The arrangements described herein are directed toward the field of small, hand-held electronic devices such as personal data assistants (PDAs), personal information managers (PIMs), two-way pagers and the like. In particular, the described systems and methods provide the user of a hand-held device with the ability to input data with a minimal amount of key strokes, and includes a keyboard structure that is optimized for use substantially with the thumbs.
In a two-way paging system that provides two-way, full text messaging, there is a need to permit the user to initiate messages and to respond to messages in a timely fashion and with text entirely created by the user on a communication device. In order to keep the form factor of the device small enough to be worn on the body of the user, such as with a belt clip, the input device should be small, have a minimal number of keys, and be optimized for use with a minimal number of key strokes. Known systems have attempted to address these needs by incorporating virtual keyboards or pen-based systems for user inputs to the device, but such systems require the user to input data in an unfamiliar manner. Additionally, in a small hand-held messaging device, such as a two-way pager, these systems prove awkward to use.
In order to provide a hand-held electronic device that permits a user the opportunity to enter data into an address book, a calendar, a task list, an email or other message or a similar text file that requires user-generated data, this application describes an input device that is oriented to be operated substantially through use of the thumbs. This is accomplished first by providing a keyboard with a minimal number of keys, but with the keys representing the alphabet generally placed in the same order as they would appear on a standard keyboard, such as in a standard QWERTY or a DVORAK keyboard layout. The use of a keyboard layout that is familiar to the user enables the user to immediately use the device without having to hunt for the keys he or she wishes to use.
Although the layout is similar to a standard keyboard, the keys are placed at an orientation and in a particular shape that attempts to maximize the surface area of the thumb hitting the key and to provide the user with a comfortable position of the hands for data input. Also, the orientation encourages input by the thumbs, which the inventors of the present invention have discovered to be faster and more accurate in small hand-held electronic devices than touch-typing or “hunting and pecking” typing.
The device preferably includes an additional input means for control of functions that might otherwise be controlled by a keyboard that included function keys. To encourage data entry using thumbs and again to minimize the number of keys on the keyboard, the device may also include a thumb-wheel for control of menus to select forms and functions relevant to data input. The thumb-based wheel is preferably position in close proximity to the keyboard to enable the easy transition from thumb-based typing to thumb control of forms and functions via the thumb-wheel.
In addition to hardware features that encourage optimal data entry through the use of thumbs, several software features that are designed to minimize keystrokes and aid data entry are also provided.
A hand-held electronic device with a keyboard optimized for use with the thumbs is provided. The hand-held device includes a keyboard, a display, and a processor. The keyboard is horizontally positioned symmetrically between a left edge and a right edge of a face of the hand-held messaging device. The keyboard has a plurality of keys arranged in a plurality of rows across the face, wherein each row of keys is arranged in a concave pattern. The display is vertically positioned between the keyboard and a top edge of the face and is horizontally positioned symmetrically between the left edge and the right edge of the face. The processor is coupled to the keyboard and the display, and controls the operation of the hand-held messaging device.
a through 11c show front and side views of a hand-held electronic device incorporating an alternative functional key arrangement;
a through 12c are diagrams showing front and side views of a hand-held electronic device incorporating another alternative functional key arrangement;
a and 13b show front and top views of a hand-held electronic device incorporating a further alternative functional key arrangement;
a and 14b show rear views of a hand-held electronic device in which two additional functional key arrangements are implemented;
a through 15c show front and side views of another exemplary hand-held electronic device incorporating an alternative functional key arrangement;
a through 17d show front, side and top views of a further exemplary hand-held electronic device incorporating alternative functional key arrangements.
Referring now to the drawings,
In its intended use, a message comes to the device via a wireless data communications network, such as the Mobitex™ network, into subsystem 100, where it is demodulated via DSP 200, decoded and presented to microprocessor 300 for display on display 500. To access the display of the message, the user may choose from functions listed under a menu presented as a result of user interaction with thumb-wheel 1000. If the message is an email message, then the user may choose to respond to the email by selecting “Reply” from a menu presented on the display through interaction via thumb-wheel 1000 or via menu selection from keyboard 900. In typing the reply, the user can use keyboard 900 to type full text message replies, or insert pre-determined or “canned” responses by using either a particular keystroke pattern or through pulling down pre-determined text strings from a menu of items presented on display 500 through the use of thumb-wheel 1000.
When the reply to the message is composed, the user can initiate the sending of the message preferably by interaction through thumb-wheel 1000, or alternatively, with less efficiency, through a combination of keyboard 900 keystrokes. When the microprocessor 300 receives an indication that the message is to be sent, it processes the message for transport, and by directing and communicating with transmitter/receiver subsystem 100, enables the reply message to be sent via the wireless data communications network to the intended recipient. Similar interaction through I/O devices keyboard 900 and thumb-wheel 1000 can be used to initiate full-text messages or to forward messages to another party.
In addition, the keyboard 900 and thumb-wheel 1000 can be used to permit data entry to an address book resident on the messaging device, or an electronic calendar or log book, or any other function on the messaging device requiring data entry. Preferably, the thumb-wheel is a thumb-wheel with a push button SPST switch with quadrature signal outputs, such as that manufactured by Matsushita Electronic Components Co. Ltd. as part number EVQWK2001, but may, alternatively, be some other type of auxiliary input device.
Although
In one alternative embodiment, the messaging device may include a light source, such as a backlight, that can be activated by a user of the device to light the keyboard and/or the display in low-light conditions.
It should be understood, however, that alternative key dimensions and/or placements could also be utilized. For instance, the keys on the right and left sides of the keyboard could be tilted at the same angle 960 from vertical (i.e., all of the keys may have a positive angle 960 or all of the keys may have a negative angle 960), or could all be aligned with the vertical reference (i.e., having no angle 960 from vertical). It should also be understood that the phase “tilted at the same angle” as used within this application means either tilted at equal angles or tilted at nearly equal angles.
As is also shown on
In order to maximize the surface area of the key that a thumb would hit, the keys are preferably oval, and have a rho 965 defining the curvature of the key of 0.414, although values may range higher or lower. Other rho values will lead to an acceptable, but not as optimal, or aesthetically pleasing, shape of keys 901. As to the key dimensions, the width 970 of the key 901 is 4.8 millimeters (971 representing the radius of half that value, 2.4 mm) and the length (or height) 972 of the key 901 is 7 millimeters (973 representing the radius of half that value, 3.5 mm). It should be understood, however, that other key shapes could also be utilized, such as the key shapes illustrated in
One of the software features that aids in the device being optimally used for thumb typing is a capitalization feature. Using this feature, if a user depresses a key 901, then the operating system detects a key down event. If the key is released after a period of time, the operating system detects a key up event. If, upon a key down event, a period of time elapses before a key up event is detected, then the operating system determines that a key repeat event has occurred representing a situation where a user has continued to depress a key without releasing it. A key repeat event is then treated by application software residing in either FLASH 600 or RAM 700 as an event that requires the capitalization of the key previously depressed. This feature disables a key repeat feature and substitutes instead a capitalization feature based upon a key repeat. The timing of the key scanning to determine whether a key has been released can be set to permit a slower keyboard response or a faster keyboard response, depending upon user experience or preferences. Depression of a letter key while or immediately after the shift/cap key 903 is depressed may also cause the upper case letter to be entered.
Although the capitalization function preferably works only to change the state of a letter to a capital, it alternatively could operate to change a capital letter to a lower case letter. The actual display is changed by the application program substituting the value of the capital letter in the register that holds the value of the letter to be displayed. As alternatively implemented, the continued depressing without release of a letter key could result in a key oscillating between upper case and lower case, depending on the length of time the key is depressed.
For the three-row organization shown in
Also shown in
The keys 901 in
a through 11c show front and side views of a hand-held electronic device incorporating an alternative functional key arrangement. As described above, a keyboard optimized for use with the thumbs may comprise keys which will normally be operated with either the right or the left thumb of a user, as well as possibly one or more keys that may be operated with either thumb. In the case of certain functional keys such as an alt key 902 or a shift key designated 902a in
Since the space that the keyboard occupies is to be minimized however, only a single alt key 902 and a single shift key 902a can be accommodated on a small device. Thus, a user's thumb typing may be interrupted when a letter key that is normally operated using the same thumb used to operate the alt key 902 or the shift key 902a is to be operated in conjunction with the alt key or shift key. According to an aspect of the invention, the device 1100 in
Where the key 1102 is the alt key for example, to enter the number ‘1’ a user need simply press the functional key 1102 using a finger or part of the hand instead of a thumb and then depress the ‘Q’ key (see
It should be understood that, although two functional keys 1102 and 1104 are shown in
When a functional key is positioned for operation using another part of the hand than the thumb, the functional key need not necessarily also be provided on the keyboard, thereby reducing the space occupied by the keyboard. However, in order to provide a more familiar interface for a user, the keyboard functional keys such as 902 and 902a may be maintained. A user then has the option to use either the thumb-operated keyboard functional keys 902, 902a or the finger-or-hand-operated functional keys 1102, 1104. Alternatively, if keys 1102 and 1104 are for example alt and shift keys, then the keyboard alt and shift keys 902 and 902a may be assigned other functions or inputs to thereby further expand keyboard functionality.
a through 12c are diagrams showing front and side views of a hand-held electronic device incorporating another alternative functional key arrangement. The device 1200 is substantially similar to the device 1100 except that functional keys 1202 and 1204 are positioned on the sides of the device housing toward the bottom of the device for operation by a part of the hand instead of the thumbs or fingers. As described above, the functional keys 1202 and 1204 may be operated by a user using a part of the hand, such as the palm of the hand or part of the hand near the base of the fingers depending upon how the user holds the device when in use, while typing on the keyboard with the thumbs. As also described above, more or fewer than the two functional keys 1202 and 1204 may be provided on the device, and the keys 1202 and 1204 may implement different functions or the same function, and may be provided instead of or in addition to the keyboard functional keys 902 and 902a.
a and 13b show front and top views of a hand-held electronic device incorporating a functional key arrangement according to another embodiment of the invention. In this embodiment, functional keys 1302 and 1304 are provided at the top of the housing of device 1300, for operation using the fingertips. As above, more or fewer than the two functional keys 1302, 1304 shown in
a and 14b show rear views of a hand-held electronic device in which respective functional key arrangements are implemented. In
In the
One alternative functional key arrangement is shown in
It should be understood that the above functional key embodiments are not mutually exclusive. A hand-held electronic device may possibly be provided with functional keys on its sides, top, back or any combination thereof. A user may then have the option of using whichever function key set he or she finds easiest to use. It is also contemplated that devices may incorporate different functional key arrangements or combinations thereof, allowing a user to choose a particular functional key arrangement when a device is purchased.
a to 15c show front and side views of an alternate hand-held electronic device incorporating embodiments of the invention. The device 1500 may be similar to the devices 1100, 1200, 1300, 1400 and 1410 except that its display screen 1501 is substantially larger and its keyboard is somewhat different. Provided that a device keyboard includes at least one functional key 902 or functional keys are desired in order to expand functionality of a device keyboard without adding keyboard keys, then the present invention may be particularly advantageous. In
Depending upon the size of the device 1500, a user might not be able to use top-mounted keys such as shown in
Although the devices shown in
Similarly, the present invention is not restricted to devices having a “full” keyboard.
When used only to enter numbers, a keypad 1702 is normally sufficient. However, text entry via the keypad is often required, and is becoming much more common with the increasing popularity of Short Message Service (SMS) and other text-or data-related functions that mobile telephones may support. Although numeric keypad keys also have associated text characters, known text entry schemes involving multiple depressions of a single key for example tend to be slow, even when used in conjunction with predictive automatic text techniques. Therefore, one contemplated function for a functional key is to select between numeric and text entry when a keypad key is depressed. For example, if a user wishes to enter the letter ‘A’, normally associated with the number key ‘2’ on standard telephone keypads, the user could depress a function key, 1716 for example, and simultaneously depress the ‘2’ key. The functional key 1716 may be held in its depressed position as long as text entry is required. When the key 1716 is released, the keypad then preferably reverts back to a numeric entry state. Alternatively, a single depression of the functional key 1716 may toggle the keypad between numeric and text entry states. Such functionality may provide for much faster and easier text entry on a substantially thumb-operated numeric keypad.
Where more than one functional key is provided on the device 1700, text entry may be further facilitated by allowing a user to select between the multiple characters associated with a keypad key. In a device 1700 with four keys for example, any particular letter associated with any keypad key might be selected using the function keys. Operation of a first functional key in conjunction with a ‘7’ key on a conventional keypad might select a first text character ‘P’, whereas second, third and fourth functional keys may be used to respectively select ‘Q’, ‘R’ and ‘S’. As described above, any functional key and keypad key could preferably be operated simultaneously, using a finger or part of the hand to operate a functional key while using a thumb to depress a keypad key.
It should be understood that the above text entry function is merely an illustrative example of a possible implementation of an embodiment of the invention. Other functions allowing expansion of keypad key functionality through the use of finger-or-hand-operated functional keys are also within the scope of the present invention.
As described above for the preceding keypad arrangements, the functional keys 1716-1728 may provide the same or different functions. In devices such as device 1700 which are normally held on one hand, duplication of functional keys on each side of the device may be particularly advantageous in that the device may be used with either a left hand or a right hand. The left-hand side functional keys 1716-1720 would be operable using fingers on the right hand, left-hand side functional keys 1722-1726 would be operable using fingers on the left hand, and the top functional key 1728 would be accessible by either hand.
In one alternative embodiment the functional keys shown in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art.
For example, the functional keys have been shown in the drawings as rectangular keys. Implementation of functional keys having other shapes intended to improve key operability or esthetic appeal of a device are also contemplated. Functional keys on the same device might also have different shapes adapted to the part of the fingers or hands by which the keys will be operated or to allow a user to distinguish between different functional keys. Similarly, although the functional keys have been shown in the drawings as projecting beyond the device housing, the keys may instead be substantially flush with or recessed below the device housing surface in order to prevent inadvertent operation thereof.
In addition, the alt and shift functional keys are shown in some of the drawings for illustrative purposes only. Other functional keys that are normally operated in conjunction with other letter keys, such as a control (ctrl) keyboard key, may also or instead be implemented in accordance with the invention.
This application claims priority from and is related to the following prior application: “Hand-Held Electronic Device with a Keyboard Optimized for Use with the Thumbs”, U.S. Provisional Application Ser. No. 60/307,755, filed on Jul. 25, 2001. In addition, this application is a continuation-in-part of U.S. patent application Ser. No. 09/663,972, filed on Sep. 19, 2000, which is a continuation-in-part of U.S. patent application Ser. No. 09/106,585, filed on Jun. 29, 1998 (now U.S. Pat. No. 6,278,442), which is a continuation-in-part of U.S. Design application Ser. No. 29/089,942, entitled “Hand-held Messaging Device with Keyboard”, filed on Jun. 26, 1998 (now U.S. Pat. No. Des. 416,256) and assigned to the assignee of the present invention. These prior applications, including the entire written descriptions and drawing figures, are hereby incorporated into the present application by reference.
Number | Name | Date | Kind |
---|---|---|---|
4029915 | Ojima | Jun 1977 | A |
4449839 | Bleuer | May 1984 | A |
D278341 | Scheid | Apr 1985 | S |
D293241 | Wan et al. | Dec 1987 | S |
D312628 | Yokoi et al. | Dec 1990 | S |
D313401 | Tanabe | Jan 1991 | S |
D313413 | Langton | Jan 1991 | S |
5059048 | Sirkin | Oct 1991 | A |
5184830 | Okada et al. | Feb 1993 | A |
5217295 | Tortola et al. | Jun 1993 | A |
5288158 | Matias | Feb 1994 | A |
5336001 | Lichtenberg | Aug 1994 | A |
5337346 | Uchikura | Aug 1994 | A |
5360280 | Camacho et al. | Nov 1994 | A |
5367298 | Axthelm | Nov 1994 | A |
D357253 | Wong | Apr 1995 | S |
5410141 | Koenck et al. | Apr 1995 | A |
5410333 | Conway | Apr 1995 | A |
5426449 | Danziger | Jun 1995 | A |
D359920 | Sakamoto | Jul 1995 | S |
5436954 | Nishiyama et al. | Jul 1995 | A |
5457454 | Sugano | Oct 1995 | A |
D367043 | Ross et al. | Feb 1996 | S |
5500643 | Grant | Mar 1996 | A |
5543787 | Karidis et al. | Aug 1996 | A |
5563631 | Masunaga | Oct 1996 | A |
5575576 | Roysden, Jr. | Nov 1996 | A |
5600790 | Barnstijn et al. | Feb 1997 | A |
5606712 | Hidaka | Feb 1997 | A |
5611031 | Hertzfeld et al. | Mar 1997 | A |
D381021 | Williams et al. | Jul 1997 | S |
5659307 | Karidis et al. | Aug 1997 | A |
5661605 | Conway | Aug 1997 | A |
D383756 | Henderson et al. | Sep 1997 | S |
5672108 | Lam et al. | Sep 1997 | A |
D386497 | Huslig et al. | Nov 1997 | S |
5689253 | Hargreaves et al. | Nov 1997 | A |
D390509 | Antzinas et al. | Feb 1998 | S |
5737394 | Anderson et al. | Apr 1998 | A |
5786776 | Kisaichi et al. | Jul 1998 | A |
D397369 | Rissman | Aug 1998 | S |
D397728 | Yuen et al. | Sep 1998 | S |
D399537 | Chi et al. | Oct 1998 | S |
5818437 | Grover et al. | Oct 1998 | A |
5825353 | Will | Oct 1998 | A |
5827082 | Laine | Oct 1998 | A |
D402572 | Han | Dec 1998 | S |
D403362 | Fai | Dec 1998 | S |
5861821 | Kato et al. | Jan 1999 | A |
5893798 | Stambolic et al. | Apr 1999 | A |
5915228 | Kunihiro et al. | Jun 1999 | A |
5920308 | Kim | Jul 1999 | A |
5931873 | Cisar | Aug 1999 | A |
5963197 | Bacon et al. | Oct 1999 | A |
5974238 | Chase, Jr. | Oct 1999 | A |
D416256 | Griffin et al. | Nov 1999 | S |
5982520 | Weiser et al. | Nov 1999 | A |
5995026 | Sellers | Nov 1999 | A |
6005496 | Hargreaves et al. | Dec 1999 | A |
6006351 | Peretz et al. | Dec 1999 | A |
6009333 | Chaco | Dec 1999 | A |
6014429 | LaPorta et al. | Jan 2000 | A |
6014573 | Lehtonen et al. | Jan 2000 | A |
D420351 | Waldner | Feb 2000 | S |
6023779 | Fullam et al. | Feb 2000 | A |
6047047 | Aldridge et al. | Apr 2000 | A |
6047196 | Makela et al. | Apr 2000 | A |
6049796 | Siitonen et al. | Apr 2000 | A |
6052070 | Kivela et al. | Apr 2000 | A |
6084576 | Leu et al. | Jul 2000 | A |
6091956 | Hollenberg | Jul 2000 | A |
6094197 | Buxton et al. | Jul 2000 | A |
6102594 | Strom | Aug 2000 | A |
6103979 | Motoyama et al. | Aug 2000 | A |
6107997 | Ure | Aug 2000 | A |
D432511 | Eckholm | Oct 2000 | S |
D433017 | Martinez | Oct 2000 | S |
D433460 | Griffin et al. | Nov 2000 | S |
6148261 | Obradovich et al. | Nov 2000 | A |
6157323 | Tso et al. | Dec 2000 | A |
D436591 | Abston et al. | Jan 2001 | S |
6212412 | Rogers et al. | Apr 2001 | B1 |
D441733 | Do et al. | May 2001 | S |
6243789 | Hasbun et al. | Jun 2001 | B1 |
6278442 | Griffin et al. | Aug 2001 | B1 |
6295052 | Kato et al. | Sep 2001 | B1 |
6297795 | Kato et al. | Oct 2001 | B1 |
6304261 | Shields et al. | Oct 2001 | B1 |
6304431 | Kim | Oct 2001 | B1 |
6310609 | Morgenthaler | Oct 2001 | B1 |
D451079 | Ali | Nov 2001 | S |
D454349 | Makidera et al. | Mar 2002 | S |
D454849 | Eckholm | Mar 2002 | S |
6356258 | Kato et al. | Mar 2002 | B1 |
6374277 | Vong et al. | Apr 2002 | B2 |
D456794 | Laverick et al. | May 2002 | S |
6385463 | Lieberman et al. | May 2002 | B1 |
6396482 | Griffin et al. | May 2002 | B1 |
D458239 | Shim et al. | Jun 2002 | S |
D459327 | Ali | Jun 2002 | S |
D460068 | Lanzaro et al. | Jul 2002 | S |
D460493 | Griffin et al. | Jul 2002 | S |
D461803 | Griffin et al. | Aug 2002 | S |
6452588 | Griffin et al. | Sep 2002 | B2 |
D464995 | Griffin et al. | Oct 2002 | S |
6459968 | Kochie | Oct 2002 | B1 |
6489950 | Griffin et al. | Dec 2002 | B1 |
6507336 | Lunsford | Jan 2003 | B1 |
D472225 | Griffin | Mar 2003 | S |
6535749 | Iwata et al. | Mar 2003 | B1 |
6538651 | Haymann et al. | Mar 2003 | B1 |
D472551 | Griffin | Apr 2003 | S |
D473226 | Griffin | Apr 2003 | S |
D476985 | Griffin | Jul 2003 | S |
D478585 | Griffin | Aug 2003 | S |
6611254 | Griffin et al. | Aug 2003 | B1 |
D479233 | Griffin | Sep 2003 | S |
D480722 | Griffin | Oct 2003 | S |
6630924 | Peck | Oct 2003 | B1 |
6647367 | McArthur et al. | Nov 2003 | B2 |
20010044828 | Kikinis | Nov 2001 | A1 |
Number | Date | Country |
---|---|---|
0267801 | May 1988 | EP |
0278169 | Aug 1988 | EP |
0538020 | Apr 1993 | EP |
0685801 | Dec 1995 | EP |
0732646 | Sep 1996 | EP |
0760291 | Mar 1997 | EP |
1143327 | Oct 2001 | EP |
9833111 | Jul 1998 | WO |
9937025 | Jul 1999 | WO |
0030381 | May 2000 | WO |
0038041 | Jun 2000 | WO |
0074240 | Dec 2000 | WO |
0150335 | Jul 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030020692 A1 | Jan 2003 | US |
Number | Date | Country | |
---|---|---|---|
60307755 | Jul 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09663972 | Sep 2000 | US |
Child | 10205023 | US | |
Parent | 09106585 | Jun 1998 | US |
Child | 09663972 | US | |
Parent | 29089942 | Jun 1998 | US |
Child | 09106585 | US |