The subject matter presented herein relates to lighting devices. More specifically, the subject matter presented herein relates to portable lighting devices such as flashlights.
Lighting devices of varying sizes and shapes, including flashlights, are known in the lighting art. Conventionally, flashlights utilize one or more dry cell batteries, carried in series in a usually cylindrical tube serving as a handle for the flashlight, as their source of electrical energy. Flashlights which may have their batteries recharged with a constant current recharger are also known. Typically, an electrical circuit is established from one electrode of the battery through a conductor to a switch, then through a conductor to one electrode of the light source, e.g. lamp bulb. After passing through the filament of the lamp bulb, the electrical circuit emerges through a second electrode of the lamp bulb in electrical contact with a conductor, which in turn may be in electrical contact with the flashlight housing. The flashlight housing may be used as an electrical conduction path to an electrical conductor, generally a spring element, in contact with the other electrode of the battery. Alternatively, the electrical circuitry may be totally insulated from the flashlight housing. Actuation of a switch mechanism completes the electrical circuit enabling the electrical current to pass through the filament, thereby generating light which is typically focused by a reflector and lens assembly or by a collimator to form a beam of light.
Flashlights, in particular, which are used by personnel employed in law enforcement, fire and rescue, and the military, must be rugged, reliable, easily operational, and ideally waterproof due to emergency situations, occupational and environmental hazards, and adverse weather conditions that are frequently experienced by these individuals. Having a flashlight with a tail cap with a multi-purpose locking mechanism would be advantageous to such users.
It is advantageous to create a tail cap with a locking mechanism which would not only secure and seal the tail cap on the flashlight, but would also enable or disable the switch that activates, or deactivates the flashlight and/or its various lighting modes. In a disabled position, the flashlight would be prevented from being inadvertently turned on, which advantageously results inter alia in (a) saving of battery power, and (b) prevention of accidental disclosure of the position of the user, when, for example, the light is used as a tactical flashlight, for military or law enforcement purposes.
Additionally, it is advantageous to have a tail cap with a multi-purpose locking mechanism, which allows for a more rapid battery exchange, and ensures that the switch and contact pins return to the correct position, after the tail cap is reinserted. Insuring a proper positioning, together with a rapid battery exchange capability, create flashlight reliability desired for a lighting device in emergency and non-emergency situations.
Also, it is advantageous to locate the switch on the rear wall of the tail cap as it prevents inadvertent activation while holding the flashlight in the hand.
Further, by making the switch an ambidextrous switch, the flash light switch can be activated by either a right-handed or left-handed user, even when the flashlight is mounted on a firearm, such as a handgun, close to the trigger guard. Finally, it is advantageous to use a combination of a magnetic switch and an O-ring gasket, in order to make the flashlight waterproof.
In accord with the present concepts disclosed herein, there is provided a tail cap for a portable lighting device. The tail cap includes a cap having an end wall with an outer surface. A substantially cylindrical side wall is included and extends from the end wall to the rim cylindrical side wall. A substantially circular plug is positioned within the cylindrical side wall and extends from an inner surface of the end wall to the rim of the cylindrical side wall. The substantially circular plug has an outer diameter smaller than an inner diameter of the substantially cylindrical side wall. A detent mechanism is located within the circular plug adjacent to an inner surface of the cylindrical side wall. It consists of a spring element positioned in a cavity of the circular plug in proximity to the cylindrical sidewall, parallel to the main axis of the flashlight. Such spring element extends beyond the front face of the circular plug, towards the main housing and mating notch on a lug of the main housing. A plurality of retractable electrical contact plugs is positioned along the outer diameter of the circular plug. The tail plug also features cavities that house the elements of a magnetic switch, being levers, pivots, sets of magnets, shield and a reed switch.
Also disclosed is a portable lighting device. The portable lighting device includes a head portion adapted to emit light produced by one or more light sources included within the head portion. An elongated substantially cylindrical housing is connected to and extends from the head portion to a rear end of the housing. The housing is adapted to receive at least one battery within an inner compartment of the housing located within the cylindrical housing, and accessed from the rear end of the cylindrical housing. A substantially cylindrical ring with a rim extends from the rear end of the cylindrical housing to the rim. The cylindrical ring has an outer diameter smaller than a diameter of the substantially cylindrical housing. A plurality of beveled lugs is positioned around the cylindrical ring, extending outwardly from said cylindrical ring and adapted to receive a tail cap portion.
Further disclosed is a portable lighting device including a head portion adapted to emit light from one or more light sources included within the head portion. An elongated substantially cylindrical housing is connected to and extends from the head portion to a rear end of the housing. A substantially cylindrical ring extends from the rear end of the cylindrical housing to the cylindrical ring's rim. The cylindrical ring has an outer diameter smaller than a diameter of the substantially cylindrical housing. A plurality of beveled lugs is positioned around the cylindrical ring and extending outwardly from the cylindrical ring. The portable lighting device includes a removable tail cap having an end wall including an outer surface; and a substantially cylindrical side wall extending from the end wall to the rim of the side wall. A substantially circular plug is positioned within the cylindrical side wall and extends from an inner surface of the end wall to the rim of the cylindrical side wall. The substantially circular plug has an outer diameter smaller than an inner diameter of the substantially cylindrical side wall. A ring extends around and is in contact with an inner surface of the cylindrical side wall, adjacent to the rim. This ring includes a plurality of slots at predetermined positions around the ring and is adapted to receive the plurality of beveled lugs.
Additional advantages and aspects of the present subject matter will become readily apparent to those skilled in the art from the following detailed description, wherein embodiments of the present subject matter are shown and described, simply by way of illustration of the best mode contemplated for practicing the present subject matter. As will be discussed below, the present subject matter is capable of other and different embodiments, and its several details are susceptible of modification in various obvious respects, all without departing from the spirit of the present subject matter. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not limitative.
The following detailed description of the embodiments of the present subject matter can best be understood when read in conjunction with the following drawings, in which the various features are not necessarily drawn to scale but rather are drawn as to best illustrate the pertinent features, and in which like reference numerals are employed throughout to designate similar features.
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant teachings. However, it should be apparent to those skilled in the art that the present teachings may be practiced without such details. In other instances, well known methods, procedures, components, and circuitry have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the present teachings.
Adverting attention to the drawings, as shown in
The main housing or body 20 comprises an elongated substantially cylindrical compartment 31 (as shown in
The light-emitting head portion 40 forms the luminescent head of the flashlight 10. The light-emitting head portion 40 comprises a transparent window 41 which is surrounded by a non-transparent collar 42. The transparent window 41 comprises a transparent glass or plastic lens, which is attached to the front end of the non-transparent collar 42 via a sealing ring (not shown) to prevent exposure to the outside environment and reduce the risk of water or other contaminants seeping into the light-emitting head 40 or main housing 20. The lens assembly may also be replaced by a solid collimator. Within the light-emitting head portion 40, one or more conventional light sources 43, a base support member for mounting the light source(s) (not shown) and optional reflective means (not shown) for main light reflecting light emitted from the light source(s) 43 and surrounded by its reflective surface(s) generally along a prescribed direction. The one or more light sources 43 can be a LED, a laser, an incandescent light source, lamp bulb, or other electrically driven light source. In this embodiment, the prescribed direction is towards the transparent window 41 (directional arrow A). Tail cap 50 includes one or more switches 62 for turning flashlight 10 off and on and/or for selecting lighting mode, i.e. low or high intensity, continuous, flashing, strobe, intermittent, etc. Another innovative aspect of this invention is the use of a switch bar 63, shown on
Looking more specifically at the tail cap 50, reference is made to
Tail cap 50 is mounted on the main housing 20 by way of a bayonet mount that includes a male portion (the bayonet) and a female portion (the bayonet ring). When the tail cap 50 and the main housing 20 are properly aligned, the beveled lugs 51a, 51b and 51c of the male portion 51, which together form the male part of the bayonet mount, engage with the slots 52a, 52b and 52c located on bayonet ring 52 of tail cap 50. In this embodiment, lug slots 52a, 52b and 52c located on bayonet ring 52 together constitute the female part of the bayonet mount. After engagement, when the tail cap 50 is rotated relative to the main housing 20, the beveled lugs 51a, 51b and 51c of the bayonet mount cause the tail cap 50 to become wedged against the main housing 20, and vice versa. The direction of rotation can be clockwise to install the tail cap 50, and counter clockwise to remove the sane. Alternatively, the direction of rotation can be counter clockwise to install the tail cap 50, and clockwise to remove the same.
Looking more specifically at the interaction of the tail cap 50 with the main housing 20 of flashlight 10 during rotation of the tail cap 50, reference is now made to
Adverting attention to
The rotational resistance caused by the flat spring or spring-loaded ball bearing 56a, when the ball bearing 56a or flat spring is engaged in groove 57a, is sufficient to secure the tail cap 50 on the main housing 20 of flashlight 10, and to provide tactile and/or audible feedback to the user that the tail cap 50 is properly engaged. In the first grooved position 57a, the flashlight switch 62 is disabled, in the off position. Continued rotation of the tail cap 50 causes the detent mechanism consisting of a flat spring or spring-loaded ball bearing 56a to move out of the first groove (disabled switch position) 57a and into a second groove (enabled switch position) 57b, as illustrated in
In the second groove 57b, the switch 62 is enabled through the alignment of spring-loaded contact pins 58 located on the tail cap 50 with stationary contact plates 59, located within the flexible printed circuit board 33. The alignment of the spring-loaded contact pins 58 with contact plates 59 is illustrated in
In still other embodiments, the rear surface of tail cap 50 features an ambidextrous switch 62 which is illustrated in
In yet another embodiment, the tail cap 50 comprises a single switch centrally or non-centrally located on the rear surface of tail cap 50. The number of switches positioned on the rear surface of tail cap 50 can therefore be limited to a single switch or a plurality of switches used interchangeably to turn the flashlight 10 on or off or to activate one of several lighting modes.
One important feature of the present subject matter lies in the fact that the bayonet mount locking mechanism of the tail cap 50 allows for extremely quick battery exchange, and ensures that the switch 62 and contact pins 58 return to the intended position, after the tail cap 50 is reinserted.
Moreover, the locking mechanism of the tail cap 50 also serves a dual purpose. The locking mechanism not only secures the tail cap 50 on the flashlight 10, but it also enables or disables the switch 62 that activates, or deactivates the flashlight 10 and/or its various lighting modes. The disabled position prevents the flashlight 10 from being inadvertently turned on, which results inter alia in (a) saving of battery power, and (b) prevention of accidental disclosure of the position of the user, when, for example, the light is used as a tactical flashlight, for military or law enforcement purposes.
The use of an ambidextrous switch mounted on the tail cap allows the flashlight to be turned on or off with either hand, and from either side of the flashlight, even if the flashlight is mounted on a separate device such as a handgun. In the latter situation, the short length of the barrel provides very little space for mounting the flashlight underneath the barrel of the handgun. Further, the presence of the trigger guard typically prevents the use of a single push-button switch centrally located, on the rear face of the flashlight, as there is not sufficient space between the trigger guard and the rear face of the flashlight to activate the switch with a finger. The fact that the ambidextrous switch 62 can be activated from either side, and the fact that it is located outside of or extends laterally beyond the projection of the trigger guard, obviate the interference of the trigger guard. Further, by keeping the switch location on the rear surface of the tail cap 50, the risk of the switch being accidentally activated by hand contact or by contact with a foreign object, is minimized.
In the first grooved position 57a, the flashlight switch 62 is disabled, in the off position because spring-loaded contact pins 58 are not aligned with contact plates 59.
Continued clockwise rotation of the tail cap 50, as shown in
While the foregoing has described what are considered to be the best mode and/or other examples, it is understood that various modifications may be made therein and that the subject matter disclosed herein may be implemented in various forms and examples, and that the teachings may be applied in numerous applications, only some of which have been described herein. It is intended by the following claims to claim any and all applications, modifications and variations that fall within the true scope of the present teachings.
In the previous description, numerous specific details are set forth, such as specific materials, structures, processes, etc., in order to provide a better understanding of the present subject matter. However, the present subject matter can be practiced without resorting to the details specifically set forth herein. In other instances, well-known processing techniques and structures have not been described in order not to unnecessarily obscure the present subject matter.
Only the preferred embodiments of the present subject matter and but a few examples of its versatility are shown and described in the present disclosure. It is to be understood that the present subject matter is capable of use in various other combinations and environments and is susceptible of changes and/or modifications within the scope of the inventive concept as expressed herein.