This application is a 35 U.S.C. §371 National Stage Application of PCT/EP2009/063524, filed Oct. 16, 2009, which claims the benefit of priority to Serial No. 10 2008 054 692.5, filed Dec. 16, 2008 in Germany, the disclosures of which are incorporated herein by reference in their entirety.
The disclosure relates to a hand-held power tool as described herein.
A hand-held power tool, in particular a hammer drill, having a work spindle, a hand-held power tool housing and an intermediate shaft that is arranged parallelwise in relation to the work spindle and mounted in an axially displaceable manner for a change of operating mode, and having a toothed sleeve provided to transmit a torque to the intermediate shaft, has already been proposed in DE 38 19 125 A1.
The disclosure relates to a hand-held power tool, in particular a hammer drill, having a work spindle, a hand-held power tool housing and an intermediate shaft that is arranged parallelwise in relation to the work spindle and mounted in an axially displaceable manner for a change of operating mode, and having a toothed sleeve provided to transmit a torque to the intermediate shaft.
It is proposed that the toothed sleeve is fixed in the axial direction by means of the hand-held power tool housing. By a “work spindle” is also to be understood, in particular, a hammer tube in which an element provided for generating an impulse is guided. The work spindle is rotatable and in this case can be realized so as to be axially fixed and/or at least partially axially movable and/or of multiple parts. By a “change of operating mode” is to be understood, in particular, a switchover between two operating modes, in particular between an impact drilling operation, a drilling operation and/or a chiseling operation. By an “operating mode” are to be understood, in particular, the chiseling operation, the impact drilling operation and/or the drilling operation. In the case of a chiseling operation, a tool executes a motion along a main working direction. In the case of a drilling operation, the tool executes a rotary motion about a rotation axis, parallelwise in relation to the main working direction. In the case of an impact drilling operation, the tool executes the two motions simultaneously. By a “main working direction” is to be understood, in particular, a direction in which the hand-held power tool is normally moved during a working process, for example directly during a drilling process. By “provided” is to be understood, in particular, specially equipped and/or designed. By a “toothed sleeve” is to be understood, in particular, an element that at least partially surrounds a cavity and/or has at least one toothed element that preferably consists of teeth and tooth spaces and is realized as a spur gear, for transmitting a torque. By the term “transmit a torque” is also to be understood, in particular, transmission of a power by means of a rotary motion. By “fixed in the axial direction” is to be understood, in particular, immovable along an axis. In particular, in the case of a change of operating mode, the toothed sleeve remains unmoved in the axial direction in relation to a hand-held power tool housing and/or in relation to a motor shaft. By a “hand-held power tool” is to be understood in this connection, in particular, in addition to a hammer drill, also an impact drill and/or another hand-held power tool considered appropriate by persons skilled in the art. Owing to the design of the hand-held power tool according to the disclosure, the toothed sleeve fixed in the axial direction enables wearing of the toothed sleeve and/or of the motor shaft to be minimized in an effective manner and, advantageously, enables skewing of the toothed sleeve and/or of the motor shaft and/or of the intermediate shaft upon switching under load to be prevented.
Further, the hand-held power tool has a motor shaft, which is arranged parallelwise in relation to the work spindle. Advantageously, the toothed sleeve is fixed in the axial direction relative to the motor shaft. By “arranged parallelwise” is to be understood in this connection, in particular, that rotation axes of the work spindle, of the motor shaft and of the intermediate shaft are aligned parallelwise in relation to one another. Alternatively, the hand-held power tool can have a motor shaft that is arranged perpendicularly in relation to the work spindle. The motor shaft arranged parallelwise in relation to the work spindle enables an advantageous small structural height to be achieved.
Furthermore proposed is a switching element, which is axially displaceable relative to the toothed sleeve for at least one change of operating mode, whereby, advantageously, in the case of at least two operating modes such as, for example, in the case of a drilling operation and an impact drilling operation, a reliable and rotationally fixed connection between the intermediate shaft and the switching element is possible.
Further, the hand-held power tool has a coupling element, which connects at least the switching element and the toothed sleeve to one another in a rotationally fixed manner. By a “coupling element” is to be understood, in particular, a device that connects two elements to one another in a rotationally fixed manner irrespective of an axial displacement of the elements towards one another or away from one another.
Particularly advantageously, the coupling element is realized as a splined-shaft profile. Other realizations that are considered appropriate by persons skilled in the art and that perform a like function are also possible. Through the coupling element, advantageously, the switching element and the toothed sleeve are connected to one another, in all positions of the switching element and of the intermediate shaft, by a rotationally fixed connection.
In addition, it is proposed that the toothed sleeve at least partially surrounds the switching element. By “at least partially surround” is to be understood, in particular, that the switching element is arranged at least partially in the cavity surrounded by the toothed sleeve, whereby, advantageously, a required structural space can be reduced.
In a further development, a spring element is proposed, which is provided to displace at least the switching element at least in the case of a change of operating mode, whereby a simple design is possible. In particular, the spring element displaces the switching element in the case of a change from the drilling operation to the impact drilling operation. Instead of a spring element realized as a helical spring, another device considered appropriate by persons skilled in the art such as, for example, a rubber element, a hydraulic, magnetic or pneumatic device, can also be used to displace the switching element.
Furthermore proposed is a spring element that at least partially surrounds the toothed sleeve, whereby a particularly small amount of structural space is required for a transmission arrangement.
Further, a connecting element is proposed, which connects the intermediate shaft and the switching element to one another in a rotationally fixed manner in at least one operating mode. By a “connecting element” is to be understood, in particular, a device that, in at least one operating mode, prevents a rotatory relative motion of two elements, in this case the intermediate shaft and the switching element, in relation to one another. In particular, the connecting element prevents a rotatory relative motion of the two elements in relation to one another in a drilling operation and in an impact drilling operation. In at least one other operating mode, in particular in a chiseling operation, the connecting element renders possible a free running, i.e. a rotatory relative motion in which the two elements can be turned against one another. The first connecting element enables an advantageous rotary motion of the tool to be achieved during at least one operating mode.
In addition it is proposed that the connecting element is opened in the case of a chiseling operation. Advantageously, the connecting element that connects the intermediate shaft and the switching element to one another in a rotationally fixed manner in at least one operating mode is opened in the case of a chiseling operation. By “opened” it is to be understood in this connection, in particular, that the two elements connected by the connecting element are connected to one another in a rotationally fixed manner in the case of a drilling operation and an impact drilling operation and now have a free running in relation to one another. Advantageously, the opened connecting element enables an application range of the hand-held power tool to be extended.
Furthermore, a second connecting element is proposed, which, in at least one operating mode, transmits at least a torque from the switching element to a stroke generator, whereby an advantageous impact motion of the tool can be achieved. The stroke generator in this case can be realized, for example, by means of a wobble drive and/or an eccentric drive.
In a further development, it is proposed that the second connecting element is opened in the case of a drilling operation, whereby, advantageously, an application range of the hand-held power tool can be extended.
Further, an additional bearing element is proposed, by means of which at least the toothed sleeve is seated. By “additional bearing element” is to be understood, in particular, a bearing element that can be produced separately from elements that adjoin when in an integrated state, such as, in particular, a housing element and/or the toothed sleeve. Advantageously, the additional bearing element is realized as a stud. By the term “seated by means of the bearing element” is to be understood in this connection, in particular, that the bearing element diverts and/or supports linear forces occurring at least in the case of a seating. In this case, a bearing renders possible differently oriented motions, in this case a differing axial rotary motion of the toothed sleeve and of the bearing element. Various bearings considered appropriate by persons skilled in the art may be used, such as plain bearings, rolling bearings, sheet-metal cups, needle bearings and/or deep-groove ball bearings. The additional bearing element enables the toothed sleeve to be seated in a structurally simple manner.
In addition, it is proposed that the additional bearing element is at least connected to a housing element in a rotationally fixed manner, whereby the hand-held power tool is easily assembled.
In a further development, a journal is proposed, which is realized so as to be integral with a housing element and by means of which at least the toothed sleeve is seated. By “integral” in this connection is to be understood, in particular, that the journal and the housing element are produced from a common blank. An advantageous saving in components is thereby achieved.
Furthermore, a bearing is proposed, which seats at least the toothed sleeve in a stroke generator. By the term “seats in a stroke generator” is to be understood, in particular, that forces occurring in the case of a seating are diverted and/or supported by means of at least one component of the stroke generator, preferably a transmission element of the stroke generator. In particular, the bearing element is to seat the toothed sleeve in the stroke generator to which the second connecting element transmits a torque. Particularly advantageously, the seating of the toothed sleeve in the stroke generator enables structural space to be saved.
Further, at least one bearing is proposed, which is arranged within the toothed sleeve and which axially and/or radially seats the toothed sleeve. By “within the toothed sleeve” is to be understood, in particular, that the toothed sleeve at least partially surrounds the bearing. Additional structural space can be saved as a result of the bearing being within the toothed sleeve.
In a further development, it is proposed that the toothed sleeve has a journal. Advantageously, the journal is connected to the toothed sleeve in a rotationally fixed manner. The journal of the toothed sleeve enables a bearing to be arranged advantageously within the hand-held power tool housing.
Further advantages are given by the following description of the drawings. Nine exemplary embodiments of the disclosure are represented in the drawings, three exemplary embodiments relating, in particular, to a device for transmitting a torque, and six exemplary embodiments relating to a seating of a toothed sleeve. The drawings, the description and the claims contain numerous features in combination. Expediently, persons skilled in the art will also consider the features individually and combine them into appropriate, further combinations. In particular, the exemplary embodiments one to three can be combined with the exemplary embodiments four to nine.
In the drawing:
Shown in
The toothed sleeve 18a is fixed in an axial direction 20a relative to the motor shaft 14a by means of the hand-held power tool housing 86a. For a change of operating mode, the hand-held power tool 10a has the switching element 22a, which is axially displaceable relative to the toothed sleeve 18a for a change of operating mode. A transmission of the torque from the toothed sleeve 18a to the switching element 22a is effected by means of a coupling element 24a, which is realized as a splined-shaft profile and which connects the switching element 22a and the toothed sleeve 18a to one another in a rotationally fixed manner.
In addition, the hand-held power tool 10a has the stroke generator 32a, having a transmission element 64a and having an eccentric gear 66a, and has a spring element 26a. At an end lying in the main working direction 44a, the motor shaft 14a has a toothing 68a that, together with the toothing 70a of the toothed sleeve 18a, constitutes a spur gear transmission. The toothed sleeve 18a is realized as a hollow shaft, which has three outer radii that become smaller along the main working directions 44a, and two inner radii that become smaller in a radial direction along the main working directions 44a. The toothing 70a is arranged in the region of the largest outer radius, which is constituted by a ring pressed onto the toothed sleeve 18a. A transition 72a between the middle and the small outer radius to a support serves, in the axial direction, as a bearing contact surface for the spring element 26a. A transition 74a between the large and the small inner radius serves as a bearing contact surface for a bearing 76a. The bearing 76a seats the toothed sleeve 18a in a housing element 36a, which is indirectly connected to the hand-held power tool housing 86a via the bearing element 34a. The toothed sleeve 18a surrounds the switching element 22a in a region 78a, which lies in the main working direction 44a and extends in the form of a tube, parallelwise in relation to the main working direction 44a.
In the case of a change of operating mode between drilling operation and impact drilling operation, the spring element 26a displaces the switching element 22a, and is realized as a helical spring. For this purpose, the spring element 26a bears on the toothed sleeve 18a and on the switching element 22a, and presses the two elements 18a, 22a apart from one another in an axial direction. Further, during the chiseling operation and the impact drilling operation, the spring element 26a presses the switching element 22a against the transmission element 64a of the stroke generator 32a, and thereby enables a rotationally fixed connection between the switching element 22a and the transmission element 64a. The spring element 26a surrounds the toothed sleeve 18a and the switching element 22a, partially in each case, in a region that extends, in the form of a tube, parallelwise in relation to the main working direction 44a.
The hand-held power tool 10a has a first connecting element 28a, which, in the case of a drilling operation and an impact drilling operation, connects the intermediate shaft 16a and the switching element 22a to one another in a rotationally fixed manner. The first connecting element 28a is realized as a spline. In the case of a chiseling operation, the intermediate shaft 16a is displaced axially in the main working direction 44a by means of the operating element 56a. As a result, the first connecting element 28a opens, in that the intermediate shaft 16a is moved away from the switching element 22a, and no torque is transmitted to the intermediate shaft 16a, and consequently to the work spindle 12a and the tool 54a.
The hand-held power tool 10a has a second connecting element 30a, which, in the case of a chiseling operation and an impact drilling operation, connects the switching element 22a and the transmission element 64a of the stroke generator 32a to one another in a rotationally fixed manner. The second connecting element 30a is realized as a spline, which is arranged on the switching element 22a, on an outer radius in the main working direction 44a. In the case of a drilling operation, the intermediate shaft 16a is displaced axially contrary to the main working direction 44a, by means of the operating element 56a. As a result, the intermediate shaft 16a likewise displaces the switching element 22a contrary to the main working direction 44a, against a spring pressure of the spring element 26a. As a result, the second connecting element 30a opens. No torque is transmitted to the transmission element 64a and, consequently, to the stroke generator 32a.
Further exemplary embodiments of the disclosure are shown in
Furthermore,
For the purpose of radially seating the toothed sleeve 18a, the transmission arrangement 57a has a needle bearing 90a, which is arranged coaxially in relation to the toothed sleeve 18a, between the bearing element 34a and the toothed sleeve 18a. Axially, the toothed sleeve 18a is seated by means of a washer 92a inserted in the toothed sleeve 18a. The needle bearing 90a and the washer 92a can be realized in an integral manner.
Further,
In an exemplary embodiment shown in
Furthermore,
A further exemplary embodiment is shown by
Number | Date | Country | Kind |
---|---|---|---|
10 2008 054 692 | Dec 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/063524 | 10/16/2009 | WO | 00 | 6/15/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/072433 | 7/1/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3828863 | Bleicher et al. | Aug 1974 | A |
4529044 | Klueber et al. | Jul 1985 | A |
6460627 | Below et al. | Oct 2002 | B1 |
6666284 | Stirm | Dec 2003 | B2 |
7287600 | Braun | Oct 2007 | B2 |
7296635 | Droste | Nov 2007 | B2 |
7591324 | Saur | Sep 2009 | B2 |
20060289181 | Braun | Dec 2006 | A1 |
20070193756 | Saur | Aug 2007 | A1 |
20090308626 | Saur | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
2661382 | Dec 2004 | CN |
1907611 | Feb 2007 | CN |
101100006 | Jan 2008 | CN |
38 191 25 | Dec 1989 | DE |
42 16 808 | Nov 1993 | DE |
10 2004 026 845 | Dec 2005 | DE |
10 2006 029 363 | Jan 2008 | DE |
10 2006 056 853 | Jun 2008 | DE |
1 101 570 | May 2001 | EP |
01274970 | Nov 1989 | JP |
Entry |
---|
International Search Report corresponding to PCT Application No. PCT/EP2009/063524, mailed Jan. 26, 2010 (German and English language document) (5 pages). |
Number | Date | Country | |
---|---|---|---|
20110247848 A1 | Oct 2011 | US |