The present invention relates to a chiseling hand-held power tool. The hand-held power tool has a locking switch, which allows continuous operation without the user having to keep an operating button permanently pressed.
The hand-held power tool according to the invention has an impact mechanism, an electric motor for driving the impact mechanism, and a monostable operating button, which has a stable switching position and a pressed switching position. A device controller switches off the electric motor in response to the stable switching position and activates the electric motor in response to the pressed switching position. A locking switch has a sliding direction, an actuating knob, a catch and a sliding block, wherein the actuating knob is able to be moved by the user in the sliding direction from a releasing position to a locking position. The catch is pivotable in a pivoting direction perpendicular to the switching direction between a first position and a second position. The catch is disengaged from the operating button in the first position and the catch engages in the operating button in the second position, arresting the operating button in the pressed position. The catch has, on a side facing in the pivoting direction, a slotted-guide face that is inclined with respect to the sliding direction. The sliding block bears on the slotted-guide face in the releasing position.
In the releasing position, the sliding block disengages the catch from the operating button. The switching mechanism is robust with respect to dust exposure and wear.
In one configuration, the catch has a spring, which applies a force counter to the pivoting direction to the catch. The spring acts in the same direction as the sliding block.
The catch may have a side facing counter to the pivoting direction, on which side a further slotted-guide face that is inclined with respect to the sliding direction is provided, and a finger is rigidly connected to the actuating knob, wherein the finger bears on the further slotted-guide face.
The monostable operating button may have a restoring element, which preloads the operating button counter to the switching direction.
The monostable operating button may have a switching cap, which is able to be gripped by a user and has a blocking face that interacts with the catch.
The sliding block may be disengaged from the slotted-guide face in the second position of the catch.
The following description explains the invention with reference to exemplary embodiments and figures, in which:
Identical or functionally identical elements are indicated by the same reference signs in the figures, unless stated otherwise.
The hand-held power tool 1 has a handle 7. The user can hold and guide the hand-held power tool 1 during operation by way of the handle 7. The operating button 6 is preferably attached to the handle 7 in such a way that the user can operate the operating button 6 using the hand holding the handle 7. The handle 7 can be decoupled from a machine housing 8 by way of damping elements.
The hand-held power tool 1 has a rotary drive 9, which is coupled to the tool holder 2. Among other things, the rotary drive 9 can have a step-down gear mechanism 10 and a slip clutch 11. An output shaft 12 of the rotary drive 9 is connected to the tool holder 2. The rotary drive 9 is coupled to an electric motor 13. The user can switch the electric motor 13 on and off by actuating the operating button 6, wherein the operating button 6 accordingly controls a power supply to the electric motor 13. In one embodiment, a rotational speed of the electric motor 13 can be set by way of the operating button 6.
The hand-held power tool 1 has a pneumatic impact mechanism 14. The pneumatic impact mechanism 14 has an exciter piston 15 and an impact piston 16. The exciter piston 15 is rigidly coupled to the electric motor 13. An eccentric wheel 17 and a connecting rod 18 convert the rotational movement of the electric motor 13 into a movement in translation on the working axis 4. The exciter piston 15 and the impact piston 16 close off a pneumatic chamber 19 between one another. In the illustrated embodiment, radial closure of the pneumatic chamber 19 is provided by a guide tube 20, which at the same time guides the exciter piston 15 and the impact piston. In other embodiments, the impact piston can be of hollow design and the exciter piston 15 is guided in the impact piston, or vice versa. The air enclosed in the pneumatic chamber 19 is compressed and decompressed by the exciter piston 15. The changes in pressure couple the impact piston to the movement of the exciter piston 15, and the pneumatic chamber 19 behaves in a similar manner to a spring, and is therefore also referred to as a pneumatic spring. The impact piston 16 can strike the tool 3 directly or strike the tool indirectly by way of an anvil 21.
The hand-held power tool 1 is switched on and off by the operating button 6. The operating button 6 is arranged in the handle 7. The operating button 6 has a switching cap 22, which the user can grip. In a rest position of the operating button 6, the switching cap 22 protrudes from the handle 7 counter to a switching direction 23 (
The switching cap 22 is coupled to a switching mechanism 27 of the operating button 6. The switching mechanism 27 deactivates the electric motor 13 when the switching cap 22 is in the rest position. The switching mechanism 27 activates the electric motor 13 when the switching cap 22 is in the pressed position. The switching mechanism 27 may contain an electromechanical, optical, magnetic or other sensor for determining the position of the switching cap 22. In one embodiment, the switching mechanism 27 can set a rotational speed or power consumption of the electric motor 13 depending on positions that are pressed to different extents.
The hand-held power tool 1 has a locking switch 28. The locking switch has a releasing position (
The catch 29 interacts with the switching cap 22. The switching cap 22 has a blocking face 30, on which the catch 29 can bear in the locking position. The blocking face 30 can be realized by the outer contour of the switching cap 22 or by an externally accessible rib or the like. The blocking face 30 is preferably largely perpendicular to the switching direction 23. The blocking face 30 is directed counter to the switching direction 23 and toward the catch 29.
The catch 29 is pivotable in a pivoting direction 31 that is perpendicular to the switching direction 23. The catch 29 can be pivoted in the switching direction 23 between a first position, which is associated with the releasing position, and a second position, which is associated with the locking position. The catch 29 does not overlap the blocking face 30 in the releasing position. The overlap relates to the switching direction 23, i.e. the overlap can be determined perpendicular to the switching direction 23 in projection onto a plane. The catch 29 overlaps the blocking face 30 in the locking position. A tip 32 of the catch 29 bears on the blocking face 30 in the switching direction 23. In a similar manner to the gripping hand, the tip 32 exerts an opposing force to the restoring element, with the result that the operating button 6 remains pressed.
The position of the tip 32 along the switching direction 23 corresponds to the position of the blocking face 30 along the switching direction 23 with the operating button 6 pressed. The tip 32 can project beyond the blocking face 30 in the switching direction 23 when the operating button 6 is in the rest position. The locking switch 28 is inoperable when the hand-held power tool 1 is switched off.
The catch 29 is suspended for example on a resilient spring 33. The spring 33 can be realized for example by a leaf spring, which is connected at one end 34 to the machine housing 8. The spring 33 exerts a force acting counter to the pivoting direction 31 on the catch 29. The spring 33 can be relaxed, i.e. force-free, in the releasing position. The spring 33 is tensioned to a greater extent in the locking position than in the releasing position. The catch 29 has a tendency to move automatically from the locking position into the releasing position.
The locking switch 28 has an actuating knob 35, which is able to be gripped by the user. The user can move the actuating knob 35 in a sliding direction 36 between a first position and a second position. The first position is associated with the releasing position of the locking switch 28 and the second position is associated with the locking position of the locking switch 28. The sliding direction 36 is preferably parallel to the switching direction 23 of the operating button 6. A slotted guide 37 couples the actuating knob 35 to the catch 29.
The slotted guide 37 has a top side with an inclined slotted-guide face 38. The top side points counter to the pivoting direction 31, for example faces the actuating knob 35. The inclined slotted-guide face 38 is inclined with respect to the switching direction 23. The inclined slotted-guide face 38 is preferably inclined with respect to the switching direction 23 in the releasing position and the locking position. The inclined slotted-guide face 38 descends in the pivoting direction 31 along the switching direction 23. The actuating knob 35 has a finger 39, which presses against the inclined slotted-guide face 38. The finger 39 moves the slotted guide 37 in the pivoting direction 31 when the actuating knob 35 is moved into the locking position. The catch 29 can press against the finger 39 in a manner preloaded by the spring 33, both in the releasing position and in the locking position. The catch 29 returns from the locking position into the releasing position by itself when the contact pressure exerted by the finger 39 decreases as it moves along the inclined slotted-guide face 38.
The slotted guide 37 has a bottom side with an inclined slotted-guide face 40. The bottom side points in the pivoting direction 31, for example faces away from the actuating knob 35. The inclined slotted-guide face 40 is inclined with respect to the switching direction 23. The inclined slotted-guide face 40 ascends in the pivoting direction 31 along the switching direction 23. The inclined slotted-guide face 40 is preferably inclined with respect to the switching direction 23 in the releasing position and the locking position. The actuating knob 35 has a sliding block 41, which, engaging behind the slotted guide 37, can bear on the inclined slotted-guide face 40. The sliding block 41 can lift the catch 29 out of the locking position in order to support the spring 33. The catch 29, the slotted guide 37 and the spring 33 are preferably in the form of a leaf spring.
Number | Date | Country | Kind |
---|---|---|---|
18177018.1 | Jun 2018 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/064822 | 6/6/2019 | WO | 00 |