The present invention relates to a hand dryer that hygienically performs a drying process by jetting a high-speed airflow onto wet hands after having been washed.
Conventionally, a hand dryer has been developed that hygienically performs a hand drying process, in which wet hands after having been washed are dried by blowing water away by jetting high-speed airflow, rather than being wiped on a towel or a handkerchief. As such the hand dryer, a hand dryer is disclosed that is provided with two air nozzle sections that jet high-speed airflows (for example, see Patent Document 1). The two air nozzle sections are provided on a near side and a far side of an opening of a hand drying chamber to face each other. Wind is simultaneously applied to both a palm and a back of a hand, so that water is blown away from the hand, thereby drying the hand.
In addition, a hand dryer is disclosed that has a hand drying chamber including a hand insertion opening, a rear wall section, a front wall section, and a pair of air nozzles. A left hand and a right hand can be inserted in parallel into the hand insertion opening. The rear wall section faces backs of the left hand and the right hand that are inserted in parallel from the hand insertion opening. The front wall section faces palms of the left and the right hand, and the rear wall section. The pair of air nozzles is arranged in respective centers of the rear wall section and the front wall section to extend roughly along an overall length of the hands, almost in parallel with a direction of fingers on the left hand and the right hand inserted in parallel. The pair of air nozzles respectively jet high-speed airflows to the left and to the right to be almost parallel with the backs and the palms of the left hand and the right hand (for example, see Patent Document 2).
In addition, a hand dryer is disclosed that has a hand drying chamber (processing space) including a hand insertion opening (opening section) provided on an upper portion, a rear wall section (back surface), a front wall section opposing the rear wall section, and four jetting nozzles arranged to extend in a vertical direction on the front wall section (for example, see Patent Document 3). The four jetting nozzles jet high-speed airflows obliquely upward towards the rear wall section.
Patent Document 1: Japanese Patent Application Laid-open No. 2003-180554 (pp. 2 and 3, and FIGS. 1 and 9)
Patent Document 2: Japanese Patent Application Laid-open No. 2005-087283 (p. 6, and FIGS. 1 to 5)
Patent Document 3: Japanese Patent Application Laid-open No. 2006-187397 (pp. 6 and 7, and FIGS. 4 and 5)
However, the hand dryer disclosed in Patent
Document 1 is problematic in that the high-speed airflows jetted from the two opposing air nozzle sections collide with each other. Therefore, a disruption occurs in the airflows, thereby causing noise.
The hand dryer disclosed in Patent Document 2 is problematic in that the pair of air nozzles respectively jet the high-speed airflows to the left and to the right to be roughly parallel with the palms and backs of the left hand and the right hand. Therefore, water on the hands is difficult to remove. In particular, the airflows do not pass between fingers. Therefore, water attached between the fingers is hardly removed.
The hand dryer disclosed in Patent Document 3 is problematic in that, because the high-speed airflows are jetted obliquely upward from the front wall section towards the rear wall section, the high-speed airflows come into contact with the hands from below. Therefore, the high-speed airflows blow towards a user from the opening section above with water droplets that are removed from the hands.
The present invention has been achieved in light of the above-described problems. An object of the present invention is to provide a hand dryer that makes little noise, can remove even water attached between fingers, and causes minimal splashing of water droplets onto a user.
To solve the above problems and to achieve the above objects, a hand dryer according to the present invention includes a hand drying chamber that includes a hand insertion opening that is provided in an upper portion and from which a left hand and a right hand can be inserted in parallel; a rear wall section that faces the hands inserted from the hand insertion section; a front wall section that faces the hands and the rear wall section; a pair of air nozzle sections that is set on a side of the rear wall section to extend in a vertical direction roughly along an overall length of the inserted hands, and that jets a high-speed airflow obliquely downward toward the hands; and a lateral opening section that allows the airflow jetted from the air nozzle sections to flow out after a hand drying process.
According to the present invention, a hand dryer achieves advantageous effects in that the hand dryer makes little noise, removes even water attached between fingers, and causes minimal splashing of water droplets onto a user.
1 main body casing
2 hand drying chamber
3, 3a, 3b, 3c, 3d, 3f, 3g front wall section
4 rear wall section
5, 5a, 5b, 5c, 5d, 5f, 5g inner surface of front wall section
6 inner surface of rear wall section
8 bottom surface
9 hand insertion opening
10 lateral opening section
11 high-pressure airflow generating unit
12 airflow path
13, 13a air nozzle section
14 high-speed airflow
15 drain
16 drain pipe
17 drain tank
18 control circuit
19 air inlet
20 inlet passage
21 suction opening
22 hand detecting sensor
24, 24a, 24b air jet opening
25 filter
81, 82, 83, 84, 85, 86, 87, 88 hand dryer
Exemplary embodiments of a hand dryer according to the present invention will be explained in detail below with reference to the accompanying drawings. The present invention is not limited to the embodiments.
First Embodiment.
A front wall section 3 is formed on an upper front side (user side) of the main body casing 1. A rear wall section 4 is formed on an upper back side. The hand drying chamber 2 is surrounded by an inner surface 5 of the front wall section 3, an inner surface 6 of the rear wall section 4, and a bottom surface 8. The bottom surface 8 receives water droplets blown from hands. A hand insertion opening 9 is formed in an upper portion of the hand drying chamber 2. Hands are inserted into and removed from the hand insertion opening 9. Lateral opening sections 10 are formed in both lateral directions. The lateral opening sections 10 allow air to flow out after a hand drying process.
A high-pressure airflow generating unit 11 is arranged in a lower portion of the main body casing 1. High-pressure airflows generated by the high-pressure airflow generating unit 11 are led to air nozzle sections 13 provided on the rear wall section 4, by way of an airflow path 12 formed in the rear wall section 4.
The hands of a user are inserted into the hand drying chamber 2 at an angle, such that wrists are on a near side and fingertips are on a far side (rear side), in a state in which a left hand and a right hand of the user standing in front of the main body casing 1 are naturally aligned in parallel in a lateral direction.
The air nozzle sections 13 are formed (set) projecting from the inner surface 6 of the rear wall section 4, in positions respectively facing the left hand and the right hand that are inserted into the hand drying chamber 2. Longitudinal directions of the air nozzle sections 13 extend to be almost parallel with directions of respective fingers of the hands inserted in the vertical direction. The air nozzle sections 13 are formed at a forward-tilt angle of 5 degrees to 45 degrees, such that upper portions are on the near side and lower portions are on the far side (rear side). The direction of a finger is approximately a direction of a middle finger when the hand is naturally spread. The inner surface 5 of a second wall section 3 is formed at a forward-tilt angle, such that the hands can be easily inserted into the hand drying chamber 2 and a distance between the hands and the air nozzle sections 13 is almost constant.
The hand dryer 81 is configured such that high-speed airflows 14 (wind speed: 50 m/s to 250 m/s) are jetted into the hand drying chamber 2 from the air nozzle sections 13. Water on the left hand and the right hand, inserted into the hand drying chamber 2, is blown towards the inner surface 5 of the front wall section 3. The water droplets that have been blown are collected on the inner surface 5 of the front wall section 3 and the bottom surface 8. The collected water droplets then pass through a drain 15 and a drain pipe 16, and are collected in a drain tank 17. The drain tank 17 can be attached and removed freely from the main body casing 1 by being slid forward and backward. A removal lid covers the drain tank 17.
The high-pressure airflow generating unit 11 includes a DC brushless motor (alternatively, an ordinary commutator motor or induction motor can also be used), a motor driving circuit, and a turbo-fan driven by the DC brushless motor. The high-pressure airflow generating unit 11 is automatically operated by a control circuit 18. An air inlet 19 of the high-pressure airflow generating unit 11 opposes an inlet passage 20 provided within the main body casing 1. The air inlet 19 suctions external air from a suction opening 21 on a lower end of the inlet passage 20. A filter 25 removes dust and moisture from the air suctioned from the suction opening 21. The air is then supplied to the high-pressure airflow generating unit 11.
A hand detecting sensor 22 is provided on the inner surface 6 of the rear wall section 4. Whether the hands are inserted into the hand drying chamber 2 from the hand insertion opening 9 is detected by a detection signal from the hand detecting sensor 22. The detection signal from the hand detecting sensor 22 is input into the control circuit 18 that includes a microcomputer. When the control circuit 18 judges that the hands are inserted, the control circuit 18 electrifies the high-pressure airflow generating unit 11 to jet the high-speed airflows from the air nozzle sections 13.
When the left hand and right hand are inserted into the hand drying chamber 2 from the hand insertion opening 9 of the hand dryer 81 in parallel up to the vicinity of the wrists in a natural state, the hand detecting sensor 22 detects insertion of the hands. The high-pressure airflow generating unit 11 operates under the control of the control circuit 18. The high-speed airflow 14 is jetted from the air nozzle section 13 obliquely downward, towards a front side of the hand drying chamber 2.
The front wall section 3 blocks the high-speed airflows 14 in front of the user. Therefore, the user is not exposed to the high-speed airflows 14 and the water droplets. After a hand drying process is completed and the hands are removed from the hand drying chamber 2, the hand detecting sensor 22 detects that the hands have been removed and stops the high-pressure airflow generating unit 11.
Next, the air nozzle sections 13 will be explained in detail. When the hand dryer 81 is used, the hands of the user are inserted into the hand drying chamber 2 at an angle, such that the wrists are on the near side and the fingertips are on the far side (rear side), in a state in which the left hand and the right hand of the user standing in front of the main body casing 1 are naturally aligned in parallel in the lateral direction.
The air nozzle sections 13 extend in a vertical direction on the rear wall section 4 that face each hand inserted into the hand drying chamber 2. The air nozzle section 13 is arranged at a frontward tilt such that the upper portion is positioned towards the front side and the lower portion is positioned towards the far side (rear side). As a result of the positioning of the air nozzle sections 13, the high-speed airflows 14 jetted from the air nozzle sections 13 flow from the far side of the hand drying chamber 2 towards the near side, advancing obliquely downward, in a shape of an air curtain extending in the vertical direction.
The high-speed airflows 14 come into contact with the entire hands at the same time, from the wrist to the fingertips of each hand. The high-speed airflows 14 also pass between the fingers. Therefore, when the front and the back of the hands are placed in contact with the high-speed airflows 14 by twisting the hands at the wrist, water on the front and the back of the hands and between the fingers are blown. Therefore, the entire hands can be dried without moving the hands in the vertical direction.
As shown in
In a conventional hand dryer in which a high-speed airflow is jetted obliquely upward into a drying space from a front wall section towards a rear wall section, an air jet opening is open in an upward direction in relation to the drying space. Therefore, a problem occurs in that water droplets within the drying space enter a main body. In the hand dryer 81 according to the first embodiment, air jet openings 24 of the air nozzle sections 13 face downward. Therefore, the water droplets within the hand drying chamber 2 are prevented from entering the main body casing 1 from the air jet openings 24. The air nozzle sections 13 are provided only on the rear wall section 4 side. No air nozzles are arranged on the front wall section side 3. Therefore, collision between the jetted high-speed airflows 14 does not occur, so that noise caused by collision between high-speed airflows does not occur. Thus, the hand dryer 81 makes less noise.
The high-speed airflow 14 is jetted obliquely downward and blows the water droplets in a direction along gravitational force. Therefore, water on the hands can be efficiently removed. Moreover, airflow after the hands are dried is also obliquely downward. As shown in
When the user standing in front of the main body casing 1 naturally inserts both hands into the hand drying chamber 2 to be aligned in parallel in the lateral direction, the left hand and the right hand is roughly parallel or, as shown in
In a conventional hand dryer in which high-speed airflows are jetted from a pair of air nozzles arranged facing each other, the high-speed airflows come into simultaneous contact with the palm side and the back side of the hands. Therefore, in spaces between the fingers that are not blocked by the hands, each airflow collides with the opposing airflow. Thus, wind speed drops, causing a problem in that water on side surfaces of the fingers cannot be sufficiently removed.
In the hand dryer 81 according to the first embodiment, because a pair of the air nozzle sections 13 does not oppose each other, the high-speed airflows come into contact with every part of the hands while maintaining wind speed. Because the air nozzle sections 13 extend in the vertical direction, as shown in
Next, an air jet opening of the air nozzle section 13 will be explained in detail.
As shown in
A length of the row of air jet openings 24, 24a, and 24b is a length from the wrist of the hand to the tip of the middle finger or longer (150 mm or more according to the first embodiment), such that the high-speed airflow come into simultaneous contact with the entire hand. Thus, water can be efficiently removed.
As shown in
The air nozzle section 13 is formed to project from the inner surface 6 of the rear wall section 4. Therefore, the rear wall section 4 does not block view, so that an interior of the hand drying chamber 2 can be viewed from above the hand drying chamber 2. Thus, a degree to which the hands are dried is easily visible.
Second Embodiment.
Third Embodiment.
Fourth Embodiment.
Fifth Embodiment.
Sixth Embodiment.
Seventh Embodiment.
Eighth Embodiment.
As described above, the hand dryer according to the present invention can be advantageously used as a hand dryer that hygienically performs a drying process by jetting a high-speed airflow onto wet hands after being washed.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2009/053082 | 2/20/2009 | WO | 00 | 7/6/2011 |