The present invention refers to a plate-like backing pad member for use with a hand-held and hand-guided power tool comprising a housing with a driving motor located therein for actuating a driving shaft upon operation of the motor. The backing pad member has a rotational axis. The backing pad member is adapted for releasable attachment to the driving shaft by means of a mechanical form fit connection arrangement comprising at least one protrusion member directly or indirectly connected to the driving shaft and at least one corresponding recess member connected to the backing pad member. The protrusion member and the recess member are adapted to enter into engagement with each other in order to realize the mechanical form fit connection. The mechanical form fit connection arrangement is adapted for providing a torque proof connection between the protrusion member and the recess member in a plane extending perpendicular to the rotational axis of the backing pad member. The mechanical form fit connection arrangement is releasable in an axial direction running parallel to the rotational axis of the backing pad member. The protrusion member is held in the axial direction within the recess member by means of an axial holding arrangement.
Furthermore, the invention refers to a hand-held and hand-guided power tool comprising a housing with a driving motor located therein for actuating a driving shaft upon operation of the motor and further comprising a backing pad member performing a working movement about its rotational axis in a working plane extending perpendicular to its rotational axis upon actuation of the driving shaft. The backing pad member is attached to the driving shaft by means of a mechanical form fit connection arrangement comprising at least one protrusion member directly or indirectly connected to the driving shaft and at least one recess member connected to the backing pad member. The mechanical form fit connection arrangement is adapted for providing a torque proof connection between the protrusion member and the recess member in a plane extending perpendicular to the rotational axis of the backing pad member. The mechanical form fit connection arrangement is releasable in an axial direction running parallel to the rotational axis of the backing pad member.
The protrusion member is held in the axial direction within the recess member by means of an axial holding arrangement.
Power tools and backing pad members of the above-identified kind are well known in the prior art, e.g. EP 2 669 044 A1. In the prior art, the axial holding arrangement usually comprises a securing screw which is inserted from a bottom surface of the backing pad into an opening provided in the centre of the backing pad member along its rotational axis and screwed into a threaded opening located in the protrusion member. This provides for a secure attachment of the backing pad member to the rest of the power tool, in particular of the recess member to the protrusion member, in an axial direction parallel to the rotational axis of the backing pad. However, it is disadvantageous that replacement of the backing pad member is rather cumbersome and time consuming due to the fact that the securing screw has to be untightened and unscrewed, in order to allow detachment of an old backing pad member, and after attachment of a new backing pad member has to be inserted into the threaded opening, has to be screwed therein and tightened again. To this end, a special tool is required, e.g. comprising a hexagon head for insertion into an Allen® screw of the securing screw.
Furthermore, a similar power tool and backing pad are disclosed by DE 44 44 496 A1. This reference emanates from a power tool where a rigid polishing or abrasive disc was directly fixed to the driving shaft of the power tool by means of a clamping nut. In order to make replacement of the polishing or abrasive disc faster and easier, an additional adapter is suggested which is mounted between the driving shaft and the polishing or abrasive disc. The adapter consists of two plate-shaped parts, a first part attached to the driving shaft of the power tool in a torque proof manner and another part to which the polishing or abrasive disc is attached by means of a clamping nut. The two adapter parts may be releasably attached to one another in a torque proof manner in a plane extending perpendicular to a rotational axis of the driving shaft by means of a form fit connection. The form fit connection can be released in an axial direction parallel to the rotational axis. The two adapter parts are held together in the axial direction by means of magnetic force. The abrasive or polishing member of the known power tool performs only a purely rotational working movement.
The known power tool has the disadvantage that the proposed idea cannot simply be transferred to a power tool comprising a backing pad member with a flexible sheet-like polishing or abrasive material releasably attached to a bottom surface of the backing pad member because it would not be possible to provide an additional adapter of the type disclosed by the above reference between the driving shaft of the power tool and the backing pad member. The power tool disclosed by the above reference is very large, heavy, bulky and unhandy. In particular, in a power tool where the backing pad member and, hence, also the abrasive or polishing member performs a working movement comprising an orbital component (e.g. in purely orbital, random-orbital, roto-orbital or gear-driven working movements), the use of a separate adaptor would lead to considerable vibrations. Therefore, what is clearly needed is a possibility to safely and reliably attach a backing pad member performing a working movement comprising an orbital component to a power tool such that the backing pad member can be replaced or interchanged in a fast and easy way. In particular, it is an object of the invention to provide for a small, lightweight and cheap solution, preferably without an additional adapter and without having to modify existing power tools.
In order to solve this object, the present invention suggests a backing pad member with the features of claim 1. In particular, starting from the backing pad member of the above identified kind, it is suggested that the axial holding arrangement comprises at least one permanent magnet on the one hand and at least one ferromagnetic element or at least one further permanent magnet on the other hand exerting a magnetic force for holding the protrusion member in the axial direction within the recess member, wherein the at least one permanent magnet or the at least one ferromagnetic element or the at least one further permanent magnet is located in or makes part of the recess member.
Thus, an important aspect of the present invention is the idea of attaching a backing pad performing a working movement with an orbital component to a power tool by means of the mechanical form fit connection arrangement in combination with a magnetic axial holding arrangement for holding the backing pad in an axial direction. It is particularly advantageous that at least part of the magnetic axial holding arrangement is integrated into and forms part of the mechanical form fit connection arrangement. In particular, one of the components for realizing the axial magnetic holding arrangement, i.e. at least one of the permanent magnets or at least one of the ferromagnetic elements, is located in or makes part of the recess member provided on the top side of the backing pad member.
It is suggested that the backing pad member is made of semi-rigid plastic material. Preferably, the backing pad member has two opposing surfaces extending in parallel to each other, the surfaces comprising a first bottom surface for releasable attachment of a flexible sheet-like polishing or abrasive member by means of a hook-and-loop fastener. The opposing surfaces of the backing pad member comprise an opposite top surface with a backing pad-connection arrangement attached thereto, the backing pad-connection arrangement comprising the recess member. The top surface of the backing pad member is attached to the driving shaft of the power tool without the use of additional adapters or the like.
It is suggested that a metal insert making part of the backing pad-connection arrangement is moulded into the backing pad during its manufacturing allowing direct access to the backing pad-connection arrangement. Hence, the metal insert constitutes or makes part of the recess member of the backing pad member. In particular, the protrusion member attached to the distal end of the driving shaft can directly access and engage with the recess member provided on the top surface of the backing pad. The metal insert can form the at least one ferromagnetic element or the at least one further permanent magnet, which interacts with the at least one permanent magnet of the protrusion member.
The protrusion member can be directly attached to the driving shaft in a torque proof manner, e.g. by means of a threaded connection. However, the protrusion member could also be indirectly attached to driving shaft, e.g. by means of a tool-connection arrangement. The tool-connection arrangement can be directly attached to the driving shaft in a torque proof manner, e.g. by means of a threaded connection. The protrusion member can be connected to the tool-connection arrangement in a freely rotatable manner, e.g. guided in one or more bearings of the tool-connection arrangement. In this manner, a random orbital working movement of the backing pad member can be achieved. It is also possible that the tool-connection arrangement comprises a gear mechanism for realizing a forced rotation of the protrusion member depending on the rotation of the tool-connection arrangement about the rotational axis of the driving shaft. In this manner, a roto-orbital (or gear driven) working movement of the backing pad member can be achieved.
Furthermore, the proposed backing pad allows the continuous use of conventional power tools with conventional tool-connection arrangements and protrusion members provided at the distal end of the tool's driving shaft. The recess members are formed at least in part by the metal insert moulded into the top surface of the backing pad during its manufacturing. The engagement of the protrusion member with a corresponding recess member provides for a form fit connection between the two members. In the axial direction running parallel to the rotational axis of the backing pad, the backing pad is held by magnetic force in respect to the rest of the power tool. To this end the backing pad can be provided with at least one permanent magnet adapted for interacting with at least one respective ferromagnetic element or further permanent magnet of opposite polarity provided in the rest of the tool, in particular in the protrusion member. Preferably, the protrusion member itself forms a ferromagnetic element with which the at least one permanent magnet provided in the recess interacts. The magnetic force acting between the backing pad and the rest of the power tool, in particular between the protrusion member and the recess member, prevents an unintentional release of the backing pad from the protrusion member. So instead of securing screws or similar mechanical holding arrangements, the present invention uses the magnetic force of a magnetic holding arrangement for securing the backing pad to the rest of the power tool, in particular to the protrusion member.
The power tool with the backing pad and the flexible sheet-like polishing or abrasive pad is also referred to as a polisher or a sander, which is often used for working vehicle, boat or ship bodies. Depending on the type of gear arrangement provided between the motor and the backing pad, the backing pad may perform a purely rotational, a purely orbital, a random-orbital or a roto-orbital (gear driven) working movement. In a top view the backing pad member preferably has a circular form and in a sectional view an isosceles trapezoid form with the top surface being smaller than the bottom surface and the top and the bottom surfaces being connected by means of an inclined external wall section. Such a circular backing pad preferably is driven in a manner to perform a random orbital or roto-orbital (gear driven) working movement. Alternatively, in a top view the backing pad member may also have a triangle form, preferably with the sides of the triangle slightly convexly arched to the outside. Such a triangular backing pad preferably is driven in a manner to perform a purely orbital movement. Of course, the backing pad may have any other desired form, too.
Preferably, the recess member in the plane extending perpendicular to the rotational axis of the backing pad member has a circumferential form comprising two opposing arc shaped sections of a circle with the rotational axis running through the circle's centre and further comprising two opposing straight walls running essentially parallel to one another and interconnecting the arc shaped sections. Alternatively, it is suggested that the recess member in the plane extending perpendicular to the rotational axis of the backing pad member has a circumferential form comprising a circle with the rotational axis running through the circle's centre and further comprising two grooves extending on opposite sides of the circle radially outwards.
According to a preferred embodiment of the present invention it is suggested that a plurality of, preferably four, permanent magnets are located in the recess member around and equidistant to the rotational axis of the backing pad member, with neighbouring permanent magnets having opposite polarities. In such a manner the magnetic force used for holding the recess member of the backing pad in the protrusion member of the rest of the tool, can be increased considerably. The increase is not simply a result of the greater number of permanent magnets but rather a combination with the advantageous flow of the magnetic flux due to the opposite polarities of neighbouring magnets.
Preferably, the plurality of permanent magnets are located such that neighbouring permanent magnets are in direct lateral abutment with one another. Further, it is suggested that the plurality of permanent magnets are located in direct contact with one another along the rotational axis of the backing pad member.
The permanent magnets may have any desired form. However, it was found that certain forms of permanent magnets have advantages over other forms in terms of compact arrangement in the recess member and/or higher overall magnetic force. Preferably, the plurality of permanent magnets each have the form of a triangle, in particular an isosceles triangle, and the triangles are dimensioned such that the sum of the vertex angles of all triangles is 360°. Alternatively, the plurality of permanent magnets each may have the form of a circular sector, and the circular sectors are dimensioned such that the circular sectors of all permanent magnets together form a circle.
It is further suggested that the recess member of the backing pad-connection arrangement has a bottom surface in which the at least one permanent magnet is located adapted for interacting with at least one ferromagnetic element or at least one further permanent magnet attached to or making part of the protrusion member of the tool-connection arrangement, wherein the at least one permanent magnet is located in the bottom surface of the recess member facing the at least one ferromagnetic element or further permanent magnet after insertion of the protrusion member into the recess member. Of course, it would also be possible to locate the at least one ferromagnetic element or further permanent magnet in the bottom surface of the recess member. In that case the at least one first permanent magnet would be attached to or make part of the protrusion member. The integration of the at least one permanent magnet or of the at least one ferromagnetic element or of the at least one further permanent magnet into the recess member allows a very small and compact design of the connection arrangement provided between the backing pad member and the tool-connection arrangement. Furthermore, metal parts of the tool-connection arrangement or the backing pad-connection arrangement can be used as the at least one ferromagnetic element, thereby reducing the overall number of separate parts necessary for realising the connection arrangement.
Even if during intended use of the power tool a force is applied to a side region of the first surface of the backing pad member carrying the polishing or abrasive member in a distance to the rotational axis of the backing pad member, the backing pad member will not be tilted and detached from the tool-connection arrangement due to the strong magnetic force acting directly in the region of the mechanical form fit connection arrangement. The risk of tilting and detachment of the backing pad from the tool-connection arrangement due to excessive force on the side region of the first surface of the backing pad member can be reduced, if the lateral internal side walls of the recess member and the corresponding lateral external side walls of the protrusion member, respectively, lie against each other along their entire surfaces. The risk of tilting and detachment of the backing pad from the tool-connection arrangement due to excessive force on the side region of the backing pad member can be further reduced, if the lateral internal side walls of the recess member and the corresponding lateral external side walls of the protrusion member, respectively, have a sufficiently long axial extension. This prevents the backing pad member from being tilted about a tilting axis running essentially perpendicular to the rotational axis of the backing pad member, when attached to the tool-connection arrangement; the backing pad member can only be disconnected from the tool-connection arrangement in the axial direction.
Despite the safe and reliable attachment of the backing pad member to the rest of the power tool, the backing pad member can be easily and quickly removed from the rest of the power tool by simply holding the backing pad member in one hand and the rest of the power tool in the other hand and by applying a force in the axial direction along the rotational axis of the backing pad member pulling them apart thereby overcoming the magnetic force acting between them. No additional tools are required, no threaded connections have to be loosened and fastened and the operator of the power tool can keep on his working or safety gloves throughout the entire process of detachment of a backing pad from the power tool and attachment of an alternative backing pad. Finally, the attachment of the backing pad to the tool-connection arrangement proposed by the present invention is particularly advantageous in the rough and dirt laden environment of vehicle and boat detailing centres, vehicle body shops and shipyards, where the power tool according to the present invention is often used. Dust and other small debris particles cannot significantly impair the magnetic forces acting between the backing pad member and the rest of the power tool and, therefore, even with some dust and other small debris particles located between the backing pad member and the rest of the power tool, a safe and secure attachment of the backing pad member to the rest of the power tool in the axial direction can be achieved. This is usually not the case with the conventional mechanical axial holding arrangements.
Preferred embodiments of the present invention are the subject of the dependent claims.
Further features and advantages of the present invention can be taken from the figures and the following detailed description. The figures show:
In
As can be seen from
The backing pad member 9 is rotatable about a rotational axis 13. In this embodiment it performs a random-orbital working movement. However, to those skilled in the art it is clear that the backing pad 9 could also perform any other type of working movement, e.g. a purely orbital or a roto-orbital (gear driven) working movement. The backing pad member 9 has two opposing surfaces, a first bottom surface 9a for releasable attachment of a flexible sheet-like polishing or abrasive member 14 (e.g. by means of hook-and-loop fastening surfaces) and an opposite top surface 9b with a backing pad-connection arrangement 15 attached thereto. The backing pad-connection arrangement 15 may comprise a metal insert (e.g. see
In the embodiment shown in the figures, the tool-connection arrangement 12 comprises the protrusion member 16 and the backing pad-connection arrangement 15 comprises a recess member 17. To those having skill in the art it is clear that the tool-connection arrangement 12 could also comprise the recess member and the backing pad-connection arrangement 15 could comprise the protrusion member. The tool-connection arrangement 12 and the backing pad-connection arrangement 15 constitute a connection arrangement. The protrusion member 16 and the recess member 17 are adapted for interacting with one another for releasably connecting the backing pad member 9 to the rest of the power tool 1 in a torque proof manner by means of a form fit connection.
As can be seen from
Returning now to
According to another example shown in
The flexible sheet-like polishing or abrasive member 14 is releasably attached to the bottom surface 9a of the backing pad 9. In the case of a polishing member it may comprise but is not limited to a sponge, a microfiber, and real or synthetic lambs' wool. In the case of an abrasive member it may comprise but is not limited to a sanding paper or a sanding fabric. The sheet-like polishing or abrasive member 14 is preferably attached to the backing pad member 9 by means of a hook-and-loop fastener (or Velcro®). A first layer of the hook-and-loop fastener may be provided on the bottom surface 9a of the backing pad 9, wherein the top surface of the sheet-like polishing or abrasive member 14 is provided with a corresponding second layer of the hook-and-loop fastener. The two layers of the hook-and-loop fastener interact with one another in order to releasably but safely fix the sheet-like polishing or abrasive member 14 to the bottom surface 9a of the backing pad 9. Except for some aspiration openings in the backing pad member 9 and/or the sheet-like polishing or abrasive member 14, the polishing or abrasive member 14 covers the entire bottom surface 9a of the backing pad member 9. Preferably, during intended use of the power tool 1, the entire bottom surface of the sheet-like polishing or abrasive member 14 is in contact with the surface to be worked.
The backing pad member 9 is preferably made of a semi-rigid material, in particular a plastic material, which on the one hand is rigid enough to carry and support the sheet-like polishing or abrasive member 14 during the intended use of the power tool 1 and to apply a force to the polishing or abrasive member 14 in a direction essentially parallel to the backing pad's rotational axis 13 and which on the other hand is flexible enough to avoid damage or scratching of the surface to be worked by the backing pad member 9 or the polishing or abrasive member 14, respectively, during the intended use of the power tool 1. The backing pad member 9 may comprise different materials e.g. having different rigidities, which are fixed together, e.g. by means of a moulding process. The different materials may comprise different plastic materials or plastic and metal. For example, for stabilizing the backing pad member 9 it could be possible to introduce a metal support structure into the backing pad member 9 during the moulding process for manufacturing it. This metal inlay could form at least part of the recess member 17.
According to the state of the art shown in
In order to overcome this drawback, the present invention suggests a magnetic axial holding arrangement for securing the backing pad member 9 in the form fit connection in respect to the protrusion member 16 of the tool-connection arrangement 12 by means of magnetic force. In particular, it is suggested that the recess member 17 of the backing pad member 9 is connected to the protrusion member 16 of the tool-connection arrangement 12 in a torque proof manner by means of the form fit connection. The form fit connection acts in a plane extending essentially perpendicular to the rotational axis 13 of the backing pad member 9. The form fit connection 16, 17 is releasable in an axial direction only. The backing pad member 9 is held within the form fit connection 16, 17 in respect to the protrusion member 16 in the axial direction by means of magnetic force. Additional force for holding the backing pad member 9 within the form fit connection 16, 17 in the axial direction may be applied by means of an additional snapping or clinching mechanism (not shown). Preferred embodiments of the invention are shown in
According to the invention it is suggested that at least one permanent magnet 40 is provided within or attached to the backing pad member 9 (see
In
The plurality of permanent magnets 40 may each have the form of a triangle, preferably an isosceles triangle, wherein the triangles are dimensioned such that the sum of the vertex angles of all triangles is 360° (not shown). Hence, if four triangular permanent magnets 40 are provided they each have a vertex angle of 90°. Correspondingly, six permanent magnets 40 would have a vertex angle of 60°. Alternatively, the plurality of permanent magnets 40 may each have the form of a rectangle, preferably of a square (see
Furthermore, it would also be possible that the at least one permanent magnet 40 is provided at the protrusion member 16 of the tool-connection arrangement 12, whereas the at least one ferromagnetic element 41 or the further permanent magnet is provided in the recess member 17 of the backing pad-connection arrangement 15. If the backing pad member 9 had an insert made of iron or steel (e.g. see
It is understood that it would also be possible to realize the axial magnetic attachment of the backing pad member 9 to the rest of the power tool 1 by means of at least two permanent magnets of opposite polarities, one of the permanent magnets having a first polarity located in the recess member 17 of the backing pad-connection arrangement 15, and the other permanent magnet having an opposing polarity located at the protrusion member 16 of the tool-connection arrangement 12.
In the embodiments shown in
The present invention provides for a quick fastening and releasing mechanism for the backing pad member 9. Despite the quick attachment and detachment of the backing pad member 9, the use of magnetic force for securing the backing pad member 9 to the rest of the power tool 1 provides for a sufficiently safe and strong attachment of the backing pad member 9 to the rest of the power tool 1. The transmission of high torque values is possible, too, because the torque is transmitted by means of the form fit connection between the protrusion member 16 and the recess member 17 and the corresponding inner and outer walls 18, 19 interacting with one another. With other words, in the present invention torque may be transmitted in a plane essentially perpendicular in respect to the rotational axis 13 by means of a mechanical form fit connection and the backing pad member 9 is held in an axial direction essentially parallel to the rotational axis 13 by magnetic force.
Besides the possibility for quick attachment and detachment of the backing pad member 9, the invention has the further advantage that the backing pad member 9 as well as the tool-connection arrangement 12 can be embodied much less complicated. In particular, there is no need for the through hole 34 and the recess 35 for the securing screw 31 in the backing pad 9. Further, there is no need for the threaded hole 36 for the securing screw 31 in the protrusion member 16 of the tool-connection arrangement 12. Furthermore, detachment and attachment of the backing pad member 9 can be achieved by an operator of the power tool 1 without him having to take off working or safety gloves and without the need for specific tools for actuating separate mechanical axial holding arrangements such as a securing screw 31. Finally, the securing of the backing pad member 9 to the rest of the power tool 1 still works very safely and reliably even if abrasive dust and other small debris particles enter between the backing pad-connection arrangement 15 and the tool-connection arrangement 12.
In order to avoid damage to the at least one permanent magnet 40 when establishing the connection between the backing pad member 9 and the rest of the power tool 1, a protective cover sheet 42 may be provided, which is located between the at least one permanent magnet 40 and the respective part of the protrusion member 16 when establishing the axial attachment of the backing pad-connection arrangement 15 to the tool-connection arrangement 12 (see
As can further be seen by
In
Of course, the outer and inner contours of the outer and inner walls 19, 18 of the protrusion member 16 and the recess member 17 shown in
Although the power tool 1 is shown as a random orbital polisher in the present embodiment, the present invention is not limited to that kind of power tool. Rather, the invention may be realized with any type of power tool having a backing pad member 9 of any type releasably attached thereto. In particular, the power tool could be an oscillating sander, where the backing pad member 9 has the form of a rectangle or triangle (see
Summing up, according to the present invention the connection arrangement provided between the backing pad 9 and the rest of the power tool 1 comprises a mechanical form fit connection for providing a torque proof connection between the protrusion member 16 of the tool-connection arrangement 12 and the recess member 17 of the backing pad-connection arrangement 15 and an axial magnetic holding arrangement comprising at least one permanent magnet 40 on the one hand and at least one ferromagnetic element 41 or at least one further permanent magnet on the other hand for holding the backing pad member 9 in the form fit connection in respect to the rest of the power tool 1 in an axial direction. In particular, it is suggested that at least part of the axial magnetic holding arrangement is integrated in or forms part of the mechanical form fit connection.
It should be understood that, unless stated otherwise herein, any of the features, characteristics, alternatives or modifications described regarding a particular embodiment herein may also be applied, used, or incorporated with any other embodiment described herein. Also, the drawing herein is not drawn to scale.
Although the invention has been described and illustrated with respect to exemplary embodiments thereof, the foregoing and various other additions and omissions may be made therein and thereto without departing from the spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
18155369.4 | Feb 2018 | EP | regional |
18186573.4 | Jul 2018 | EP | regional |