Analyte detection in physiological fluids, e.g. blood or blood derived products, is of ever increasing importance to today's society. Analyte detection assays find use in a variety of applications, including clinical laboratory testing, home testing, etc., where the results of such testing play a prominent role in diagnosis and management in a variety of disease conditions. Analytes of interest include glucose for diabetes management, cholesterol, and the like. In response to this growing importance of analyte detection, a variety of analyte detection protocols and devices for both clinical and home use have been developed.
One type of method that is employed for analyte detection is an electrochemical method. In such methods, an aqueous liquid sample is placed into a sample-receiving chamber in an electrochemical cell that includes two electrodes, e.g., a counter and working electrode. The analyte is allowed to react with a redox reagent to form an oxidizable (or reducible) substance in an amount corresponding to the analyte concentration. The quantity of the oxidizable (or reducible) substance present is then estimated electrochemically and related to the amount of analyte present in the initial sample.
Such systems are susceptible to various modes of inefficiency or error.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate presently preferred embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain features of the invention (wherein like numerals represent like elements).
The following detailed description should be read with reference to the drawings, in which like elements in different drawings are identically numbered. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. The detailed description illustrates by way of example, not by way of limitation, the principles of the invention. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what is presently believed to be the best mode of carrying out the invention.
As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. In addition, as used herein, the terms “patient,” “host,” “user,” and “subject” refer to any human or animal subject and are not intended to limit the systems or methods to human use, although use of the subject invention in a human patient represents a preferred embodiment. Also used herein, the phrase “electrical signal” or “signal” is intended to include direct current signal, alternating signal or any signal within the electromagnetic spectrum. The terms “processor”; “microprocessor”; or “microcontroller” are intended to have the same meaning and may be used interchangeably. As used herein, the term “annunciated” and variations on its root term indicate that an announcement may be provided via text, audio, visual or a combination of all modes or mediums of communication to a user.
Referring back to
Operational amplifier circuit 35 may include two or more operational amplifiers configured to provide a portion of the potentiostat function and the current measurement function. The potentiostat function may refer to the application of a test voltage between at least two electrodes of a test strip. The current function may refer to the measurement of a test current resulting from the applied test voltage. The current measurement may be performed with a current-to-voltage converter. Microcontroller 38 may be in the form of a mixed signal microprocessor (MSP) such as, for example, the Texas Instrument MSP 430. The TI-MSP 430 may be configured to also perform a portion of the potentiostat function and the current measurement function. In addition, the MSP 430 may also include volatile and non-volatile memory. In another embodiment, many of the electronic components may be integrated with the microcontroller in the form of an application specific integrated circuit (ASIC).
Strip port connector may be configured to form an electrical connection to the test strip. Display connector 14a may be configured for attachment to display 14. Display 14 may be in the form of a liquid crystal display for reporting measured glucose levels, and for facilitating entry of lifestyle related information. Display 14 may also include a backlight. Data port 13 may accept a suitable connector attached to a connecting lead, thereby allowing glucose meter 10 to be linked to an external device such as a personal computer. Data port 13 may be any port that allows for transmission of data such as, for example, a serial, USB, or a parallel port. Alternatively, first wireless module 46 may also be used in place of the data port and connector to transfer data to another device. Clock 42 may be configured to keep current time related to the geographic region in which the user is located and also for measuring time. The meter unit may be configured to be electrically connected to a power supply such as, for example, a battery.
As shown in
In an exemplary embodiment, the sample-receiving chamber 61 (also known as a “test cell” or “test chamber”) may have a small volume. For example, the sample-receiving chamber 61 may have a volume in the range of from about 0.1 microliters to about 5 microliters, about 0.2 microliters to about 3 microliters, or, preferably, about 0.3 microliters to about 1 microliter. To provide the small sample volume, the cutout area 68 may have an area ranging from about 0.01 cm2 to about 0.2 cm2, about 0.02 cm2 to about 0.15 cm2, or, preferably, about 0.03 cm2 to about 0.08 cm2. In addition, first electrode 66 and second electrode 64 may be spaced apart in the range of about 1 micron to about 500 microns, preferably between about 10 microns and about 400 microns, and more preferably between about 40 microns and about 200 microns. The relatively close spacing of the electrodes may also allow redox cycling to occur, where oxidized mediator generated at first electrode 66, may diffuse to second electrode 64 to become reduced, and subsequently diffuse back to first electrode 66 to become oxidized again.
In one embodiment, the first electrode layer 66 and the second electrode layer 64 may be a conductive material formed from materials such as gold, palladium, carbon, silver, platinum, tin oxide, iridium, indium, or combinations thereof (e.g., indium doped tin oxide). In addition, the electrodes may be formed by disposing a conductive material onto an insulating sheet (not shown) by a sputtering, electroless plating, or a screen-printing process. In one exemplary embodiment, the first electrode layer 66 and the second electrode layer 64 may be made from sputtered palladium and sputtered gold, respectively. Suitable materials that may be employed as spacer 60 include a variety of insulating materials, such as, for example, plastics (e.g., PET, PETG, polyimide, polycarbonate, polystyrene), silicon, ceramic, glass, adhesives, and combinations thereof. In one embodiment, the spacer 60 may be in the form of a double-sided adhesive coated on opposing sides of a polyester sheet where the adhesive may be pressure sensitive or heat activated. Various other materials for the first electrode layer 66, the second electrode layer 64, or the spacer 60 are within the spirit and scope of the present disclosure.
Either the first electrode 66 or the second electrode 64 may perform the function of a working electrode depending on the magnitude or polarity of the applied test voltage. The working electrode may measure a limiting test current that is proportional to the reduced mediator concentration. For example, if the current limiting species is a reduced mediator (e.g., ferrocyanide), then it may be oxidized at the first electrode 66 as long as the test voltage is sufficiently greater than the redox mediator potential with respect to the second electrode 64. In such a situation, the first electrode 66 performs the function of the working electrode and the second electrode 64 performs the function of a counter/reference electrode. Applicants note that one may refer to a counter/reference electrode simply as a reference electrode or a counter electrode. A limiting oxidation occurs when all reduced mediator has been depleted at the working electrode surface such that the measured oxidation current is proportional to the flux of reduced mediator diffusing from the bulk solution towards the working electrode surface. The term “bulk solution” refers to a portion of the solution sufficiently far away from the working electrode where the reduced mediator is not located within a depletion zone. It should be noted that unless otherwise stated for test strip 62, all potentials applied by test meter 10 will hereinafter be stated with respect to second electrode 64.
Similarly, if the test voltage is sufficiently less than the redox mediator potential, then the reduced mediator may be oxidized at the second electrode 64 as a limiting current. In such a situation, the second electrode 64 performs the function of the working electrode and the first electrode 66 performs the function of the counter/reference electrode.
Initially, an analysis may include introducing a quantity of a fluid sample (e.g., physiological fluid sample or calibration fluid) into a sample-receiving chamber 61 via a port 70 (
In test strip 62 above, reagent layer 72 can include glucose dehydrogenase (GDH) based on the PQQ co-factor and ferricyanide. In another embodiment, the enzyme GDH based on the PQQ co-factor may be replaced with the enzyme GDH based on the FAD co-factor. When physiological fluid containing glucose (e.g., blood or control solution) is dosed into a sample-receiving chamber 61, glucose is oxidized by GDH(ox) and in the process converts GDH(ox) to GDH(red), as shown in the chemical reaction or transformation T.1 below. Note that GDH(ox) refers to the oxidized state of GDH, and GDH(red) refers to the reduced state of GDH.
D-Glucose+GDH(ox)→Gluconic acid+GDH(red) T.1
Next, GDH(red) is regenerated back to its active oxidized state by ferricyanide (i.e. oxidized mediator or Fe(CN)63−) as shown in chemical reaction T.2 below. In the process of regenerating GDH(ox), ferrocyanide (i.e. reduced mediator or Fe(CN)64−) is generated from the reaction as shown in T.2:
GDH(red)+2Fe(CN)63−→GDH(ox)+2Fe(CN)64− T.2
Ferrocyanide generated by transformation T2 causes an electrical current to flow through the electrodes on the biosensor. The more glucose is in the fluid sample, the more gluconic acid is produced in transformation T1, increasing the electrical current generated by ferrocyanide in transformation T2.
Meter 10 (
In use, the user inserts the test strip into a strip port connector of the meter 10 to connect at least two electrodes of the test strip to a strip measurement circuit. This turns on the meter 10 and meter 10 (via module 100) may apply a test voltage or a current between the first contact pad 67 and the second contact pad 63 (
In
Further, as illustrated in
The plurality of test current values measured during any of the time intervals may be performed at a sampling frequency ranging from about 1 measurement per microsecond to about one measurement per 100 milliseconds and preferably at about every 10 to 50 milliseconds. While an embodiment using three test electrical potentials in a serial manner is described, the glucose test may include different numbers of open-circuit and test voltages. For example, as an alternative embodiment, the glucose test could include an open-circuit for a first time interval, a second test voltage for a second time interval, and a third electrical potential for a third time interval. It should be noted that the reference to “first,” “second,” and “third” are chosen for convenience and do not necessarily reflect the order in which the test voltages are applied. For instance, an embodiment may have a potential waveform where the third electrical potential may be applied before the application of the first and second test voltages.
In this exemplary system, the process for the system may apply a first electrical potential E1 (e.g., approximately 20 mV in
The first time interval t1 may be sufficiently long so that the sample-receiving chamber 61 may fully fill with sample and also so that the reagent layer 72 may at least partially dissolve or solvate. In one aspect, the first electrical potential E1 may be a value relatively close to the redox potential of the mediator so that a relatively small amount of a reduction or oxidation current is measured.
Referring back to
The second time interval t2 should be sufficiently long so that the rate of generation of reduced mediator (e.g., ferrocyanide) may be monitored based on the magnitude of a limiting oxidation current. Reduced mediator is generated by enzymatic reactions with the reagent layer 72. During the second time interval t2, a limiting amount of reduced mediator is oxidized at second electrode 64 and a non-limiting amount of oxidized mediator is reduced at first electrode 66 to form a concentration gradient between first electrode 66 and second electrode 64.
In an exemplary embodiment, the second time interval t2 should also be sufficiently long so that a sufficient amount of ferricyanide may be diffused to the second electrode 64 or diffused from the reagent on the first electrode. A sufficient amount of ferricyanide is required at the second electrode 64 so that a limiting current may be measured for oxidizing ferrocyanide at the first electrode 66 during the third electrical potential E3. The second time interval t2 may be less than about 60 seconds, and preferably may range from about 1.1 seconds to about 10 seconds, and more preferably range from about 2 seconds to about 5 seconds. Likewise, the time interval indicated as tcap in
After application of the second electrical potential E2, the test meter 10 applies a third electrical potential E3 between the first electrode 66 and the second electrode 64 (e.g., about −300 mVolts in
The third time interval t3 may be sufficiently long to monitor the diffusion of reduced mediator (e.g., ferrocyanide) near the first electrode 66 based on the magnitude of the oxidation current. During the third time interval t3, a limiting amount of reduced mediator is oxidized at first electrode 66 and a non-limiting amount of oxidized mediator is reduced at the second electrode 64. The third time interval t3 may range from about 0.1 seconds to about 5 seconds and preferably range from about 0.3 seconds to about 3 seconds, and more preferably range from about 0.5 seconds to about 2 seconds.
In general, hand-held test meters for the determination of an analyte (such as glucose) in a bodily fluid sample (for example, a whole blood sample) according to embodiments of the present invention include a microprocessor block, a display module, and a memory block storing multi-event control solution measurement reminder instructions and operatively coupled to the microprocessor block. Moreover, the memory block, microprocessor block and display module are configured such that the multi-event control solution measurement reminder instructions, when executed by the microprocessor block, retrieve predetermined hand-held test meter multi-event data and determine if at least one of the hand-held test meter multi-event data meets an associated predetermined condition, and if at least one of the associated predetermined conditions are met, prompt a user via the display module using, for example, a pop-up display message, to perform a control solution measurement using the hand-held test meter.
As employed herein, the term “hand-held test meter multi-event data” refers to data generated by, and/or, or programmed into, a hand-held test meter that incorporates data from multiple distinct events and, therefore, does not solely include current time data, elapsed time data or data related to a single hand-held test meter measurement. The hand-held test meter multi-event data and associated predetermined conditions are each indicative of a scenario (for example, introducing a new vial of test strips, the possibility of physical damage to the hand-held test meter, or that a user may suspect the hand-held test meter is not functioning properly) wherein a control solution measurement could beneficially verify the proper operation of the hand-held test meter. Such verification improves the overall analyte determination process by detecting improper hand-held test meter operation or reassuring a user that the hand-held test meter is operating properly.
Hand-held test meters according to embodiments of the present invention are beneficial in that, for example, they automatically prompt a user to perform a control solution measurement based an analysis of predetermined hand-held test meter multi-events and not on, for example, simple elapsed time data. Such prompts augment conventional control solution use instructions that are provided in a hand-held test meter's instruction booklet and/or on test strip labels, and are, therefore, beneficially convenient and useful to a user.
Referring to
To simplify the current descriptions, the
Once one skilled in the art is apprised of the present disclosure, he or she will recognize that an example of a hand-held test meter that can be readily modified as a hand-held test meter according to the present invention is the commercially available OneTouch® Ultra® 2 glucose meter from LifeScan Inc. (Milpitas, Calif.). Additional examples of hand-held test meters that can also be modified are found in U.S. Patent Application Publications No's. 2007/0084734 (published on Apr. 19, 2007) and 2007/0087397 (published on Apr. 19, 2007) and in International Publication Number WO2010/049669 (published on May 6, 2010), and Great Britain Patent Application No. 1303616.5, filed on Feb. 28, 2013, each of which is hereby incorporated herein in full by reference.
Microprocessor block 702 can be any suitable microprocessor block known to one of skill in the art including, but not limited to, a micro-controller. Suitable micro-controllers include, but are not limited to, micro-controllers available commercially from Texas Instruments (Dallas, Tex., USA) under the MSP430 series of part numbers; from ST MicroElectronics (Geneva, Switzerland) under the STM32F and STM32L series of part numbers; and Atmel Corporation (San Jose, Calif., USA) under the SAM4L series of part numbers).
Display module 704 can be any suitable display module including, for example, a liquid crystal display or a bi-stable display configured to show a screen image. Memory block 706 is operatively coupled to the microprocessor block and the display module and stores multi-event control solution measurement reminder instructions.
Display module 704, memory block 706, and microprocessor block 702 are configured such that the multi-event control solution measurement reminder instructions, when executed by the microprocessor block, retrieve predetermined hand-held test meter multi-event data (see, for example, Table 1 herein) and, determines if at least one of the hand-held test meter multi-event data meets an associated predetermined condition (see Table 1 herein), and if at least one of the associated predetermined conditions are met, prompts a user via the display module to perform a control solution measurement using the hand-held test meter.
A representative, but non-limiting sequence of steps that can occur during the execution of multi-event control solution measurement reminder instructions is depicted in
In data set and condition 1 of Table 1, data from test counter block 718 is employed and when the test count is an integer multiple of a predetermined number (e.g., the number of analytical test strips in a vial; for example, 25), the condition is considered met and the user is prompted to perform a control solution measurement (see blocks 820 and 830 of
In data set and condition 2 of Table 1, data from accelerometer block 708 (such as a 3-axis accelerometer block) is employed and when such data is indicative of a dropped hand-held test meter or significant physical jolt of the hand-held test meter (e.g., sudden acceleration or deceleration) a user is prompted to perform a control solution measurement to confirm proper operation of the hand-held test meter (see blocks 840 and 830 of
In data set and condition 3 of Table 1, data from timer block 710 is employed along with measurement result data and when such data indicate two measurements within a predetermined time period (for example, 2 minutes) and differing by more than a predetermined amount (for example, 20 mg/dL). A user is prompted to perform a control solution measurement to confirm proper operation of the hand-held test meter (see blocks 850 and 830 of
In data set and condition 5 of Table 1, a first time use flag is employed to trigger a user prompt (see blocks 870 and 830 of
In data set and condition 7 of Table 1, data from voltage monitor block 716 is employed when such data indicate indicates a voltage upset and subsequent hand-held test meter reset a user is prompted to perform a control solution measurement to confirm proper operation of the hand-held test meter (see blocks 890 and 830 of
Block 830 of
The sequence of events depicted in
Once apprised of the present disclosure, a variety of suitable predetermined hand-held test meter multi-event data and associated predetermined conditions can be devised by one skilled in the art. In this regard, the following table includes 7 sets of predetermined hand-held test data and associated predetermined conditions have been found to be particularly beneficial as members of a multi-event data. All 7 of these sets can be combined (as depicted in
The sequence of steps of a multi-event control solution measurement reminder as described herein can be wholly or partially may be embodied in a hand-held test meter as software including, for example, software (also known as a computer program) developed using suitable programming language known to one skilled in the art including, for example, an object oriented language, C language, C++ language, or a micro-controller code such as assembly language. Moreover, the required software can, for example, be stored in an independent memory block, or in a memory block integrated within a microprocessor block.
Method 900 also includes determining, by executing multi-event control solution measurement reminder instructions stored in the memory block, if at least one of the hand-held test meter multi-event data meets an associated predetermined condition (see step 920 of
Once apprised of the present disclosure, one skilled in the art will recognize that methods according to embodiments of the present invention, including method 900, can be readily modified to incorporate any of the techniques, benefits and characteristics of hand-held test meters according to embodiments of the present invention and described herein.
While the invention has been described in terms of particular variations and illustrative figures, those of ordinary skill in the art will recognize that the invention is not limited to the variations or figures described. In addition, where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art will recognize that the ordering of certain steps may be modified and that such modifications are in accordance with the variations of the invention. Additionally, certain of the steps may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. Therefore, to the extent there are variations of the invention, which are within the spirit of the disclosure or equivalent to the inventions found in the claims, it is the intent that this patent will cover those variations as well.