Not applicable.
Not applicable.
Not applicable.
The present invention generally relates to hand-held vacuum devices, more particularly, to hand-held vacuum devices for use in evacuating fluid from plastic storage pouches.
Vacuum packaging serves a myriad of purposes ranging from prolonging food storage to efficiently using storage space. Numerous vacuum devices are known including vacuum pump devices with various drive mechanisms. It is also known to use vacuum devices in conjunction with food storage containers, and the like, to make vacuum systems.
One vacuum device has a casing containing an electrical motor that drives a cylinder piston-unit forming part of a suction pump. The motor is interconnected with the cylinder piston-unit via a reducer group including a pinion, a crown gear, and an eccentric seat that actuates a connecting rod attached to the piston.
A hand-held suction device has a pump for drawing a vacuum and a motor for driving the pump. The device further has a vacuum sensor.
Another hand-held suction pump for creating a vacuum in a container has a suction valve, an elongated outer casing, an electrical motor, and a piston pump. The pump chamber of the piston pump is connected by an inlet valve and a suction duct to a hollow tip for coupling the suction valve of the container and an exhaust duct. The exhaust duct has a duct opening in the case for porting exhaust from the pump chamber. A baffle covers the exhaust duct.
Yet another suction device has a device for removing and storing excess grease from cooking utensils. The device has a vacuum assembly held within a hollow housing with an elongated nozzle. A port sealable with a removable cap provides an access for removal of grease held within an internal reservoir of the device.
An other hand-held portable apparatus for evacuating storage pouches has a case, a motor, a fan, and a flange operatively arranged to be coupled with a one-way valve on a storage pouch. Rechargeable batteries power the motor.
A container evacuation system has a storage food container and a vacuum pump. The container has a housing and a cover with a first non-return valve. The container evaluation pump can be driven by an electrical drive unit.
A vacuum packaging machine has a housing body, a top cover, a thermal sealing means, a base, and a vacuum generating means. The vacuum pressure generating means has a drive motor, a crank shaft, and a piston.
A storage system has a disposable vacuum pouch with a vacuum valve assembly. A portable vacuum pump assembly is structured to engage the vacuum valve assembly, and a liquid separator assembly is coupled to the portable vacuum pump assembly.
A combination car cleaner and air pump has a motor and a transmission consisting of a worm-gear rod, a worm-gear wheel, and a crank. The motor and transmissions are connected to a piston and a cylinder that draw a vacuum through a hose.
A vacuum extractor mounted in a one-way valve lid of a vacuum container has a motor, a worm, and a worm gear transmission mechanism. The worm gear has an eccentric seat and a rod at the eccentric seat to which is pivoted the link that drives a piston within a cylindrical casing. A head of the cylindrical casing is fastened to the outer side of a one-way valve mounted in a hole in the lid.
Another storage system has a disposable vacuum pouch with a vacuum valve assembly, a portable vacuum pump assembly structure to engage the vacuum valve assembly, and a liquid separator assembly coupled to the portable vacuum pump assembly.
A vacuum pump has a suction side and a vacuum conduit in fluid communication with the vacuum pump suction side. The vacuum conduit has a gas/liquid separator means.
One drive mechanism has a central operating shaft to which a pinion is secured. The pinion meshes simultaneously with a lower longitudinal toothed edge of a first rack plate and an upper longitudinal toothed edge of a second rack plate. Rotation of the pinion causes the first rack plate and the second rack plate to reciprocate in opposite directions.
Another drive mechanism has a pinion fixed upon a shaft and a driven element with an oval rack gear with a wall having an outer contour and a series of teeth that cooperate with the pinion. The pinion moves around and follows the contour of the wall, giving the driven member a vertically reciprocating movement.
Yet another drive mechanism has a spur gear engaging a sliding gear with internal teeth arranged in an oval. The sliding gear is slidable within a yoke via anti-friction rollers that contact opposite ends of the yoke. Guide rollers simultaneously traverse endless guide-ways causing the sliding gear to always remain in mesh with the teeth of the spur gear.
An additional drive mechanism has a carriage slidably mounted on rods and a triangular rack gear. A pinion fixed on a first shaft connected to a second shaft via a universal joint engages teeth of the rack gear. Rotary motion of the pinion causes the carriage to be reciprocated, and the stroke finishes when reciprocatory movement ceases while the pinion moves along the base of the triangle.
Still another drive mechanism has a geared rod with a base plate, upon which are a central lug and a table that form a loop-shaped groove with a rack. A pinion secured to a shaft meshes with the rack. Rotation of the pinion causes the base plate to move in an orbit.
A further drive mechanism has a drive shaft with a pinion that drives a driven element having an oval rack gear. As the pinion turns, the driven element is moved in a reciprocatory manner until the pinion reaches a curved portion of the driven element where the driven element is rocked and the direction of movement reversed.
A piston pump has a piston disposed within a cylinder and an oval rack gear pivotally mounted to the piston. A drive gear mounted on a drive shaft is internally adjacent to the teeth of the oval rack gear. Opposite to the piston, the oval rack gear has a runner that guides the oval rack gear to cooperatively engage the drive gear.
A dosing pump unit has a pump unit with a first chamber and a second chamber, and a first reciprocating piston and a second reciprocating piston movable in the respective first and second chambers, wherein the first and second chambers alternately communicate with inlet and outlet passages. In operation, the inlet passage is opened such that, while the first piston is displaced through a final portion of a first piston suction stroke and while the second piston is displaced through an initial portion of the second piston suction stroke, the inlet passage is fully open to both the first and second chambers.
Another drive mechanism has an actuator with an electrical motor and a transmission that drives an activation element, such as a rotatable arm or a longitudinally movable rod. The actuator has a transmission having a first stage that has a worm gear that drive a first worm wheel.
A two-stage reciprocating positive displacement compressor unit has cooling means that has at least one first rotary ventilation part driven by a rotary shaft for generating a cooling air flow.
In one aspect, a hand-held vacuum device for evacuating a container includes a housing to hold an electrical motor operable to drive a piston pump and a piston valve. The piston pump and the piston valve are configured to draw a substantially continuous vacuum during each complete cycle of the piston pump. The vacuum device further includes an expansion chamber releasably connected to and in fluid communication with the housing and the piston pump. The expansion chamber includes a deflector to alter a fluid pathway of a fluid before entering an interior volume of the expansion chamber. The vacuum device further includes a vacuum interface having a vacuum connector in fluid communication with the expansion chamber and configured to releasably couple to a valve disposed on a container, to form an airtight seal therewith. The expansion chamber separates air and liquid from the fluid drawn into the interior volume of the expansion chamber and collects the liquid therein.
In another aspect, a vacuum system includes a hand-held vacuum device having a housing including a piston pump that includes a first cylinder having a first piston and a first check-valve and a second cylinder having a second piston and a second check-valve. The housing further includes an electrical motor operatively connected to the worm gear wheel and the first piston, and a second piston shaft eccentrically connected to the worm gear wheel and the second piston. The hand-held vacuum device further includes an expansion chamber having an internal reservoir and a vacuum connector capable of forming a vacuum seal with a pouch valve. The expansion chamber is releasably secured to the housing to enable access to the reservoir, and prevents fouling of the piston pump when a vacuum is drawn through the vacuum interface. The vacuum system further includes a container having a valve disposed thereon to provide fluid communication with the hand-held vacuum device.
In a further aspect, a vacuum system includes a hand-held vacuum device having a housing including a piston pump that includes a cylinder having a piston, an electrical motor with a drive shaft with a worm gear attached thereon and in cooperative engagement with a worm gear wheel, a piston shaft eccentrically connected to the worm gear wheel, and a plurality of one-way valves associated with a proximal end and a distal end of the cylinder, to allow a vacuum to be drawn substantially continuously by the dual action pump as the piston is reciprocated from the distal end and from the proximal end. The hand-held vacuum device further includes an expansion chamber having an internal reservoir and a vacuum connector capable of forming a vacuum seal with a pouch valve. The expansion chamber is releasably secured to the housing to enable access to the reservoir, and prevents fouling of the piston pump when a vacuum is drawn through the vacuum interface. The vacuum system further includes a container having a valve disposed thereon to provide fluid communication with the hand-held vacuum device.
Other aspects and advantages of the present disclosure will become apparent upon consideration of the following detailed description, wherein similar structures have similar reference numbers.
The present disclosure is directed to apparatuses, such as vacuum pumps, that create a vacuum to evacuate a void volume and/or to remove a fluid or a material from a container. Illustrative vacuum pumps include, for example, pumps with a single piston or a plurality of pistons, such as, for example, two pistons that are configured to enable a substantially continuous vacuum to be drawn for each complete cycle of the piston pump. A container may include, for example, a sealable plastic container, a storage pouch with a valve, a can, a bottle, a hermetically sealable volume, a container with a removable lid with a valve associated therewith, and the like, and/or other containers suitable for vacuum packaging. It is further contemplated that the vacuum device may be configured to hinder and/or to prevent the fluid or material removed from the container entering and fouling the vacuum pump. While several specific embodiments are discussed herein, it is understood that the present disclosure is to be considered only as an exemplification of the principles of the invention. The present disclosure is not intended to limit the disclosure to the embodiments illustrated.
Turning now to the figures, one example of a vacuum device 10 is seen in
The configurations of the external elements of the vacuum device 10, including, for example, the housing 12 and the expansion chamber 20, may complement each other to enable the vacuum device to be used in a hand-held mode, as well as a hands-free mode. For example, a table top and/or surface-mounted vacuum device 100 is depicted in
As seen in
The sidewalls 132a, 132b of the container, and/or the closure mechanism 127 may be formed from thermoplastic resins by known extrusion methods. For example, the sidewalls 132a, 132b may be independently extruded of a thermoplastic material as a single continuous or multi-ply web, and the closure mechanism 127 may be extruded of the same or different thermoplastic material(s) separately as continuous lengths or strands. Illustrative thermoplastic materials include polypropylene (PP), polyethylene (PE), metallocene-polyethylene (mPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), ultra low density polyethylene (ULDPE), biaxially-oriented polyethylene terephthalate (BPET), high density polyethylene (HDPE), polyethylene terephthalate (PET), among other polyolefin plastomers and combinations and blends thereof. Further, the inner surfaces of the respective sidewalls 132a, 132b or a portion or area thereof may, for example, be composed of a polyolefin plastomer such as an AFFINITY™ resin manufactured by Dow Plastics. Such portions or areas include, for example, the area of one or both of the sidewalls 132a, 132b proximate to and parallel to the closure mechanism 127, to provide an additional cohesive seal between the sidewalls when the pouch 126 is evacuated of fluid. The sidewalls 132a, 132b may also be formed of air-impermeable film, such as an ethylene-vinyl alcohol copolymer (EVOH) ply adhesively secured between PP and LDPE plies to provide a multilayer film. Other additives, such as colorants, slip agents, and antioxidants, including, for example, talc, oleamide or hydroxyl hydrocinnamate may also be added as desired. The closure mechanism 127 may also be extruded primarily of molten PE with various amounts of slip component, colorant, and talc additives in a separate process. The fully formed closure mechanism 127 may be attached to the pouch body 133 using a strip of molten thermoplastic weld material, or by an adhesive known by those skilled in the art, for example. Other thermoplastic resins and air-impermeable films useful in the present invention include those disclosed in, for example, Tilman et al. U.S. Patent Application Publication No. 2006/0048483, now U.S. Pat. No. 7,290,660.
The containers and resealable pouch described herein can be made by various techniques known to those skilled in the art, including those described in, for example, Geiger et al. U.S. Pat. No. 4,755,248. Other useful techniques to make a resealable pouch include those described in, for example, Zieke et al. U.S. Pat. No. 4,741,789. Additional techniques to make a resealable pouch include those described in, for example, Porchia et al. U.S. Pat. No. 5,012,561. Still other techniques to make a container include those described in, for example, Zettle et al. U.S. Pat. No. 6,032,827 and Stanos et al. U.S. Pat. No. 7,063,231. Additional examples of making a resealable pouch as described herein include, for example, a cast post applied process, a cast integral process, and/or a blown process.
As shown in
Further, the expansion chamber 20, 120, 220 may be made of opaque and/or translucent materials and/or may include a transparent window 138, as seen in
In another embodiment, seen in
As shown in
The embodiments shown in
Further, the slotted configuration of the vacuum interface 22, 122, 222, 322 may enable, for example, the vacuum device 10, 100, 300 to accept a portion of the container 126 into the vacuum interface as shown in
As shown in
In the embodiments described herein having a slotted vacuum interface 22, 122, 222, 322, the vacuum interface may include an oblong and/or oval-shaped o-ring vacuum connector 28, 128, 228, 328 in fluid communication with the expansion chamber 20, 120, 220, 320 to releasably couple with the valve 131 and/or other aperture (not shown) disposed on the container 126 to form a vacuum seal with the valve and/or other aperture. Further, the vacuum connector 328, as shown in
In another embodiment seen in
Further, one or both of the pouch sidewalls 132a, 132b may be embossed or otherwise textured with a pattern, such as a diamond pattern to create flow channels 2025j on one or both surfaces spaced between a bottom peripheral edge of the pouch 2020b and the closure mechanism 2022, or a separate textured and embossed patterned wall (not shown) may be used to provide flow channels within an interior of the pouch 2010. The flow channels 2025 may provide fluid communication between the pouch interior and the valve 2024, when fluid is being drawn through the valve. Illustrated flow channels useful in the present invention include those disclosed in, for example, Zimmerman et al. U.S. Patent Application Publication No. 2005/0286808, now U.S. Pat. No. 7,726,880, and Tilman et al. U.S. Patent Application Publication No. 2006/0048483, now U.S. Pat. No. 7,290,660. Other flow channels useful in the present invention include those disclosed in, for example, U.S. Pat. No. 7,887,238, filed on the same day as the present application.
In addition, as seen in
In yet another embodiment seen in
In one embodiment, seen in
In another embodiment seen in
Illustrative vacuum pumps useful in the present disclosure include those shown in
In the embodiments shown in
Drawing a substantially continuous vacuum may enable a more linear and potentially a faster decrease in pressure from a container being evacuated as compared to a standard vacuum device with a conventional single piston that provides a pulsed or stepped decrease in pressure due to a requisite lag phase that follows each draw phase, for example, a drawing upstroke would be followed by an exhausting down stroke. Substantially continuous vacuum piston pumps minimize such a lag phase and may thus potentiate a more efficient and/or faster evacuation of a container from which a material is being extracted. Substantially continuous vacuum piston pumps may also use less energy to evacuate certain containers. For example, a container with a valve that utilizes a tacky or an adhesive sealing method may be evacuated more efficiently using a substantially continuous vacuum piston pump, because the valve would remain open throughout the evacuation rather than closing intermittently during drops in or plateauing of pressure during lag phases of a conventional piston pump. In addition, greater efficiency associated with substantially continuous vacuum piston pumps leads to a more efficient motor use that may extend motor and/or battery life and/or conserve electricity.
Illustratively for a hand-held vacuum device including those shown in
Referring now to
By varying the point of attachment of the piston rod 870a, 8701b on the worm-gear wheel 860, the piston stroke length, number of strokes per minute, and phase of the first piston and the second piston with respect to each other may be adjusted accordingly at a given number of revolutions by the electrical motor 852. Alternatively or in addition to altering placement of the pin 868 to achieve the above-mentioned variations, the motor gear 856 may be enmeshed with a transmission (not shown) that includes one or more gears to increase or to decrease the power provided by the electrical motor 852 to the piston 862a, 862b. Additional gear sizes, as well as different gearing system, for example, that incorporate a belt, a pulley, a chain, or a combination thereof are contemplated for driving piston pumps contemplated herein.
Referring now to
The cylinder 964 further includes a cylinder end cap 976 on both ends thereof. The cylinder end cap 976, as shown in
When occluded, the closure mechanism 2022 provides an airtight seal, such that a vacuum may be maintained in the pouch interior 2016 for a desired period of time, such as days, months, or years, when the closure mechanism is sealed fully across the opening 2018. In one embodiment, the pouch 2010 may include a second opening 2018a through one of the sidewalls 2012, 2014 covered by a valve 2024, such as a check or one-way valve, to allow air to be evacuated from the pouch interior 2016 and to maintain a vacuum when the closure mechanism 2022 has been sealed. As shown in
The closure mechanism 2022 includes a first closure element 2026 that releasably interlocks and seals with an opposing second closure element 2028. Each of the closure elements 2026, 2028 has a substantially constant elongate cross-sectional profile that extends longitudinally between the peripheral edge 2020a and the peripheral edge 2020c of the pouch 2010 to form a continuous seal therealong when fully interlocked with the opposing closure element. In one embodiment, the first closure element 2026 is disposed on an interior surface 2034 of the second sidewall 2014 and the second closure element 2028 is disposed along an exterior surface 2036 of the first sidewall 2012. In other embodiments, the orientation of the closure elements 2026, 2028 with respect to the sidewalls 2012, 2014 may be reversed accordingly.
The vacuum system 2000 further includes a vacuum device 2100 similar to those described above to evacuate fluid from the pouch 2010 through, for example, the valve 2024 disposed in one side of the walls 2012, 2014. The vacuum device 2100 includes a housing 2112 that holds a vacuum source (not shown) and an expansion chamber 2120 in fluid communication with the housing. The vacuum device 2100 includes an electrical cord 2114 attached to the housing 2112 via a swivel connection 2116 to power the vacuum source. The vacuum devices 2100 further includes a user-activated switch 2118 for activation of the vacuum source. A vacuum interface 2122 includes an integral, conical shape and/or suction cup-shaped vacuum connector 2128 to enable a vacuum connection between the vacuum device 2100 and the valve 2024 on the pouch 2010.
The vacuum device 3100 includes a housing 3112 that holds a suitable vacuum source and an expansion chamber 3120 in fluid communication with the housing to which an electrical cord 3114 is attached via a swivel connection 3116, to power the vacuum source. A user-activated switch 3118 can be used to activate the vacuum source. A vacuum interface 3122 has a slotted configuration, similar to those described above, to enable a vacuum connection between the vacuum device 3100 and the pouch 3010 to be established upon guiding the closure mechanism 3022 and the valve 3023 into a recessed channel 3329 (seen in
Proper alignment and establishment of a vacuum connection between the valve 3023 and a vacuum connector 3328 (seen in
An enlarged partial cross section taken generally along lines 24-24 of the interlocking engagement of the closure mechanism 3022 with the vacuum interface 3122 of the vacuum system of
For clarity, the following description of one contemplated embodiment for the valve 3023 within the closure mechanism refers only to one portion of the valve within the closure mechanism during the application of a vacuum by the vacuum device 3100, where a vacuum connection has been established between the pouch 3010 and the vacuum device 3100. This description applies similarly to the remainder of the closure mechanism 3022, as indicated by the curved arrows. Induction of a vacuum by the vacuum device 3100 draws fluid from the interior of the pouch 310 past a cantilevered flap 3080 extending from a flange 3074 toward a post 3042a with an arrow-shaped head 3052 disposed thereon. The fluid is then drawn into a channel 3060 formed between an exterior leg 3066a and the post 3042a and out of the pouch 3010 through apertures 3082 disposed on an end of the closure element 3028 and aligned with a space 33342 between the closure element and an aperture (not shown) leading into a deflector 3235 of the expansion chamber 3120.
Another embodiment contemplated herein is shown in
The present disclosure provides a vacuum device that enables the evacuation of storage containers, such as a vacuum storage pouch, through valves on the containers. Expansion chambers separate materials evacuated from the containers to protect vacuum sources and to prolong usage of the vacuum devices. The piston pumps utilized herein may also provide an efficient vacuum source by providing a substantially continuous vacuum.
Numerous modifications will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is presented for the purpose of enabling those skilled in the art to make and to use the invention and to teach the best mode of carrying out the same. The exclusive rights to all modifications within the scope of the impending claims are reserved. All patents, patent publications and applications, and other references cited herein are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2226145 | Smith | Dec 1940 | A |
2465554 | Roy | Mar 1949 | A |
2629539 | Drewes, Jr. | Feb 1953 | A |
2635550 | Granberg | Apr 1953 | A |
2821338 | Metzger | Jan 1958 | A |
3149772 | Olsson | Sep 1964 | A |
3237844 | Hughes | Mar 1966 | A |
3302859 | Perry | Feb 1967 | A |
3703170 | Ryckman, Jr. | Nov 1972 | A |
3762404 | Sakita | Oct 1973 | A |
3811432 | Moret | May 1974 | A |
3977084 | Sloan | Aug 1976 | A |
4033511 | Chamberlin | Jul 1977 | A |
4051971 | Saleri et al. | Oct 1977 | A |
4072210 | Chien | Feb 1978 | A |
4080105 | Connell | Mar 1978 | A |
4085886 | Nishioka | Apr 1978 | A |
4134535 | Barthels et al. | Jan 1979 | A |
4310118 | Kisida et al. | Jan 1982 | A |
4389166 | Harvey et al. | Jun 1983 | A |
4524460 | Twiehoff et al. | Jun 1985 | A |
4576283 | Fafournoux | Mar 1986 | A |
4656687 | Wei | Apr 1987 | A |
4712983 | Moynihan | Dec 1987 | A |
4741789 | Zieke et al. | May 1988 | A |
4755248 | Geiger et al. | Jul 1988 | A |
4832096 | Kohlbach | May 1989 | A |
4927474 | Pawloski | May 1990 | A |
4984611 | Takatsuki et al. | Jan 1991 | A |
5012561 | Porchia et al. | May 1991 | A |
5195427 | Germano | Mar 1993 | A |
5203458 | Cornwell | Apr 1993 | A |
5215445 | Chen | Jun 1993 | A |
5254073 | Richison et al. | Oct 1993 | A |
5263777 | Domke | Nov 1993 | A |
5287680 | Lau | Feb 1994 | A |
5304041 | Fontanazzi et al. | Apr 1994 | A |
5351828 | Becker et al. | Oct 1994 | A |
5388910 | Koyanagi | Feb 1995 | A |
5450963 | Carson | Sep 1995 | A |
5655273 | Tomic et al. | Aug 1997 | A |
5689866 | Kasai et al. | Nov 1997 | A |
5701996 | Goto et al. | Dec 1997 | A |
5762480 | Adahan | Jun 1998 | A |
5765608 | Kristen | Jun 1998 | A |
5784862 | Germano | Jul 1998 | A |
5806575 | Tsay | Sep 1998 | A |
5971613 | Bell | Oct 1999 | A |
5988426 | Stern | Nov 1999 | A |
5989608 | Mizuno | Nov 1999 | A |
5992442 | Urquhart et al. | Nov 1999 | A |
5992635 | Walters | Nov 1999 | A |
5996800 | Pratt | Dec 1999 | A |
6010244 | Dobreski et al. | Jan 2000 | A |
6032827 | Zettle et al. | Mar 2000 | A |
6039182 | Light | Mar 2000 | A |
6045264 | Miniea | Apr 2000 | A |
6056439 | Graham | May 2000 | A |
6059457 | Spreche et al. | May 2000 | A |
6185796 | Ausnit | Feb 2001 | B1 |
6216314 | Dangerfield | Apr 2001 | B1 |
6231236 | Tilman | May 2001 | B1 |
6299353 | Piechocki et al. | Oct 2001 | B1 |
6468332 | Goglio et al. | Oct 2002 | B2 |
6513659 | Ogura et al. | Feb 2003 | B1 |
6520071 | Lanza | Feb 2003 | B1 |
6626092 | Tarlow | Sep 2003 | B2 |
6637939 | Huffer | Oct 2003 | B2 |
6663284 | Buckingham et al. | Dec 2003 | B2 |
6763857 | Brown | Jul 2004 | B2 |
6770006 | Abrahamsen | Aug 2004 | B2 |
6954969 | Sprehe | Oct 2005 | B1 |
6955465 | Machacek et al. | Oct 2005 | B2 |
6968870 | Tsay | Nov 2005 | B1 |
6971417 | Deni | Dec 2005 | B2 |
6983845 | Shah et al. | Jan 2006 | B2 |
7004632 | Hamilton et al. | Feb 2006 | B2 |
7041249 | Wright et al. | May 2006 | B2 |
7063231 | Stanos et al. | Jun 2006 | B2 |
7076929 | Patterson et al. | Jul 2006 | B2 |
D525823 | Littmann | Aug 2006 | S |
7096893 | Vilalta et al. | Aug 2006 | B2 |
7127875 | Cheung | Oct 2006 | B2 |
7178555 | Engel et al. | Feb 2007 | B2 |
7197860 | Hughes et al. | Apr 2007 | B2 |
7197861 | Higer et al. | Apr 2007 | B2 |
7200974 | Higer et al. | Apr 2007 | B2 |
7204067 | Baptista | Apr 2007 | B2 |
7207160 | Baptista | Apr 2007 | B2 |
7244223 | Hartman et al. | Jul 2007 | B2 |
7246555 | Small et al. | Jul 2007 | B2 |
D550717 | Saunders et al. | Sep 2007 | S |
D550718 | Saunders et al. | Sep 2007 | S |
7272919 | Cheung | Sep 2007 | B2 |
D552625 | Saunders et al. | Oct 2007 | S |
7284361 | Lau | Oct 2007 | B2 |
7290660 | Tilman et al. | Nov 2007 | B2 |
7305742 | Anderson | Dec 2007 | B2 |
7389629 | Tretina | Jun 2008 | B2 |
7410298 | Pawloski | Aug 2008 | B2 |
7527585 | Anzini et al. | May 2009 | B2 |
7726880 | Zimmerman et al. | Jun 2010 | B2 |
7784160 | Dais et al. | Aug 2010 | B2 |
7837387 | Newrones et al. | Nov 2010 | B2 |
7857515 | Dais et al. | Dec 2010 | B2 |
7874731 | Turvey et al. | Jan 2011 | B2 |
7886412 | Dais et al. | Feb 2011 | B2 |
7887238 | Turvey et al. | Feb 2011 | B2 |
7937914 | Savicki et al. | May 2011 | B2 |
7946766 | Dais et al. | May 2011 | B2 |
7967509 | Turvey et al. | Jun 2011 | B2 |
20040000336 | Goglio | Jan 2004 | A1 |
20040000503 | Shah et al. | Jan 2004 | A1 |
20040049896 | Savicki | Mar 2004 | A1 |
20040112458 | Brown | Jun 2004 | A1 |
20050013720 | Wilk et al. | Jan 2005 | A1 |
20050022472 | Brakes et al. | Feb 2005 | A1 |
20050028493 | Small et al. | Feb 2005 | A1 |
20050029152 | Brakes et al. | Feb 2005 | A1 |
20050039421 | Cheung | Feb 2005 | A1 |
20050081948 | Deni | Apr 2005 | A1 |
20050135945 | Nelson et al. | Jun 2005 | A1 |
20050175469 | Lucchi | Aug 2005 | A1 |
20050286808 | Zimmerman et al. | Dec 2005 | A1 |
20060008187 | Armstrong | Jan 2006 | A1 |
20060030472 | Hartman et al. | Feb 2006 | A1 |
20060048483 | Tilman et al. | Mar 2006 | A1 |
20060050999 | Blythe et al. | Mar 2006 | A1 |
20060093242 | Anzini et al. | May 2006 | A1 |
20060110079 | Zimmerman et al. | May 2006 | A1 |
20060157140 | Bergman et al. | Jul 2006 | A1 |
20060182371 | Borchardt | Aug 2006 | A1 |
20060193540 | Borchardt | Aug 2006 | A1 |
20060213148 | Baptista | Sep 2006 | A1 |
20060228057 | Newrones et al. | Oct 2006 | A1 |
20060263497 | Hoffman | Nov 2006 | A1 |
20070154118 | Tilman et al. | Jul 2007 | A1 |
20070155607 | Bassett et al. | Jul 2007 | A1 |
20070172157 | Buchman | Jul 2007 | A1 |
20070209326 | Tretina | Sep 2007 | A1 |
20070232473 | Hartman et al. | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
1 901 372 | Sep 1964 | DE |
1 486 280 | Apr 1969 | DE |
23 31 862 | Jan 1975 | DE |
24 54 248 | May 1976 | DE |
28 48 835 | May 1980 | DE |
33 12 887 | Oct 1984 | DE |
34 11 371 | Oct 1985 | DE |
35 21 373 | Dec 1986 | DE |
43 05 065 | Aug 1994 | DE |
198 43 430 | Feb 2000 | DE |
144 011 | Jun 1985 | EP |
149 695 | Jul 1985 | EP |
373 833 | Jun 1990 | EP |
729 901 | Sep 1996 | EP |
2 380 953 | Feb 1978 | FR |
2 695 108 | Mar 1994 | FR |
63-117180 | May 1988 | JP |
4-60847 | May 1992 | JP |
WO 0071422 | Nov 2000 | WO |
WO 2004108556 | Dec 2004 | WO |
WO 2004108557 | Dec 2004 | WO |
WO 2005000706 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20080308177 A1 | Dec 2008 | US |