The present invention is based on a hand power tool as generically defined by the preamble to claim 1.
From European Patent Disclosure EP 152 564, a hand power tool is known whose disklike tool can be detachably secured to a work spindle for rotational slaving by means of flanges that can be locked in screwable or bayonetlike fashion.
This hand power tool has a fast-action clamping means, with a tension spindle which passes through the work spindle and pulls the outer of the flanges against the disklike tool. The clamping stroke of the tension spindle must be adapted to disklike tools of different thickness, so that an adequate clamping force for fixation of a given tool can be achieved.
Adapting the clamping stroke is complicated and time-consuming.
The present invention having the characteristics of claim 1 has the advantage that with the hand power tool, disklike tools of different thickness can be clamped in an especially time-saving way, without complicated calibration operations.
Because one flange defines different clamping planes, the clamping means to fit the commercially available disklike tools of different thickness can always be associated with them without calibration effort. This assures that both tools with a maximum thickness and those with a minimum thickness can always be clamped with an adequate clamping force to the hand power tool.
Because the clamping means has three clamping tabs, which are braced against a corresponding support edge of the one flange, relatively high clamping forces can be transmitted.
Because the flange forms two support edges, each in a different plane, on its front side and its back side, a total of four support planes are available with the flange, and with these planes all the commercially available disklike tools can be clamped.
The invention is described in further detail below in terms of an exemplary embodiment in conjunction with the drawing.
Shown are
From the side facing away from the machine, or from outside, a clamping flange 32 is braced on the grinding wheel 27. With its front side 570, the clamping flange—half of it is shown—is oriented outward on the left in the viewing direction, and with its back side 590, it is oriented toward the grinding wheel 27. In this position, the clamping flange 32 is intended for receiving grinding wheels 27 of great thickness, of about 5 mm, and aids the clamping system in achieving optimal clamping force exerted by the clamping springs 40, installed in the upper region of the gearbox 14 and designed as cup springs.
On the right in the viewing direction, the clamping flange 32, only half of which is also shown, is oriented with its back side 590 outward and with its front side 570 toward the grinding wheel 27. In this position, the clamping flange 32 is intended to receive grinding wheels 27 of minimal thickness, of approximately 0.8 mm, and also helps the clamping system attain an optimal clamping force, which is exerted by the clamping springs 40, installed in the upper region of the gearbox 14 and designed as a cup spring assembly—axially secured via a snap ring 42—in the region of the upper end 38 of the tension spindle.
The clamping shaft 35 of a mushroom-shaped clamping head 36, which belongs to the tension spindle 34, reaches through the clamping flange 32 through its center hole 54 and is braced on the outside, with a flat clamping face 37, on the clamping edge 56 of the clamping flange 32. The clamping head 36 and the center hole 54 have a star-shaped embodiment corresponding to one another, on the order of a key-and-keyhole or bayonet mount system, in which after being inserted through and then rotated, axial bracing of the parts against one another with engagement from behind is accomplished, as will be described in further detail hereinafter.
On the outermost, upper end 38 of the tension spindle, a roller bearing support ball 39 is located as wear protection, and on it, a clamping lever 44 is braced with its eccentric region 46, when this lever is pivoted about its pivot axis 48 for releasing the grinding wheel 27 and in the process presses the tension spindle 34 downward. If, in the release position, the clamping head 36 is axially released from the clamping flange 32, then this flange can be rotated such that its star-shaped recesses 68 on the edge of the center hole 54 coincide with the star-shaped radial clamping tabs 66 (
The work shaft 26, embodied as a hollow shaft, is penetrated centrally by the tension spindle 34 and is supported rotatably in a respective upper and lower spindle bearing 50, 52.
The clamping flange 32, shown from its front side 570 in
The clamping edge 56 of the clamping flange 32 is interrupted at regular intervals by three recesses 68 and forms three support tabs 55, which have two first steplike clamping planes 57, 58 on the front side 570 and two further steplike clamping planes 59, 60 on the back side 590, on which planes the three clamping tabs 66 of the clamping head 36 can be braced by their flat clamping face 37, after appropriate rotation of the clamping flange 32 relative to the clamping head 36. As a result, the clamping flange has four different clamping planes, with which all the commercially available grinding wheels can be securely clamped with little effort to the right-angle grinder 10.
On its front side 570, the clamping flange 32 has an encompassing, narrow marking groove 33a, and on its back side 590 (
In
In
In
Number | Date | Country | Kind |
---|---|---|---|
103618104 | Dec 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP04/52759 | 11/2/2004 | WO | 1/13/2006 |