006 A1
20060185074 Loberger et al. Aug 2006 A1
20060200903 Rodenbeck et al. Sep 2006 A1
20060207019 Vincent Sep 2006 A1
20060225200 Wierenga Oct 2006 A1
20070023565 Babikian Feb 2007 A1
20070079524 Sato et al. Apr 2007 A1
20070094787 Hwang May 2007 A1
20070144034 Kameishi Jun 2007 A1
20070151338 Benner et al. Jul 2007 A1
20070194637 Childe et al. Aug 2007 A1
20070230839 Childe et al. Oct 2007 A1
20070252551 Clothier et al. Nov 2007 A1
20070261162 Atkinson Nov 2007 A1
20070263994 Diez et al. Nov 2007 A1
20070278983 Clothier et al. Dec 2007 A1
20080005833 Bayley et al. Jan 2008 A1
20080018995 Baun Jan 2008 A1
20080072668 Miyagawa Mar 2008 A1
20080078019 Allen, Jr. et al. Apr 2008 A1
20080083786 Marin Apr 2008 A1
20080098950 Gudjohnsen et al. May 2008 A1
20080099088 Boey May 2008 A1
20080109956 Bayley et al. May 2008 A1
20080127410 Schmitt et al. Jun 2008 A1
20080185396 Yang et al. Aug 2008 A1
20080185398 Yang et al. Aug 2008 A1
20080185399 Yang et al. Aug 2008 A1
20080189850 Seggio et al. Aug 2008 A1
20080193111 Seutter et al. Aug 2008 A1
20080209760 French et al. Sep 2008 A1
20080213644 Shindoh et al. Sep 2008 A1
20080216343 Churchill et al. Sep 2008 A1
20080216344 Churchill et al. Sep 2008 A1
20080222910 Churchill et al. Sep 2008 A1
20080253754 Rubin Oct 2008 A1
20080256825 Hsu Oct 2008 A1
20080271527 Hewitt Nov 2008 A1
20080285134 Closset et al. Nov 2008 A1
20080289098 Kunkel Nov 2008 A1
20080301970 Hackwell et al. Dec 2008 A1
20080313918 Dyson et al. Dec 2008 A1
20080313919 Churchill et al. Dec 2008 A1
20080317448 Brown et al. Dec 2008 A1
20090000023 Wegelinn et al. Jan 2009 A1
20090000024 Louis et al. Jan 2009 A1
20090000142 Churchill et al. Jan 2009 A1
20090000147 Collins Jan 2009 A1
20090031493 Tsujita et al. Feb 2009 A1
20090034946 Caine et al. Feb 2009 A1
20090049599 Parsons et al. Feb 2009 A1
20090056011 Wolf et al. Mar 2009 A1
20090058666 Clabaugh Mar 2009 A1
20090069870 Haase et al. Mar 2009 A1
20090077736 Loberger et al. Mar 2009 A1
20090094740 Ji Apr 2009 A1
20090100593 Lincoln et al. Apr 2009 A1
20090113746 Churchill et al. May 2009 A1
20090113748 Dyson et al. May 2009 A1
20090119832 Conroy May 2009 A1
20090119942 Aisenberg et al. May 2009 A1
20090126103 Dietrich et al. May 2009 A1
20090159612 Beavis et al. Jun 2009 A1
20090236358 Rippl et al. Sep 2009 A1
20090243243 Watson Oct 2009 A1
20090266157 Maruo et al. Oct 2009 A1
20090293190 Ringelstetter et al. Dec 2009 A1
20090293192 Pons Dec 2009 A1
20100014844 Dannenberg et al. Jan 2010 A1
20100132112 Bayley et al. Jun 2010 A1
20100139394 Pauer et al. Jun 2010 A1
20100154239 Hutchinson Jun 2010 A1
20100168926 Bayley et al. Jul 2010 A1
20100192399 Sawabe et al. Aug 2010 A1
20100199759 Prasad Aug 2010 A1
20100213208 Bem et al. Aug 2010 A1
20100219013 Liddell Sep 2010 A1
20100223993 Shimizu et al. Sep 2010 A1
20100231392 Sherron Sep 2010 A1
20100236092 Causier Sep 2010 A1
20100252759 Guler et al. Oct 2010 A1
20100269364 Liu Oct 2010 A1
20100276529 Nguyen Nov 2010 A1
20100296799 Liu Nov 2010 A1
20110006083 Walters et al. Jan 2011 A1
20110023319 Fukaya et al. Feb 2011 A1
20110171083 Swistak Jul 2011 A1
20110277342 Ishii et al. Nov 2011 A1
20120011739 Nakamura Jan 2012 A1
20120017459 Kikuchi et al. Jan 2012 A1
20120017460 Kikuchi et al. Jan 2012 A1
20120055557 Belz et al. Mar 2012 A1
20130025045 Gagnon et al. Jan 2013 A1
20130055588 Nakamura et al. Mar 2013 A1
20130139400 Fukano Jun 2013 A1
Foreign Referenced Citations (94)
Number Date Country
141398 Aug 1995 AT
2005203363 Feb 2006 AU
2006274708 Feb 2007 AU
2006274715 Feb 2007 AU
647407 Jan 1928 BE
504089 Jul 1930 DE
2018695 Oct 1971 DE
2304815 Aug 1974 DE
2657164 Jun 1978 DE
3036623 Feb 1982 DE
4218658 Dec 1992 DE
9304270 Sep 1993 DE
9304160 Jul 1994 DE
19608157 Jul 1997 DE
10210474 Sep 2002 DE
69821140 Nov 2004 DE
202004012352 Dec 2004 DE
0 274 785 Jul 1988 EP
1057942 Dec 2000 EP
1241301 Sep 2002 EP
1250876 Oct 2002 EP
1258568 Nov 2002 EP
1057441 Sep 2006 EP
1912549 Mar 2010 EP
2177142 Apr 2010 EP
2277424 Jan 2011 EP
2554085 Feb 2013 EP
737054 Sep 1955 GB
909069 Oct 1962 GB
2249026 Apr 1992 GB
2428569 Feb 2007 GB
2450563 Dec 2008 GB
49-037685 Jul 1947 JP
1256632 Oct 1989 JP
04-136195 Dec 1992 JP
5163748 Jun 1993 JP
05-055988 Jul 1993 JP
06-062977 Mar 1994 JP
8-140891 Jun 1996 JP
08164088 Jun 1996 JP
08-196470 Aug 1996 JP
9-056640 Mar 1997 JP
9-135788 May 1997 JP
9242155 Sep 1997 JP
10-113304 May 1998 JP
10-113305 May 1998 JP
10-257992 Sep 1998 JP
10248748 Sep 1998 JP
11-000283 Jan 1999 JP
2000-157448 Jun 2000 JP
2000000178 Jul 2000 JP
2000-300461 Oct 2000 JP
2000271039 Oct 2000 JP
2000282528 Oct 2000 JP
2001-104213 Apr 2001 JP
2001140305 May 2001 JP
2002-136448 May 2002 JP
2002-345682 Dec 2002 JP
2003153823 May 2003 JP
2004-261510 Sep 2004 JP
2006-081925 Mar 2006 JP
2006101987 Apr 2006 JP
2006-192250 Jul 2006 JP
2006-204738 Aug 2006 JP
2006-304926 Nov 2006 JP
2007054670 Mar 2007 JP
2007-082904 Apr 2007 JP
2007-098106 Apr 2007 JP
2007082904 Apr 2007 JP
2008-005883 Jan 2008 JP
2008-110240 May 2008 JP
200899797 May 2008 JP
2008272086 Nov 2008 JP
2010-046238 Mar 2010 JP
2010-110450 May 2010 JP
2011019606 Feb 2011 JP
2011-055859 Mar 2011 JP
10-0711544 Apr 2007 KR
9626795 Sep 1996 WO
WO 0116436 Mar 2001 WO
WO 2006055681 May 2006 WO
WO 2007011747 Jan 2007 WO
WO 2007015046 Feb 2007 WO
WO 2009039290 Mar 2009 WO
WO 2009062546 May 2009 WO
WO 2010088975 Aug 2010 WO
WO 2010089927 Aug 2010 WO
WO 2010095250 Aug 2010 WO
WO 2010095251 Aug 2010 WO
WO 2010119536 Oct 2010 WO
WO 2011009156 Jan 2011 WO
WO 2011044247 Apr 2011 WO
2011074018 Jun 2011 WO
WO 2011077625 Jun 2011 WO
Non-Patent Literature Citations (58)
Entry
U.S. Appl. No. 29/306,946, filed Oct. 2, 2008, Thielke et al.
Bradley Corporation, “Plumbing Fixtures,” believed to be publicly available by Mar. 2006, 3 pages.
U.S. Appl. No. 61/198,293 of William M. Louis, Dispenser That Cantilevers Flexible Sheet Material for Horizontal Presentation, filing date unavailable, 16 pages.
U.S. Appl. No. 61/206,768 of William M. Louis, “Swingarm Loading Mechanism for Paper Towel Dispensing Systems,” filing date unavailable, 13 pages.
Bradley Corporation, “Bradpack Preassembled Wash Centers,” dated Jan. 1986, 12 pages.
“Innovative Applications in Solid Surface,” The Journal of the Solid Surface Industry, Jan./Feb. 2002, vol. 8, No. 1, 3 pages.
Brueton advertisement for Undulatus bench, Home Design—The New York Times magazine, 2 pages.
Bradley Corporation, The Bradley Express Lavatory System: “A look, a feel, an idea as solid as granite,” healing a designation “© 1996 Bradley Corporation,” 4 pages.
Bradley Corporation, Terreon: “Shaping your designs,” bearing a designation © 1998 Bradley Fixtures Corporation, 8 pages.
Bradley Corporation, “Plumbing Fixtures,” bearing a designation “2001,” 11 pages.
International Search Report for International Application No. PCT/US2004/07675 including written opinion of the International Searching Authority, mail date Aug. 6,2004, 7 pages.
International Search Report and Written Opinion for Application No. PCT/US2005/002194, date of mailing May 12, 2005, date received May 18, 2005, 9 pages.
Bradley Corporation, “School Solutions, A higher Dedication to, your Design Needs,” © 1999 Bradley Corporation, 6 pages.
Bradley Corporation, “Frequency Lavatory Systems,” © Bradley Corp 2005, 4 pages.
Bradley Corporation, “Plumbing Fixtures,” publicly available by Feb. 14, 2008, 12 pages.
Bradley Corporation, The ndite™ story, publicly available by Feb. 14, 2008, 2 pages.
Bobrick Technical Data, “Contura ™ Series Surface-Mounted Soap Dispenser B-4112” dated May 2006, 1 pages.
Bradley Corporation, Total Terreon Concept, © Bradley Corp 2004,2 pages.
Bradley Corporation, Terreon Lav Decks, © Bradley Corp 2004, 2 pages.
Bradley Corporetion, “Express Lavatory Systems,” © Bradley Corp 2004, 4 pages.
Bradley Corporation, “Frequency Lavatory Systems,” © Bradley Corp 2004, 4 pages.
Bradley Corporation, “Terreon Washfountains,” © Bradley Corp 2004, 2 pages.
Bradley Corporation, “Sentry Washfountains,” © Bradley Corp 2004, 2 pages.
Bradley Corporation, “Classic Washfountains,” © Bradley Corp 2004, 2 pages.
Bradley Corporation, “Multi-Fount WashFountains,” © Bradley Corp 2004, 2 pages.
Bradley Corporation, “Application Guide,” © Bradley Corp 2004, 2 pages.
Bradley Corporation, Washroom Accessories, believed to be publicly available by Jul. 2007,4 pages.
Bradley Corporation, Commercial Washroom Solutions, believed to be publicly available by Jan. 2006, 4 pages.
Bradley Corporation, Washroom Accessories, believed to be publicly available by Aug. 2003, 8 pages.
Bradley Corporation, Washroom Accessories, believed to be publicly available by Jan. 2006,4 pages.
Bradley Corporation, Plumbing Fixtures, believed to be publicly available by Aug. 2002, 12 pages.
Bradley Corporation, Washroom Accessories, believed to be publicly available by Jan. 2008,4 pages.
Bradley Corporation, “Installation Instructions 2483 Surface-Mounted Towel Dispenser,” dated Sep. 4, 2003, 1 page.
Bradley Corporation, “Installation 270 Towel Dispenser/Waste Receptacle,” dated Jun. 15, 2008, 2 pages.
Bradley Corporation, “Towel Dispenser/Waste Receptacle Model 227,” believed to be publicly available by Jun. 2002, 2 pages.
Bradley Corporation, “Towel Dispenser—Center Pull/Waste Receptacle Model 236,” dated Feb. 11, 2005, 1 page.
Bradley Corporation, “Installation 236 Towel/Waste Unit with Center Pull,” dated Mar. 9, 2005, 2 pages.
Bradley Corporation, Towel Dispenser Model 2481, dated Dec. 21, 2004,2 pages.
Bradley Corporation, Towel Dispenser Model 2479-000000, dated Mar. 31, 2006, 1 page.
Bradley Corporation, Towel Dispenser Model 2479-110000, dated Feb. 11, 2005, 1 page.
Bradley Corporation, Installation Instructions 2479 Recess-Mounted Towel Dispenser, dated Mar. 3, 2004, 1 page.
Bradley Corporation, “Installation Instructions 2479-11 Surface-Mounted Towel Dispenser,” dated Feb. 27, 2004,2 pages.
Bradley Corporation, Towel Dispenser Model 2490, dated Nov. 21, 2005,3 pages.
Bobrick Technical Data, “Contura™ Series Surface-Mounted Paper Towel Dispenser B-4262,” dated Jun. 2006, 1 page.
Bobrick Technical Data, “Contura™ Series Surface-Mounted Multi-Roll Toilet Tissue Dispenser B4288,” dated May 2006, 1 page.
Bobrick Technical Data, “Contura™ Series Recessed Multi-Roll Toilet Tissue Dispenser B-4388,” dated May 2006, 1 page.
Bobrick Technical Data, “Contura™ Series Recessed Paper Towel Dispenser B-4362,” dated Nov. 2006, 1 page.
Bobrick Technical Data, “Contura™ Series Recessed Waste Receptacle B-43644,” dated Nov. 2006, 1 page.
Bobrick Technical Data, “Contura™ Series Recessed Paper Towel Dispenser and Waste Receptacle B-43944,” dated Nov. 2006, 2 pages.
Bobrick Technical Data, “Contura™ Series Surface-Mounted Sanitary Napkin Disposal B-270,” dated May 2006, 1 page.
Bobrick Technical Data, “Contura™ Series Recessed Soap Dispenser B-4063,” accessed on Mar. 28, 2007, 1 page.
International Search Report for International Application No. PCT/US2008/076875, dated Apr. 3, 2009, 4 pages.
International Search Report and Written Opinion for International Application No. PCT/US2008/076875, mail date Jul. 6, 2009, 21 pages.
Bradley Corporation, “All-In-One-Of-A-Kind” Advocate™ Sell Sheet Brochure. Accessed Apr. 2011at http://bradleycorp.com/advocate/Advocate—Sell—Sheet.pdf. 6 pages.
Bradley Corporation Advocate™ Lavatory System—LA90 Series Manual, document No. 1068. Accessed Apr. 2011at http://www/bradleycorp.com/products/fixtures/lavsystems/advocate/viewproduct.jsp?pgid=1724, © Bradley Corp 2010, 8 pages.
Bradley Corporation Advocate™ Lavatory System—LA60 Series Manual, document No. 1066, Accessed Apr. 2011at http://www.bradleycorp.com/products/fixtures/lavsystem/advocate/viewproduct.jsp?pgid=1724, © Bradley Corp 2010, 7 pages.
Bradley Corporation Advocate™ Lavatory System—LA30 Installation Manual, document No. 215-1657 Rev. A; ECM 09-08-0026. Accessed Apr. 2011at http://www.bradleycorp.com/products/fixtures/lavsystems/advocate/viewproduct.jsp?pgid=1724 , dated Oct. 7, 2009 © Bradley Corp 2009, 20 pages.
PCT/International Search Report and Written Opinion—(Application No. PCT/US2010/051647)—11 pages.
Related Publications (1)
Number Date Country
20130086741 A1 Apr 2013 US
Continuation in Parts (1)
Number Date Country
Parent 13088512 Apr 2011 US
Child 13267429 US