The disclosure relates to a belt sander, and more particularly to a hand-held belt sander with enhanced safety.
A conventional hand-held belt sander has a body segment, a sanding belt segment mounted to the body segment and rotatable about an axis relative to the body segment, and a positioning device configured in a way such that the sanding belt segment can be positioned relative to the body segment at a desired operating angle, so that sanding operation can be performed easily and conveniently in a relatively narrow working space, such as a groove or a bore.
In order to prevent undesired changes of the operating angle during the sanding operation, the positioning device typically includes a screw bolt that is screwed tightly into the sanding belt segment and the body segment of the conventional hand-held belt sander so as to prevent rotational movement of the sanding belt segment relative to the body segment, such as that disclosed in FIG. 1 of Japanese Patent No. 4017348, or in FIG. 1 of Japanese Patent No. 4154393.
However, the screw bolt of the positioning device may be loosed due to vibration of the conventional hand-held belt sander during the sanding operation, thereby creating safety concerns. Furthermore, the sanding belt segment may be separated from the body segment along the axis due to the vibration.
Therefore, an object of the disclosure is to provide a hand-held belt sander that can alleviate at least one of the drawbacks of the prior art.
According to the disclosure, the hand-held belt sander includes a casing, an arm, a sanding unit, a retaining unit, and a positioning unit
The casing includes a head and a handgrip that is connected to the head. The head includes a mounting seat that surrounds an axis and that has an open end.
The arm has a sleeve segment and an arm body. The sleeve segment is mounted to the mounting seat and is rotatable about the axis. The arm body extends from the sleeve segment and is transverse to the axis.
The sanding unit includes a drive member, a driving roller, a driven roller, and a sanding belt. The drive member is disposed in the head. The driving roller is driven rotatably by the drive member and protrudes from the open end of the mounting seat. The driven roller is rotatably disposed at a distal end of the arm body of the arm. The sanding belt is trained on the driving roller and the driven roller.
The retaining unit has an annular groove and a plurality of protrusions. The annular groove is formed in the mounting seat, and opens away from the axis. The protrusions are disposed on the sleeve segment of the arm, and engage the annular groove so as to prevent separation of the arm from the head along the axis.
The positioning unit includes a plurality of spaced-apart engaging grooves and an engaging member. The engaging grooves are arranged along an imaginary circle which surrounds the axis, and are formed in one of the mounting seat and the sleeve segment. The engaging member is disposed on the other one of the mounting seat and the sleeve segment, and is operable to removably engage one of the engaging grooves.
When the engaging member engages the one of the engaging grooves, the arm is positioned relative to the head at an operating position.
When the engaging member is disengaged from the one of the engaging grooves, the arm is rotatable about the axis relative to the head.
Other features and advantages of the disclosure will become apparent in the following detailed description of the embodiment with reference to the accompanying drawings, of which:
Referring to
The casing 100 includes a head 110 and a handgrip 120 that is connected to the head 110. The head 110 includes a mounting seat 111 that surrounds an axis (L), and that has an open end 113, and a passage groove 114 extending parallel to the axis (L).
The arm 200 has a sleeve segment 211 (see
The arm body 220 extends from the sleeve segment 211 and is transverse to the axis (L).
Referring to
The drive member 310 is disposed in the head 110. The driving roller 320 is driven rotatably by the drive member 310 and protrudes from the open end 113 of the mounting seat 111. The driven roller 330 is rotatably disposed at a distal end of the arm body 220 of the arm 200. The sanding belt 340 is trained on the driving roller 320 and the driven roller 330. The battery 350 is disposed in the handgrip 120. The switch circuit 360 is electrically connected to the battery 350 and the drive member 310, and includes a controller 361, and a contact switch 362 and a safety switch 363 (see
Referring to
Referring to
Referring to
In this embodiment, the engaging grooves 510 are formed in the mounting seat 111, and are arranged along an imaginary circle which surrounds the axis (L). Each of the engaging grooves 510 is defined by opposite first and second abutment surfaces 512, 513, and a bottom surface 511 that interconnects the first and second abutment surfaces 512, 513. Each of the engaging grooves 510 is configured in a way such that each of the protrusions 420 is securely retained in the annular groove 410 so as to prevent each of the protrusions 420 from being disengaged from the annular groove 410 via the engaging grooves 510. More specifically, each of the engaging grooves 510 has an open end 515 communicating spatially with and opening toward the annular groove 410. Each of the protrusions 420 has a cross section larger than the open end 515 of each of the engaging grooves 510 such that each of the protrusions 420 is not allowed to enter any one of the engaging grooves 510 via the open end 515.
The receiving groove 520 is formed in the mounting seat 111 at a side of the engaging grooves 510, and is disposed on the imaginary circle.
The engaging member 530 is disposed on the sleeve segment 211, and is operable to removably engage one of the engaging grooves 510. More specifically, the engaging member 530 is pivotably mounted to the sleeve segment 211, and has an engaging tooth 532 disposed in the through hole 212, and a knob 531 extending out of the through hole 212.
It should be noted that in certain embodiments, the engaging grooves 510 may be formed in the sleeve segment 211, and the engaging member 530 may be disposed on the mounting seat 111. However, a relatively complicated design may be required for the knob 531 of the engaging member 530 to be easily accessible by the operator.
The resilient member 540 is disposed for biasing the engaging member 530 toward the engaging grooves 510.
When the knob 531 of the engaging member 530 is pressed and the engaging tooth 532 does not engage any one of the engaging grooves 510 against a resilient force of the resilient member 540, the arm 200 is rotatable about the axis (L) relative to the head 110 in a first rotational direction (D1) and in a second rotational direction (D2) (see
When the arm 200 is rotated to a desired position relative to the head 110, the knob 531 of the engaging member 530 can be released, so that the resilient member 540 biases the engaging member 530 to rotate in the second rotational direction (D2) so as to engage the engaging tooth 532 with one of the engaging grooves 510. At this time, the arm 200 is positioned relative to the head 110 at an operating position, where the engaging tooth 532 of the engaging member 530 abuts against the first abutment surface 512 so as to prevent rotation of the arm 200 in the first rotational direction (D1), and abuts against the second abutment surface 513 so as to prevent rotation of the arm 200 in the second rotational direction (D2). After the arm 200 is positioned at the operating position, the press member 364 of the contact switch 362 can be pressed to output an operating signal to the controller 361 to actuate the drive member 310 to drive rotation of the driving roller 320.
It is worth mentioning that an angle between the first abutment surface 512 and the bottom surface 511 of each of the engaging grooves 510 ranges from 60 degrees to 85 degrees. In this embodiment, the angle is 75 degrees. As such, when the knob 531 of the engaging member 530 is not pressed but the arm 200 is moved in the first rotational direction (D1) by accident, possibility of the engaging tooth 532 of the engaging member 530 being disengaged from the one of the engaging grooves 510 is effectively reduced.
Furthermore, referring to
As shown in
In summary, the hand-held belt sander of the disclosure has the following advantages:
1. Since the protrusions 420 rotatably engage the annular groove 410 and are securely retained in the annular groove 410, separation of the arm 200 from the head 110 along the axis (L) is effectively prevented when the arm 200 rotates in the first rotational direction (D1) or in the second rotational direction (D2).
2. The engaging grooves 510 and the engaging tooth 532 are configured to have an enhanced coupling strength, thereby effectively reducing the possibility of separation between the engaging tooth 532 and the one of the engaging grooves 510 due to vibration of the hand-held belt sander when the arm 200 is at the operating position. Moreover, when it is desired to change the position of the arm 200 relative to the head 110, disengagement of the engaging tooth 532 from the one of the engaging grooves 510 can be performed in a relatively fast and convenient manner compared with adjustment using the screw bolt in the above-mentioned prior art.
3. The angle formed between the first abutment surface 512 and the bottom surface 511 of each of the engaging grooves 510 is an acute angle, thereby reducing the possibility of separation of the engaging tooth 532 from the one of the engaging grooves 510.
4. When the arm 200 is at the collapsed position, the controller 361 cuts off the power supplied by the battery 350 to the drive member 310 so as to prevent actuation of the drive member 310 when the press member 364 is accidentally pressed, thereby increasing safety when the hand-held belt sander is stored.
In the description above, for the purposes of explanation, numerous specific details have been set forth in order to provide a thorough understanding of the embodiment. It will be apparent, however, to one skilled in the art, that one or more other embodiments may be practiced without some of these specific details. It should also be appreciated that reference throughout this specification to “one embodiment,” “an embodiment,” an embodiment with an indication of an ordinal number and so forth means that a particular feature, structure, or characteristic may be included in the practice of the disclosure. It should be further appreciated that in the description, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of various inventive aspects.
While the disclosure has been described in connection with what is considered the exemplary embodiment, it is understood that this disclosure is not limited to the disclosed embodiment but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.