The present invention relates to hand-holdable vacuum cleaners. Such vacuum cleaners are well known for collecting dust and dirt, although wet-and-dry variants which can collect spilled liquids as well are also known. Typically, they are intended for use in a domestic environment, although they also find uses in other environments, such as worksites. Generally, hand-holdable vacuum cleaners are electrically powered and comprise an electric motor, an electrical on-off switch for a user to operate said motor, a fan connected to an output shaft of said motor, an inlet for dirty air, an outlet for clean air and a collection chamber for dust, dirt and possibly also liquids. Electrical power for the motor may be provided by a source of mains electricity, in which case the vacuum cleaner will further comprise an electrical power cable, by a removable and replaceable battery pack, or by one or more in-built rechargeable cells, in which case the vacuum cleaner will further comprise some means, such as a jack plug, for connecting the vacuum cleaner to a recharging unit. When the vacuum cleaner is provided with electrical power from one of these sources and the on-off switch is set to the “on” position, the electric motor drives the fan to draw dirty air along an airflow pathway in through the dirty air inlet, via the collection chamber to the clean air outlet. Interposed at some point along the airflow pathway, there is also provided some means for separating out dust and dirt (and possibly also liquids) entrained with the dirty air and depositing these in the collection chamber. This separation means may comprise one or more filters and/or a cyclonic separation device. An example of such a hand-holdable vacuum cleaner in which the separation means comprises a filter is disclosed in European patent application no. EP 1 523 916 in the name of the present applicant.
More specifically, the present invention relates to hand-holdable vacuum cleaners comprising a component part which can be adjusted to allow the dirty air inlet of the vacuum cleaner to be pointed in different directions, whilst a user of the vacuum cleaner is able to hold the vacuum cleaner in the same orientation. This has the advantages that the vacuum cleaner may be used to access awkward spaces and can be held more comfortably by orienting a main axis of the vacuum cleaner to suit the user and adjusting the position of the dirty air inlet to be in proximity to a surface to be cleaned, rather than orienting the main axis of the vacuum cleaner to best suit the surface to be cleaned and requiring the user to hold the vacuum cleaner in whichever orientation this demands. A hand-holdable vacuum cleaner of this type, which has a pivotable nose comprising the dirty air inlet, is disclosed in U.S. Pat. No. 4,573,237.
Hand-holdable vacuum cleaners provided with a flexible hose attachment which give the same advantages as these are also known. An example of a hand-holdable vacuum cleaner with such a flexible hose attachment is described in German utility model no. DE 203 14 544 U. However, these vacuum cleaners have other disadvantages over vacuum cleaners of the type disclosed in U.S. Pat. No. 4,573,237, which are as follows. Firstly, the hose attachment must either be stored on the vacuum cleaner itself, as in DE 203 14 544 U, which takes up valuable room, or if it is removable, it must be stored elsewhere, in which case it may become lost or may not be readily to hand when required. Secondly, the flexible hose attachment must be supported in use by a hand of a user.
However, whereas vacuum cleaners of the type disclosed in U.S. Pat. No. 4,573,237 are advantageous for these reasons over hand-holdable vacuum cleaners provided with a flexible hose attachment, there is still room for considerable improvement over the type of vacuum cleaner disclosed in U.S. Pat. No. 4,573,237. Specifically, in spite of the disadvantages of flexible hose attachments just stated, a flexible hose attachment can access a wider range of angles than a vacuum cleaner of the type disclosed in U.S. Pat. No. 4,573,237 and can also access narrower spaces in comparison thereto.
Accordingly, the present invention has as its object the provision of an improved hand-holdable vacuum cleaner comprising means for adjusting an angle of the dirty air inlet thereof relative to a main axis of the vacuum cleaner, which has improved reach in comparison to a vacuum cleaner of the type disclosed in U.S. Pat. No. 4,573,237, but which need not comprise a flexible hose attachment to achieve the same.
The present invention aims to achieve this object by providing a hand-holdable vacuum cleaner comprising an electric motor; an electrical on-off switch for operating said motor; a fan connected to an output shaft of said motor; an airflow pathway comprising an inlet for dirty air, an outlet for clean air, and a collection chamber located in fluid communication between said inlet and said outlet; means for separating out debris entrained with dirty air entering via said inlet and depositing the debris in said collection chamber; and means for adjusting an angle of said inlet relative to a main axis of said vacuum cleaner; further comprising a rigid, elongate nose having said inlet at one end thereof, said nose being pivotable relative to said main axis through an angle of at least 135 degrees.
A hand-holdable vacuum cleaner with these features has several advantages, as follows. Firstly, the elongate nose may be pivoted from a first, folded position in which it is angled alongside the main axis of the vacuum cleaner, allowing the vacuum cleaner to be stored in a very compact overall space, to a second, extended position in which it is angled by only a small amount or not at all to the main axis of the vacuum cleaner to provide an extension thereof. Secondly, since the nose is rigid and elongate and has the dirty air inlet located at one end thereof, it may be introduced into narrow spaces without any need to be supported by a hand of a user. This is advantageous over a flexible hose attachment of the prior art, which must be supported by a hand of a user and consequently cannot be introduced into spaces which are too narrow or awkward to provide access to a human hand. Thirdly, since the nose can pivot through an angle relative to the main axis of the vacuum cleaner of at least 135 degrees, this allows the vacuum cleaner to be held comfortably by a user in a single orientation, but have the dirty air inlet thereof directed in a very wide variety of different directions.
Preferably, the nose is pivotable relative to the main axis of the vacuum cleaner through an angle of more than 180 degrees. This allows the nose not only to be bent at an acute or obtuse angle relative to the main axis of the vacuum cleaner, but also at a reflex angle, allowing the vacuum cleaner to be held by a user in the same orientation as for acute and obtuse angles, but for the dirty air inlet to be directed upwardly towards the user, which allows the vacuum cleaner to be comfortably used for cleaning under furniture, for example.
It is also desirable that the pivotable nose can be releasably engaged in one or more fixed positions throughout its full range of angles of pivot, for example in the folded-back position of 0 degrees, in the straight-line position of 180 degrees and in a number of other positions such as 45, 90, 135, 225 and 270 degrees. This can be achieved by providing the pivotable nose or a part of the vacuum cleaner rigidly connected thereto with first engagement means and a part of the vacuum cleaner rigidly connected to a main body thereof housing the motor and the fan with second engagement means adapted to engage with the first engagement means, and also by providing the vacuum cleaner with a resiliently □iased button which a user can depress to disengage the first engagement means from the second engagement means, thereby releasing the pivotable nose from engagement in one of the aforementioned positions.
In a preferred embodiment which gives the vacuum cleaner even greater access to restricted spaces, the nose can further comprise a rigid telescopic extension tube. Such an extension tube on the nose of a hand-holdable vacuum cleaner is known, for example, from U.S. Pat. No. 4,610,048 and international patent publication no. WO2004/069021. However, the combination of such an extension tube with a nose which can pivot through an angle relative to the main axis of the vacuum cleaner of at least 135 degrees is not known from the prior art and gives the vacuum cleaner greatly increased versatility in its ability to access awkward spaces.
The separating means of the vacuum cleaner may comprise one or more filters and/or a cyclonic separation device. In a preferred embodiment, the separating means comprises a filter located within the collection chamber, and the collection chamber has a substantially cylindrical shape about a central axis oriented at right angles to the main axis of the vacuum cleaner, with the filter arranged in an axially symmetric fashion concentric with the central axis of the collection chamber. In this embodiment, the pivotable nose is also arranged to pivot about the central axis of the collection chamber and a dirty air outlet from the nose is arranged to enter the collection chamber on a cylindrical side wall thereof. Finally, the clean air outlet from the collection chamber is located within said filter. Thus during operation of the vacuum cleaner of this embodiment, dirty air enters the collection chamber from the dirty air outlet of the nose at a tangent to the cylindrical side wall of the collection chamber regardless of the angle of the pivotable nose relative to the main axis of the vacuum cleaner, and swirls around the centrally located filter which separates out dust and dirt entrained with the dirty air and deposits these in the collection chamber, before the clean air exits the collection chamber from the clean air outlet located within the filter. This arrangement has several advantages, as follows. Firstly, before it enters the collection chamber, the dirty air travels in a straight line regardless of the angle of the pivotable nose, which has the effect of maximising the velocity of the dirty air and minimising turbulence, therefore improving the vacuum cleaner's ability to pick up dirt. Secondly, the dirty air always enters the collection chamber tangentially and since the collection chamber has a substantially cylindrical shape, this enables the collection chamber to act as a cyclonic separator, flinging the entrained dirt outwards centrifugally as it swirls around the centrally located filter. This cyclonic separation aids the operation of the filter and may be optimised still further by the filter being provided with a conical or frusto-conical shape, which helps to separate out different sizes of dirt particle at different locations along the central axis of the filter.
In a further preferred embodiment of the embodiment of the vacuum cleaner just described, the collection chamber comprises a hinged door on an end face thereof opposite to said clean air outlet. This allows the collection chamber to be emptied of accumulated dust and dirt by a user merely opening the hinged door and tipping the contents of the collection chamber out. This has the advantage that the user does not have to touch either the dust and dirt or any components of the vacuum cleaner which come into contact with dust and dirt in order to empty the vacuum cleaner.
Preferably the door is held by a main body of the vacuum cleaner which houses the motor and the fan. Thus the door maintains the same orientation relative to the main body of the vacuum cleaner regardless of the angle of the pivotable nose. This is more convenient and less confusing for a user.
If the door is held by the main body of the vacuum cleaner in this fashion, it is also preferable for the filter located within the collection chamber to be rotatable relative to the door when the nose is pivoted and for an interior face of the door to be provided with a series of radial tangs and for an end face of the filter adjacent to the interior face of the door to have a corresponding set of radial tangs. If the combined height of the tangs on the interior face of the door and on the end face of the filter is greater than the separation between the interior face of the door and the end face of the filter, the two facing sets of tangs will overlap each other, such that when the pivotable nose is rotated relative to main axis of the vacuum cleaner, the tangs of the filter will engage with the tangs on the door and agitate the filter, thereby dislodging dust and dirt adhering to the filter and causing it to be deposited in the collection chamber. This filter cleaning mechanism has the advantage that it allows the filter to be cleaned by a user merely pivoting the nose of the vacuum cleaner relative to the main body thereof and without the need to touch the dirty filter at all.
Alternatively, the same filter cleaning effect may be achieved by the filter being held immovable relative to the main body of the vacuum cleaner during operation and the door being rotatable relative to the filter when the nose is pivoted, provided that sets of opposing tangs are provided on the interior face of the door and on the end face of the filter in a similar fashion.
Alternatively, the collection chamber may comprise a door on the cylindrical side wall thereof instead of on an end face thereof opposite to the clean air outlet. This is less preferred because the collection chamber is less easy to empty and the door opening mechanism may interfere with rotation of the pivotable nose. However, in this case, the same filter cleaning effect may be achieved by providing a series of radial tangs on the end face of the collection chamber opposite to the clean air outlet instead of on the door.
All of the above alternative arrangements for filter cleaning are unified by the common inventive concept of opposing and overlapping sets of radial tangs provided on the filter and on another part of the vacuum cleaner which are caused to rotate relative to each other when the nose of the vacuum cleaner is pivoted in order to agitate the filter. However, in yet another alternative arrangement of a filter cleaning mechanism, regardless of whether a door is located on the end face of the collection chamber opposite to the clean air outlet or on the cylindrical side wall thereof, instead of the set of radial tangs on the filter and the set of tangs on another part of the vacuum cleaner being caused to rotate relative to each other when the nose is pivoted, one of the sets of tangs may instead be coupled to a filter cleaning wheel which a user can rotate in order to cause the set of tangs coupled thereto to rotate relative to the other set of tangs, in the manner already disclosed in EP 1 523 916 in the name of the present applicant.
Notwithstanding the foregoing, the filter may still be removable and replaceable when the vacuum cleaner is not in use, so that a worn, damaged or permanently clogged filter may be substituted by a new one.
The filter may also comprise a plurality of filter elements, such as a course filter for filtering larger particles of dirt and a fine filter contained therein for filtering finer particles of dust from the airflow pathway. The filter elements may themselves be independently removable and replaceable.
In embodiments in which the collection chamber has a substantially cylindrical shape about a central axis oriented at right angles to the main axis of the vacuum cleaner, it is also preferable for the motor and the fan to be oriented in the main body of the vacuum cleaner with the output shaft of the motor and the fan's axis of rotation parallel to the central axis of the collection chamber and at right angles to the main axis of the vacuum cleaner. This is in contrast to the conventional orientation of the motor and the fan in a hand-holdable vacuum cleaner, which is usually along or parallel to the main axis of the vacuum cleaner (as in, for example, EP 1 523 916). This new arrangement has several advantages over the conventional layout, as follows. Firstly, it is beneficial for the overall compactness of the vacuum cleaner, considering that the collection chamber is already oriented at right angles to the main axis of the vacuum cleaner. Secondly, it means that the fan can be located on the same side of the vacuum cleaner as the clean air outlet from the collection chamber and in close proximity thereto, thereby shortening the airflow pathway between these two components, which improves the overall speed and efficiency of the vacuum cleaner in operation. Thirdly, if the fan is configured as an impeller which draws air in axially thereto and expels air out radially therefrom, the main body of the vacuum cleaner can also be provided with one or more exhaust vents on the rear of the main body, i.e. in a location opposite to the dirty air inlet of the pivotable nose when the nose is in its fully extended or 180-degree position. In this way, air expelled by the fan will travel in a straight-line path from the fan to the exhaust vents without having to be directed around any corners, but is nonetheless also directed away from a surface to be cleaned in completely the opposite direction to the dirty air inlet to the nose, which avoids disturbing dust and dirt on the surface to be cleaned with the exhausted air. The same desirable objective of not disturbing dust and dirt on a surface to be cleaned with clean air from the exhaust vents on a hand-holdable vacuum cleaner of a conventional layout can only be achieved if the exhaust vents are also located on the rear of the main body of the vacuum cleaner. However in this case, air expelled by the impeller has to be directed around one or more corners within the body in order to reach the exhaust vents, since the orientation of the fan's axis of rotation parallel to the main axis of the vacuum cleaner means that the fan expels air at right angles to the main axis, sideways to the main body. This both increases the length of the airflow pathway between the fan and the exhaust vents in the conventional arrangement and also increases the turbulence of the exhausted air. Accordingly, the proposed new arrangement has improved speed and efficiency of airflow in comparison thereto, as well as reduced noise, which is generated by turbulent air.
In another preferred embodiment, the vacuum cleaner may be adapted to stand on the rear end of the main body of the vacuum cleaner. This allows the vacuum cleaner to be stood in a very small surface area, and if the nose is pivoted to its folded-back position at 0 degrees to the main axis of the vacuum cleaner, this can be achieved without the vacuum cleaner having an excessive height. Moreover, if the vacuum cleaner is a rechargeable model, the rear end of the main body of the vacuum cleaner can also be provided with means for connecting the vacuum cleaner to a recharging unit, such as a jack plug, which allows the vacuum cleaner to be stood on its rear end on a recharging unit also occupying a small surface area.
Finally, the nose of the vacuum cleaner may be provided with an one-way valve in the form of a flap composed of a resilient material, such as rubber, which allows dirty air to enter the nose via the dirty air inlet when the vacuum cleaner is in operation, but which prevents dust and dirt from leaving the nose via the dirty air inlet under the influence of gravity if the nose is directed downwards when the vacuum cleaner is not in operation. Such a one-way valve in the form of a rubber flap is known from conventional hand-holdable vacuum cleaners, but is particularly desirable in embodiments of the present vacuum cleaner, considering that it is likely to be stored with the pivotable nose directed downwards when the vacuum cleaner is not in operation.
Further features and advantages of the present invention will be better understood from the following detailed description, which is given by way of example and in association with the accompanying drawings, in which:
Referring firstly to
In all of
In this embodiment, the nose 30 is rigidly connected to a central portion 22 of the collection chamber 20. End faces 24, 26 of the collection chamber on the other hand are rigidly connected to the main body 10 of the vacuum cleaner, so that as nose 30 pivots about axis Y-Y′, central portion 22 of the collection chamber 20 rotates relative to the end faces 24, 26. The outer surface of central portion 22 is provided with two sets of teeth on each end thereof adjacent end faces 24 and 26, and the inner surfaces of end faces 24, 26 are each provided with second sets of teeth which are adapted to engage with respective ones of the two sets of teeth provided on central portion 22. Accordingly, nose 30 cannot pivot relative to main body 10 because the interengaging sets of teeth prevent movement of central portion 22 relative to end faces 24, 26. However, mounted on handle 40, in addition to electrical on-off switch 42, is a further button 34, which is resiliently biassed and which when depressed by a user, will disengage the sets of teeth mounted on end faces 24, 26 from the two sets of teeth provided on central portion 22, thereby allowing nose 30 to pivot freely relative to main body 10. Nose 30 can therefore be locked in position at whatever angle the user desires from across the full range of angles available for the nose to pivot through, until such time as the user wishes to unlock the nose and adjust it to a new angle by depressing button 34.
A user can gain access to collection chamber 20 to empty the accumulated dust and dirt therefrom by means of a door 60 mounted on end face 26 opposite to said clean air outlet. Door 60, which is shown in an open condition in
In this embodiment, an interior face 68 of door 60 is provided with a series of radial tangs 70. These tangs 70 cooperate with a corresponding set of radial tangs 72 provided on the end face 52 of filter 50. The combined height of tangs 70 and 72 is greater than the separation between the interior face 68 of the door 60 and the end face 52 of the filter 50, so that the two facing sets of tangs 70,72 will overlap each other when door 60 is in a closed condition. Tangs 70 are coupled to a filter cleaning wheel 74 which is movable within door 60, such that it can be rotated relative thereto. As can be seen in
In an alternative embodiment not shown in
In a still further alternative embodiment also not shown in the figures, the door may instead be provided on the cylindrical side wall 28 of collection chamber 20, and may, for example, be a sliding, rather than a hinged door, thereby allowing a user to gain access to collection chamber 20 to empty dust and dirt therefrom. In this further alternative embodiment, only one of end face 26 and filter 50 is caused to rotate when a nose of the vacuum cleaner is pivoted, but the other of the end face 26 and filter 50 is held immovable, so that filter 50 and end face 26 are rotated relative to each other when the nose is pivoted. This alternative embodiment therefore also dispenses with the need for filter cleaning wheel 74, and means that the tangs 70 will engage with tangs 72 and agitate filter 50 whenever the nose of the vacuum cleaner is pivoted.
Referring now to
As can also be seen from
Finally,
Number | Date | Country | Kind |
---|---|---|---|
05255024.1 | Aug 2005 | EP | regional |