This application claims the priority of German Patent Document No. 10 2009 000 957.4, filed Feb. 18, 2009, the disclosure of which is expressly incorporated by reference herein.
The present invention relates to a hand-operated drive-in power tool. These types of hand-operated drive-in power tools have a displaceably guided drive-in ram which can be used to drive the fastening elements into a substrate.
A generic drive-in power tool is known from German Patent Document No. DE 10 2006 000 202 A1. This drive-in power tool has a drive arrangement for a drive-in ram displaceably arranged in a guide, which has at least one drive element for the drive-in ram formed as an elastomer band that is tensible via a tensioning device. The tensioning device in this case includes an electric drive.
Because of the lower density of the elastomer band as compared, for example, to a steel spring and because of the longer acceleration path, greater drive-in speeds can be achieved with this drive-in power tool and thus greater drive-in energy. However, a known disadvantage of elastomer materials is its diminishing efficiency at low temperatures.
The object of the present invention is to improve a drive-in power tool of the foregoing type and also to guarantee a high drive-in energy at low temperatures.
According to the present invention, a heating device is provided in the drive-in power tool for the at least one elastomer drive element. The, or each, elastomer drive element at low temperatures, i.e., at temperatures less than 10° C. for example, can be brought via the heating device to a favorable operating temperature, e.g., within a range of approx. 10° to approx. 50° C., thereby guaranteeing optimum efficiency of the elastomer drive elements and thus a high drive-in energy even at low temperatures. At least one temperature sensor is advantageously provided for determining the device temperature, thereby enabling automatic switch-on of the heating device as a function of the measuring data from the temperature sensor.
Furthermore, it is advantageous if the at least one temperature sensor is connected to a control unit, via which the heating device is controllable, thereby making automatic control of the heating device possible in a simple manner.
Moreover, it is advantageous if the heating device has a number of heating elements corresponding to the number of elastomer drive elements, thereby making a uniform heating of the elastomer drive elements possible.
In addition, it is advantageous if the, or each, heating element is arranged adjacent to an associated elastomer drive element and running along its longitudinal extension, which makes it possible for the applied thermal energy to be used especially efficiently.
Furthermore, it can be advantageous if the heat radiation of the, or each, heating element is focused in the direction of the associated drive element, thereby further optimizing the use of energy.
Alternatively, the heating device could also use the waste heat from the sources of heat present in the drive-in power tool, such as, for example, a tensioning motor or power electronics. Furthermore, the heating device could also be designed such that it puts the, or each, elastomer drive element into an oscillating movement with low expansion of the drive element, thereby producing heating of the, or each, drive element through internal friction.
The invention is depicted in the drawings in an exemplary embodiment.
The drive-in power tool 10 depicted in
At the end of the guide 12 lying in the drive-in direction 27 (see
The drive arrangement 30 includes elastomer drive elements 31 formed as elastomer bands, which are arranged with one end on a housing-mounted support element 36 and with another end on the head section 15 of the drive-in ram 13.
Furthermore, the drive-in power tool 10 also features a heating device for the elastomer drive elements 31 designed as whole as 80. The heating device 80 depicted in the exemplary embodiment includes two heating elements 81, each of which is associated with a respective elastomer drive element 31. The heating elements 81, which have heating wires 82 as sources of heat, are arranged adjacent and parallel to the longitudinal extension of the elastomer drive elements 31 running within the housing 11. The heat radiation from the heating elements 81 is always focused in the direction of the associated drive element 31. The heating elements 81 are connected electrically to a control unit 23 via a supply line 83. In addition, a temperature sensor 85 is also arranged in the drive-in power tool, which is connected to the control unit 23 via a sensor line 84. Operation of the heating device 80 with the two heating elements 81 with respect to switch on/off times and operating duration is controlled via the control unit 23 as a function of the temperature measured by the temperature sensor 85.
In the initial position 22 of the drive-in ram 13 shown in
In the initial position 22, the drive-in ram 13 is held by a locking device designated as a whole by 50, which has a pawl 51, which engages in a locking position 54 (see
Furthermore, the drive-in power tool 10 also has a handle 20, on which an actuation switch 19 for actuating a drive-in process with the drive-in power tool 10 is arranged. A power supply designated as a whole by 21, which supplies the drive-in power tool 10 with electrical energy, is further arranged in the handle 20. The power supply 21 here includes at least one accumulator. The power supply 21 is connected to the control unit 23 as well as to the actuation switch 19 via electrical supply lines 24. The control unit 23 here is further connected to the actuation switch 19 via a switch line 57.
Arranged at a mouth 62 of the drive-in power tool 10 is a switching means 29, which is connected electrically to the control unit 23 via a switching means line 28. The switching means 29 transmits an electrical signal to the control unit 23 as soon as the drive-in power tool 10 is pressed against a workpiece W, as shown in
Moreover, a tensioning device designated as a whole by 70 is arranged on the drive-in power tool 10. This tensioning device 70 includes an electric drive motor 71 via which a drive roller 72 can be driven. The electric drive motor 71 is connected electrically to the control unit 23 via a second control line 74 and can be put into operation via the control unit, for example, if the drive-in ram 13 is in its end position lying in the drive-in direction 27 or if the drive-in power tool 10 is lifted up from the workpiece W again. The electric drive motor 71 has an output means 75, such as a driven gear, which can be coupled to the drive roller 72. To this end, the drive roller 72 is positioned rotatably on a longitudinally adjustable adjusting arm 78 of an adjusting means 76 embodied as a solenoid. In this case, the adjusting means 76 is connected to the control unit 23 via an adjusting means line 77. During operation, the drive roller 72 rotates in the direction of the arrow 73 indicated by a dashed line.
If the drive-in power tool 10 is put into operation by a main switch (not shown here), the control unit 23 determines first of all as a function of the temperature determined by the drive-in power tool's temperature sensor whether the heating device must be put into operation and how long this heating operation must be carried out. If required, the heating device 80 is then switched on by the control unit 23 in order to bring the elastomer drive elements 31 to an optimum operating temperature, e.g., in a range of approx. 10° to approx. 50° C.
Furthermore, the control unit 23 makes sure that the drive-in ram 13 is in its initial position 22 as shown in
If the drive-in power tool 10 is pressed against a workpiece W, as depicted in
The drive-in ram 13 is then moved in the drive-in direction 27 via the elastomer drive elements 31 of the drive arrangement 30, thereby driving a fastening element 60 into the workpiece W.
To return the drive-in ram 13 and to tension the elastomer drive elements 31, the tensioning device 70 is activated by the control unit 23 at the end of a drive-in process when the drive-in power tool 10 is lifted up from the workpiece W again. The switching means 29 supplies a signal to the control unit 23 for this purpose. Through the tensioning device 70, the drive-in ram 13 is displaced in the manner already described against the elastomer drive elements 31 of drive arrangement 30 and the elastomer drive elements 31 are re-tensioned in the process until the pawl 51 can again engage in its locking position 54 on the locking surface 53 on the drive-in ram 13.
Temporarily holding the drive-in ram 13 via the locking device 70 makes sure that the elastomer drive elements 31, that may possibly begin to oscillate during the tensioning process, can settle down before a new drive-in process.
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 000 957 | Feb 2009 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3513429 | Helsop | May 1970 | A |
4218888 | Jayne | Aug 1980 | A |
4559512 | Yaeger et al. | Dec 1985 | A |
5511715 | Crutcher et al. | Apr 1996 | A |
6447478 | Maynard | Sep 2002 | B1 |
7764159 | Zanella et al. | Jul 2010 | B2 |
20060148296 | Zanella et al. | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
10 2006 000 202 | Nov 2007 | DE |
Number | Date | Country | |
---|---|---|---|
20100206592 A1 | Aug 2010 | US |