Embodiments of the present disclosure find applicability in the field of directional drill systems designed to drill through space underground. One useful field includes systems for drilling channels underground for laying gas, water, sewer or other underground pipes.
Directional drilling machines and methods of use are well-known and well-characterized in the art. Also referred to in the art as boring, thrusting or horizontal drilling, the technology allows for the laying of pipe and cable underground (e.g., gas, water, sewer and drain pipes; ducts; power cables, and the like) without needing to excavate or cut open the ground surface along the length of the pipe or cable to be installed. Typically, the process is executed by boring into the ground at an angle to a desired depth, then changing to a horizontal drilling direction. The drill gains its directional ability by means of an angled steering blade in the drill head behind which is a transmitter or locater beacon (e.g., “sonde” or GPS locator) that relays information to an above-ground operator so that drilling height and direction can be manipulated remotely to avoid obstacles and arrive at an intended location. Directional boring machines are generally configured to drive a series of drill rods joined end-to-end to form a drill string. At the drilling destination, an access pit is provided. When the drill head penetrates the access pit wall, the drill head is removed, and a pipe cable is attached to the drill string, optionally behind a rotating reamer head that serves to enlarge the bore as the pipe or cable is being pulled back through the bore by the retracting drill string. Once the pipe or cable is pulled through the bore and is laid, it is connected as desired to the service source and service receiver. Patent publications U.S. Pat. No. 6,109,831; U.S. Pat. No. 5,205,671; U.S. Pat. No. 3,554,298; EP 0 904 461; and WO 2013/055389 are representative of the art.
In the case where directional drilling is desired to deliver cable or pipe to a building basement, currently it is necessary to build an access pit outside the building, adjacent the building basement wall and to a depth where the pipe or cable will be delivered to the building. A hole is then drilled through the basement wall and the pipe or cable passed through this opening. Building access pits outside and adjacent building basements are unattractive and can be difficult to carry out, due to intervening topography or structures. It would be preferable to launch directional drilling from the basement interior itself, and excavate the access or destination pit out at the street or service source, away from building structures. However, current directional drilling machines are large, heavy and cumbersome. Typically, the machines are delivered to their location by trailer, and maneuvered into position on tracks or rollers. For example, the Grundopit 40/60 by TT Technologies, Inc., considered a mini-directional drill suitable for pit launched drilling, weighs over 400 pounds. There remains a need for a hand-portable, lightweight mini-directional drill that can be hand-carried into buildings, and has dimensions that accommodate transport up and down stairwells and around building interior corners.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter on its own, nor is it intended to be used alone as an aid in determining the scope of the claimed subject matter.
In accordance with one embodiment of the present disclosure, a hand-portable directional drill device is provided. In one preferred embodiment, the drill weighs less than about 200 pounds. In another preferred embodiment, the drill weighs less than about 190 pounds. In still another preferred embodiment, the drill is competent to deliver a drill string underground at least about 200 feet. In still another preferred embodiment, the drill is competent to deliver a drill string underground at least about 250 feet. In another preferred embodiment, the hand-portable directional drill device can be used both in an exterior, pit-launched application and it can be attached to an interior basement wall in an interior, building-launched application. In still another preferred embodiment, the drill comprises two components that can be disengaged from one another for carrying purposes, each component weighing less than about 100 pounds. In another embodiment, the device can accommodate pipe stems of varying lengths, and has thrust and pull back strengths of at least about 4,000 pounds each.
In one embodiment, the two-component hand-portable direction drill comprises (1) a chassis component comprising a wall-mountable chassis or frame that consists substantially of a longitudinal beam attached at one end to a wall mount plate, and (2) a rotary drive or “carriage” component comprising a hydraulically powered rotary drive unit and a hydraulically powered directional drive unit. In another embodiment, the drive component comprises a hydraulic valving system, a hydraulically powered rod or stem pipe spinning assembly, a hydraulically powered means for moving the drive component along the chassis, and means for coupling the drive component with the chassis component.
In one embodiment, the hand-portable directional drill comprises a two-stage system for moving the rotary drive component along the chassis length. In another embodiment, the hand-portable directional drill comprises a one-stage system for moving the rotary drive component along the chassis length.
In one embodiment, the hydraulically powered means for moving the rotary drive component along the chassis beam is positioned lateral to the chassis beam's longitudinal axis. In another embodiment, the hydraulically powered means for moving the main body along the chassis beam is positioned over or under the chassis beam. In still another embodiment, the chassis beam comprises two parallel, opposing sections and the hydraulically powered means for moving the rotary drive component along the chassis beam is positioned between the two parallel beam sections.
In one embodiment, the hydraulically powered means for moving the rotary drive component along the chassis beam's length comprises a screw. In still another embodiment, the hydraulically powered means for moving the rotary drive along the chassis beam's length comprises a roller chain drive.
In still another embodiment, the coupling means that couples the rotary drive component to the chassis component allows the rotary drive component to slide or otherwise travel along the longitudinal axis of the chassis beam when coupled to it. In one embodiment, the coupling means comprises a collar extending out from the main body and dimensioned to substantially surround the longitudinal beam and slide along its longitudinal axis. In another embodiment, the coupling means comprises a channel or slot along the chassis beam's longitudinal axis and a projection, tongue or key extending out from the rotary drive component, dimensioned to fit in the channel and allow the rotary drive component to travel along the channel's path, moving the rotary drive component with it along the beam's longitudinal axis.
In one embodiment, the hydraulically powered means for moving the rotary drive component along the chassis beam's length comprises a screw. In still another embodiment, the hydraulically powered means for moving the rotary drive component along the chassis beam's length comprises a roller chain.
In accordance with another embodiment of the present disclosure, a single or multi-staging hand-portable mini-directional drill is provided that can be hand-carried up and down stairs easily and maneuvered around tight spaces. In accordance with another embodiment of the present disclosure, a wall-mountable directional drilling device is provided. In still another embodiment of the present disclosure, the hand-portable directional drill of the present disclosure can be used either as a wall mountable device for use inside a building, or as a pit-launched device for use outside a building.
In accordance with another embodiment of the present disclosure, a hand-portable directional drill competent to drill drill stem sections of variable length is provided. In another embodiment, the hand-portable directional drill disclosed herein is competent to drill 24-inch and 1-meter drill stem sections. In another embodiment the hand-portable directional drill detaches into two hand-portable components. In still another embodiment each component weighs less than about 100 pounds. In another preferred embodiment, each component weighs less than about 90 pounds. In still another embodiment, the intact hand-portable directional drilling device of the present disclosure weighs less than about 200 pounds.
In still another embodiment a drill head having an improved lubricant delivery mechanism is provided.
In accordance with another aspect of the present disclosure, a method for directional drilling from inside a building is provided, as is a method for directional drilling using a hand-portable, wall-mountable directional drill, including a single-stage hand-portable directional drill.
The foregoing aspects and many of the attendant advantages of this disclosure will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
Embodiments of the present disclosure provide devices and methods for directional drilling in confined spaces, and more particularly for directional drilling from within a building interior, including a basement space. Also provided are devices and methods for using an improved directional valving unit and an improved drill head and lubricant delivery system.
Key features of the hand-portable directional drill system disclosed herein are its low weight and small dimensions, its ability to deliver a drill string up to at least about 200-250 feet underground with average thrust and pull back strengths of at least about 4,000 pounds each, and its ability to be hand-carried intact or in its constituent components for easy delivery and set-up in small interior building spaces. The hand-portable directional drill system disclosed herein works by powering a compact, lightweight, detachable rotary drive component to move along the longitudinal axis of a chassis component and to which the rotary drive component can be removably coupled. The rotary drive can be moved along the chassis in a single stage or multi-stage process. A two-stage hand-portable directional drill system is described in detail in U.S. Ser. No. 14/163,322, filed Jan. 24, 2014, the disclosure of which is expressly incorporated herein by reference. As disclosed therein, the rotary drive component travels along the chassis length by means of a hydraulic cylinder piston rod and barrel. Described hereinbelow, are multiple embodiments for moving the rotary drive component along the chassis' length as part of a single stage system. It will be understood by those skilled in the art that a hydraulic cylinder piston rod and barrel also could be used in a single stage system as described herein.
I. Roller Chain-Driven Hand-Portable Directional Drill System
Referring now to
The second component 18, referred to herein as “carriage component 18” and/or “rotary drive component 18”, comprises a combined power and rotary drive unit 17 for attaching stem pipe sections to form a drill string and drilling the string along an intended path underground. Typically, combined power and rotary drive units 17 comprise a hydraulic valving system 30, rotary drive unit, with hydraulic motor for driving a stem pipe spinning assembly, described in detail with reference to
Component 18 further can comprise a slidable carriage 20. Carriage 20 provides means for coupling combined power and rotary drive unit 17 to chassis component 11, such that unit 17 can travel along chassis beam 12 on demand. In the embodiment illustrated in
Hydraulically powered directional drive means 19 moves component 18 along chassis beam 12 upon demand, when component 18 is coupled to chassis beam 12. Preferably, directional drive means 19 is substantially corrosion-resistant, impervious to dirt and debris associated with drilling operations, and provides high thrust and pullback strengths. In the embodiment depicted in
Valving system 30, illustrated in more detail in
In devices useful according to the present disclosure, multiple means for securing rotary drive unit 24 in carriage component 18 are contemplated. In one embodiment illustrated here, rotary drive unit 24 can comprise a frame component 79 that can slide into sleeves 109 extending vertically from floor 22 and attached to the inside of side braces 26. It will be appreciated by those skilled in the art that sleeves 109 also can comprise part of an open frame structure. Other useful means for stabilizing rotary drive unit 24 to frame 118 can include corner braces, crossbars that span braces 26, or other means for anchoring and seating rotary drive unit 24. In addition, the vertical edges of braces 26 and floor 22 can be angled or otherwise configured, contoured or cut to minimize weight and maximize functionality and ease of access to drill stem adapter 32 and wrench collar 34. For example, lip 165 on brace 26 can be contoured to serve as an auxiliary wrench stop for cracking or breaking open a stem joint as described in more detail below.
Valving unit 30 can be secured to frame 26 by, for example, platform 28, attached to side braces 26, for example by bolting means fitting in bolt holes 99, such that platform 28 sits above unit 24 and provides a floor to which hydraulic valving unit 30 can be secured. Those of ordinary skill in the art will appreciate that platform 28 can comprise a single piece of material, as illustrated here, or a structural frame or brace that lies parallel to, and spans the distance between, opposing side walls 26 and attaches to them by standard attachment means. Substantially stacking slidable carriage 20, rotary drive unit 24, and hydraulic valving unit 30 supports reducing the overall dimensions of the hand-portable directional drilling device of the present disclosure.
The hand-portable directional drills of the present disclosure preferably have a working or tensile strength (thrust and pull-back) in the range of at least about 4,000 pounds. Selection of a useful roller chain preferably accommodates this working strength and has a breaking strength in the range of at least about 12,000-14,000 pounds. Where maximizing tensile strength is to be balanced with minimizing overall drill weight and size, a double chain comprising a standard ASME roller chain size ranging from 40-60, can be used to advantage, with size 50 (50-2), or a roller chain having a roller diameter in the range of at least about 0.400 inches, being currently preferred. Alternatively, a single roller chain (or other multiple of roller chains) having proper tensile and breaking strength also could be used to advantage. It is within the skill of the art to select roller chains of appropriate tensile and breaking strength for a drill having a specified thrust and pull back strength.
It is within the skill of the art to select an effective sprocket size for a given roller chain size. Where the selected roller chain size is 50, for example, a useful sprocket can comprise nine teeth and have a pitch within the range of about 0.5 to 1-inch (No. 50-80), with a 0.75-inch pitch (No. 60) being currently preferred. Similarly, it is within the skill of the art to select a hydraulic motor to provide the desired speed and power. Useful directional drive motors can provide a carriage speed in the range of about 10 ft/min and thrust and pullback in the range of about 4,000 pounds. One type of hydraulic motor that can be used to advantage is a gerotor or positive displacement pump. Reductions in speed and power can be managed by a valving unit as described hereinbelow. Flow restrictors in one or more valve lines also can be used to manage speed or power.
Roller chains useful in the directional drills of the present disclosure can be attached to chassis component 11 by any standard means. Referring to
An alternative rear floor plate embodiment is depicted in
Referring to
Floor plate 31 can provide stability for the drill during operation and can be optional. Floor plate 31 further can include one or more bolting means 116 on its perimeter to attach the plate surface to the building floor, for example by means of concrete bolts 35. Floor plate 31 also can comprise stake openings 170 for anchoring the plate to the ground in a pit-launched application. Vertical plate 33 also preferably is attached to the wall by suitable bolting means that attach through bolt holes 101. Drill bit hole or aperture 36 is dimensioned to allow both a drill bit head and a drill stem section to pass through it. Useful drill bit apertures diameters can be in the range of about 3.0-4.0 inches, typically in the range of about 3.5 inches. As will be appreciated by those having ordinary skill in the art, useful aperture dimensions will depend on the size bore hole desired. When wall mount 16 is attached to the wall, chassis component 11 effectively can function as a cantilever, supporting carriage component 18, and can itself be supported by means of a foot plate, described in
A flexible wiper assembly 37 also can be attached to the wall mount by any useful means, including hitch pins 150. Typically, flexible wiper assembly 37 is attached to wall mount 16 once a drill string has been drilled to its destination and the drill string is about to be retrieved. The wiper typically comprises a flexibly stiff material 60, composed of, for example, rubber or silicon. Material 60 has an opening 39 with a diameter smaller than drill bit hole 36. Opening 39 also is dimensioned to be smaller than the outer diameter of a stem pipe such that it provides a snug fit over the pipe surface. When a drill string is being retrieved wiper material 60 can serve to wipe off mud and/or water from the stem pipe surface as the string is being pulled through aperture 39, substantially inhibiting these materials from accumulating in the room or on the drilling device.
Valving Units
As will be appreciated by those having ordinary skill in the art, a gear-based control system provides a means for transmitting rotational motion from an input gear to an output gear, varying the speed ratio by varying the gear ratio. Any useful gear ratio can be fabricated without undue experimentation. One commonly useful gear ratio is in the range of about 2:1, and the mechanism in
Referring to
Staging Mechanisms
A dual staging mechanism is disclosed in detail in U.S. Ser. No. 14/163,322, incorporated hereinabove by reference. A representative single staging mechanism is depicted in
In
Directional control 420 again can be maneuvered to deliver hydraulic fluid through line 46 to move carriage 20 forward, driving drill stem 59 along its intended underground path. Rotary stem control 410 also can be manipulated simultaneously to rotate the drive string if desired.
Carriage component 18 then is restaged to its start position for receiving a new stem pipe 51 to be added to drill string 59 by maneuvering directional control 420 to deliver hydraulic fluid to valve line 48, moving carriage 20 back to the fully retracted “reset” position (stage 0) illustrated in
As will be appreciated by those having ordinary skill in the art, drill stem pipe dimensions can vary for different desired applications. Generally useful drill stem pipes comprise 41/40 steel. Drill stem pipes that accommodate the dimensions of the hand-portable drilling device disclosed herein and optimize the staging process disclosed herein have an overall length in the range of at least about 20-40 inches, including 24-inch and 1-meter length pipes, have an outer diameter in the range of about 1.5-2.0 inches, and have an inner diameter in the range of about 0.25-0.625 inches. Smaller stem pipes bore or inner channels, for example, having diameters in the in the range of about 0.3-0.4-inches, have the advantage of reducing the amount of lubricant that traverses through the drill string and which may need to be captured during drilling and/or retrieval of the drill string.
Also as will be appreciated by those having ordinary skill in the art, useful bore diameters include those that deliver lubricant to a drill tip in the range of at least about 5 gpm's for a 200-250 ft drill string and also accommodate in the range of at least about 10 gpm's for 70 ft drill strings. Useful pipe stems also comprise wrench flats as described herein having substantially standard dimensions well used and characterized in the art, typically having substantially similar widths and lengths, and generally in the range of about 0.7-1.0 inches.
Magnetized Wrench Collar
Referring now to
Referencing
Collar 34 further can comprise at least one magnet 90, such as a rare earth magnet, embedded in a surface of the collar. Typically, magnetized wrench collars useful in the directional drilling devices disclosed herein comprise two magnets 90 diametrically opposed from one another about the circumference surface of collar 34. Magnet(s) 90 are of sufficient strength to magnetize collar 34 such that collar 34 removably can engage with the metal surface of an object in contact with the collar's inner surface. In the illustration such objects include stem adapter barrel 91, stem pipe flat component 123, and an adapter/stem pipe joint 93. Magnetized collar 34 can have an inner circumference contour dimensioned to mirror the outer circumference contour of adapter 32 and the stem flat component 123 of a stem pipe section 51. That is, the inner contour of collar 34 can comprise opposing parallel flats 92 machined along its internal longitudinal axis, the flats 92 having substantially the same dimensional width as flats 55 and 65.
When not in use, collar 34 can sit on adapter 32's barrel section 91, back away from joint 93 in a “resting” position, with magnet(s) 90 keeping collar 34 in position. In operation, a pipe section 51 is threaded into adapter 32 such that flats 65 and 55 are aligned. Collar 34 can be slid over adapter/stem joint 93 until forward movement is stopped by lip 94. Magnet(s) 90 hold collar 34 in place over the joint, and the collar's inner circumference contours holds joint members stable relative to one another, preventing undesired unthreading when pipe sections are being cracked open during pipe string retrieval, as is described in Example 3 below. While collar 34 also can be used to prevent over-torquing or over-rotation, for example while attaching pipe section 51 to the drill string or during drilling of the string, drill stem joints having utility in the present disclosure typically use tapered threads designed and fabricated to prevent over-torquing when engaged, and so use of collar 34 is not required during forward drilling operation. Contact surfaces of collar 34, adapter 32 and/or pipe stem flat 55 can be lubricated to reduce friction and facilitate collar movement on and off joint 93. The outer surface of collar 34 further can be textured as by hatch marks or grooves, for example, for enhanced gripping during operation. Alternatively, the collar front end can comprise a lip as illustrated in
It is within the skill of the art to vary the number, location, size and strength of magnets on a surface of a wrench collar of the present disclosure. It also is within the skill of the art to modify the contours of the collar's inner dimensions to mirror other useful joint member outer contours or for other applications. Key features of the magnetized collar disclosed herein are its ability to removably or temporarily stay attached to any location where it is placed, while also easily being disengaged from that position and moved to another position (e.g., resting or operational) as desired, particularly where the resting and operational locations are contiguous and substantially adjacent or proximal to one another. Preferred magnet strengths will depend on metal thickness, collar size, and operational conditions such as vibration and torque, all of which are within the skill of the art to determine. Useful magnets 90 can be ⅜-inch (0.375-inch) N50 magnets, also known as rare earth or neodymium magnets, and magnets of stronger and weaker strength also are contemplated.
Magnetized Breakout Wrench
With reference to
Bracket 96 with slot 97 can serve several purposes. First, wrench element 85 and bracket 96 are dimensioned such that wrench element 85 can pass through slot 97 and sit on pipe stem 51 such that its legs or gripping jaws 87 are in contact with the pipe stem's flats 55. The bracket is positioned at a height above the pipe joint such that at least a portion of the top of wrench 85 protrudes up through slot 97. The dimensions of slot 97, limit the rotational movement of wrench 85 about the axis of the pipe joint, thereby creating a functional wrench stop. The pipe joint typically can be cracked by maneuvering stem drive control 410 to rotate adapter 32 counter-clockwise. The wrench stop, with the wrench engaged with pipe stem flat 55, prevents rotation of drill string 59 while stem adapter 32 is being rotated, allowing the joint seal to be broken. In this disclosure, where the pipe joint is composed of adapter 32 and a stem pipe section 51, the joint is referenced herein as joint 93. Where the pipe joint is composed of two stem pipe sections 51, the joint is referenced herein as joint 111.
When a drill string is being retrieved, a joint 93 between pipe stem adapter 32 and drill string 59 first can be cracked open as described above. Collar 34 then is engaged with joint 93, and carriage 20 is moved back to its full re-set position as described in Example 3 below, bringing with it pipe string 59 so that the next proximal forward pipe joint 111 is available to the drill stem joint wrench breakout system. Wrench 85 then can be used to crack open this joint 111 so that newly exposed pipe stem 51 can be easily unthreaded from both stem adapter 32 and the drill string 59. Thus, bracket 96 and slot 97 together provide the means for limiting rotational movement of wrench 85 and therefore of stem pipe 51, when wrench 85 is engaged with stem pipe 51, allowing the joint seal to be broken.
Bracket 96 also can provide a means for storing wrench 85 when not in use. Optionally, bracket 96 or wrench 85 can be magnetized, for example at position 90 allowing wrench 85 to be removably attached to bracket 96 when not in use. It will be appreciated that more than one magnet also can be used. As above, useful magnets 90 can be ⅜-inch (0.375-inch) N50 magnets, also known as rare earth or neodymium magnets, and magnets of stronger and weaker strength also are contemplated.
Stem Drive Units
Shaft or spindle 76 can comprise internal splines 107 at its back end, dimensioned to engage splines 68 extending forward from hydraulic motor 62. Engaged splines 104 are shown in cross-section in
Central section 108 further can include an opening 119 dimensioned to deliver lubricant into a third section 106 at the front end of shaft 76. More particularly, opening 119 can be dimensioned to deliver lubricant to the hollow bore 63 of a pipe stem adapter 32. Accordingly, front section 106 can have an inner surface 122 comprising internal threads dimensioned to receive and engage a hollow threaded tapered “pin” end 29 of drill stem adapter 32. Bolts 71 can attach hydraulic motor 68, adapter 72, and housing 86 by means of bolt holes 73.
Housing 86 can define a hollow sleeve 77 having an internal diameter 103 dimensioned to allow shaft 76 to pass through it. Reasonable clearance distances between the shaft 76's outer diameter and housing 86's inner diameter 103 can be in the range of at least about 0.001 inches. Housing 86 also can comprise a central radial channel or cavity 102 that receives and holds drill head lubricant provided to the housing interior by means of port 88, and a plurality of grooves or radial channels that extend out from either side of cavity 102 to seat seals and bearings that support efficient drill stem rotation.
Housings 86 useful in the hand-portable directional drilling devices of the present disclosure can include at least six grooves or channels, or two sets of three matching and axially opposed grooves or channels that extend out from lubricant cavity 102, each groove set comprising, from the innermost position and extending out: a groove or channel dimensioned to receive and seat a water seal 84, followed by a groove or channel dimensioned to receive and seat a roller bearing, typically a tapered roller bearing 82, and a groove or channel dimensioned to receive and seat an oil or grease seal 80. Each of bearings 82 and seals 80 and seals 84 can be of an annular shape having an inner diameter through which shaft 76 can pass. A bearing nut 81 can attach to the front end of housing 86, having an annular shape with an inner diameter through which spindle 76 can pass. As will be appreciated by those having ordinary skill in the art, the overall lengths of housing 86 and shaft 76, and the distances between bearing grooves and seal grooves can be modified without negatively impacting operation of the device. Preferred useful dimensions that maximize function and compactness are well within the skill of the art to select.
Drill stem adapter 32 further can comprise an internal bore or channel 63 that can traverse the longitudinal axis of the adapter and through which fluid can flow through the drill string central bore or channel to the drill head during drilling. Housing 86 further includes a port 88 (see
Housing 86 as illustrated here further can comprise a frame 79 dimensioned to provide means for seating and stabilizing rotary drive unit 24 in frame 118, for example, braced within sleeves 109 of frame 118, as illustrated in
Drill Head
A common problem that impacts efficient operation of drill heads in the art is clogging of fluid hole 481, even with a nozzle 470. Setting the fluid hole back from the drill tip does not solve the problem. The drill head disclosed herein differs from the drill heads in the art to overcome the clogging issue. Specifically, the drill head disclosed herein comprises a debris release cavity 473 set back from the drill tip edge. In a preferred embodiment the debris cavity defines an opening on the drill head's lateral surface. In one useful embodiment the cavity occurs at the juncture of the drill tip and the sonde housing with the nozzle placed at the back end of the cavity, extending out from the anterior end of channel 460 in sonde housing 486. The posterior end of drill tip's lubricant channel 475, opening 471, sits at the anterior end of cavity 473.
Cavity 473 can serve to disperse and release debris that can accumulate in channel 475 before it reaches nozzle 470. Moreover, nozzle 470 concentrates the lubricant (eg., water) sufficiently to propel a directional projection of lubricant across the gap between the nozzle and drill tip lubricant opening 471 and into drill tip channel 475, including propelling the lubricant through any debris that may accumulate in the cavity itself. In one embodiment, the improved drill head disclosed herein can propel a beam of lubricant through a captive tunnel 475. In another embodiment, the propelled beam of lubricant is sufficient to clear debris from the face of the tunnel, namely at opening 471, including debris that clogs the opening. The drill head configuration disclosed herein provides a nozzle means for continually clearing clogged fluid holes during operation without also clogging the nozzle. In addition, drill tip 480 can comprise an angled surface having a curved edge for improved carving into dirt underground. In the figure, the curved edge is convex.
II. Screw-Driven Hand Portable Directional Drill
Carriage 20 and attached rotary drive component 18 can travel along chassis 12 on demand by means of a spur gear mechanism 205 that engages screw 200. In the figures, hydraulic motor 250, powered by a valving unit on component 18, drives the spur gear mechanism inside housing 260. The gear mechanism, including housing and motor, can be attached to carriage 20 by any standard attachment means, including any bracket or bracing means such as bracket means 265.
Spur gear mechanism 205 further can comprise bearings 210 and alignment bushings 215 on screw 200 and bushings 255 on hydraulic motor 250. Housing 260 can be fabricated to provide stability to the mechanism as well as provide protection from debris, and at least alignment bushings 215 can be press-fit into housing 260 for additional stability. One useful material for housing 260 can include a 70/75 aluminum, and other suitable lightweight, durable materials are well characterized in the art and can be used to advantage.
Useful screw drive materials are those that are corrosion-resistant and provide the desired tensile strength, such as a hardened steel. One exemplary useful material includes an alloy, such as a chromoly steel, including the 4,000 series. Similarly, selection of the drive screw pitch will depend on the desired force and speed capabilities of the directional drill. In the example where desired working strength is in the range of about 4,000 pounds and directional speed is in the range of about 10 feet/minute, useful screw pitches can include between about 1 in 5 threads/1-inch OD to about 1 in 9 threads/1-inch OD. Those skilled in the art will appreciate that screw threads also can be square or angled. One currently preferred thread form is the ACME thread form.
Transporting the directional drills of the present disclosure to a launch site comprises the steps of providing or separating components 11 and 18 and carrying them individually to a desired location. As described above, carriage component 18 can include one or more handles 25 positioned for ease of access and carrying component 18 without interfering in the operation of the drill. Similarly, wall mount plate 16 can include a handle 6 for ease of carrying chassis component 11.
Referring to
Those having ordinary skill in the art will appreciate that the hand-portable directional drills of the present disclosure can be made out of a range of materials that will provide the requisite tensile strength for proper function of the device. It will also be appreciated that compacting the overall length and height of each component can be preferred, as is choosing materials that reduce the overall weight of each component to be carried. High strength aluminum can be a useful material for use where appropriate, due to its light weight. Useful chassis components 11 have an overall length preferably less than 65 inches, more preferably less than 60, or even 55 inches. Useful chassis materials can include 10/18 steel, such as are used in 3″ tubing. Wall mount plate 16, which preferably can comprise an integral part of chassis 12, can vary in size and material, provided it can accommodate operational forces typical of directional drills of the size disclosed herein. Such forces typically are in the range of about two tons. Useful materials can include a mild steel, including 10/18 mild steel, or A36 steel. Useful plate dimensions can have lengths and widths in the range of about 10-14 inches, and have a thickness in the range of about 0.25-1.0 inches.
Provided with the present disclosure it is within the skill of the art to fabricate a chassis component 11 that weighs less than about 100 pounds. Useful chassis components 11 can be less than 90 pounds, and can be dimensioned to allow maneuverability when being carried around corners and up and down interior stairs or stairwells.
Similarly, the overall length of a rotary drive unit 18 generally can be less than about 30 inches or less than about 24 inches. Useful units also can have an overall height of less than about 18 inches and a width of less than about 12 inches. Provided with the present disclosure it is within the skill of the art to fabricate a rotary drive unit 18 that weighs less than about 120 pounds. Useful units 18 can weigh less than about 100 pounds, and can be dimensioned to allow ease of maneuverability when being carried around corners and up and down interior stairs or stairwells.
Provided with the instant disclosure, it now is possible to fabricate multi-stage or single stage hand-portable directional drills having an overall weight of less than about 200 pounds and competent to deliver drill strings over a range of at least about 200-250 feet underground with working strengths in the range of about 4,000 pounds and speeds in the range of about 10 ft/minute. Useful hand-portable directional drilling devices according to the present disclosure can have an overall weight of less than about 190 pounds, and even can have an overall weight of less than about 185 pounds.
One example for setting up and breaking down a hand-portable directional drill 10 now is described. In this example, the drill comprises a roller chain directional drive and is being delivered to a basement interior which is the launch site for directional drilling to a destination access pit outside, typically at a distance in the range of about 70-250 ft away. Chassis component 11, and rotary drive component 18 are independently hand-carried into the building and down any necessary stairs to arrive at the launch site. Using standard equipment, a hole is now or has previously been drilled into the exterior basement wall to access the underground drill bore start site. Chassis component 11 then is lined up to the drill bore start site such that drill bit hole 36 is centered about the drill bore start site. Rear plate 13 with attached tailstock 117 are removed from chassis component 11. Rotary drive component 18 then is slid over the back end of chassis 12 via carriage 20, and rear plate 13 re-attached to chassis component 11. Roller chain master links at the roller chain front and back termini can be attached to roller chain bolt plates 340. Where rear plate 13 comprises an adjustable foot plate, directional drill 10 can be leveled by changing the thread position of pin 64 relative to chassis bolt 74. Wall mount plate 16 can be secured to the basement wall by means of standard concrete bolts 35, such as 0.75-in redhead concrete bolts, drilled through bolt holes 106 on wall plate 33. If desired, wall mount floor plate 31 further can be anchored to the floor by drilling bolts into one or more bolting means 116 that can be provided along the perimeter of plate 31. Similarly, floor plate 14 optionally can be secured to the floor by means of one or more bolts drilled into bolt means 116 that can be provided on the perimeter of the plate.
A desired number of drill stems are provided or have been provided to the launch site. In this example, drill stems are 1-meter length stems with standard male and female joint ends, referred to herein as pin and box ends respectively, and have a bore diameter in the range of about 0.375-inches. A hydraulic power source and pressurized water for drill bit lubrication also are supplied, along with other standard tools and equipment of standard and typical use in directional drilling. If wrench element 85 is not already provided to directional drill 10 e.g., by magnetic connection to wrench stop 96, it is provided now. Drilling now can commence. Once drilling and drill stem retrieval is complete, directional drill 10 easily is disassembled by reversing the steps described above and transporting the components out of the building.
In this example, a process for adding drill stems to create a drill string is described using the directional drilling device of the present disclosure. As in the example above, the directional drive comprises a roller chain mechanism.
An operational drilling device 10 is provided, optionally set up, for example, as described in Example 1 above. Rotary drive component 18 is positioned far enough back on chassis 12 such that a drill head can be attached to stem pipe adapter 32. Wrench flats on the drill bit head are aligned with the flats on adapter 32. Preferably, the drill head comprises an angled blade or bit, means for receiving lubricant from a drill stem central bore, a transmitter or locator beacon (e.g., sonde) component, and an above-ground operator and means are provided for remotely directing the path of the drill head. More preferably, the drill head comprises a debris release cavity 473 at the juncture of drill tip 480 and sonde housing 486 and comprises means for propelling a beam of lubricant across the cavity and into opening 471 of drill tip lubricant channel or captive tunnel 471. Once the drill head is attached to adapter 32, a drill joint 93 is formed. using directional control 420 and drilling is commenced by manipulating directional control 420 to move carriage 20 forward and rotational control 410 to rotate the drill head. Typically, drilling occurs with a clockwise rotation, or with the same rotation that maintains threaded engagement between adapter 32 and a drill stem pin end 53. The drill bit head passes through drill bit hole 36 in wall mount 16 and begins drilling a substantially lateral bore hole through the earth.
The drill head is lubricated throughout the drilling process by means of lubricant, eg., water, provided through port 88 on water coupler housing 86, typically by means of a quick-connect valve 66. Water passes through port 88 into cavity 102 in housing 86 where it accesses the drill stem bore or channel through opening 78 in shaft 76. Once the drill bit head has been fully fed into the drill bore opening, wrench element 85 is released from its storage position on wrench stop 96 and legs or gripping jaws 87 engaged with wrench flats 55. Joint 93 then is cracked open by rotating drill adapter 32 in the counter-clockwise direction by manipulating rotational control 410, and the drill bit head component disengaged from adapter 32 by continued counter-clockwise rotation. Wrench 85 then is returned to a storage position on wrench stop 96. Once adapter 32 is disengaged from the drill head, carriage 20 can be moved back to a stage 0 position, e.g., a starting position to receive a drill stem, by manipulating directional control 420.
Directional drilling device 10 now is ready to add a stem pipe section to the drill bit head in position in the drill bore hole and begin building drill string 59. Box end 57 of a pipe stem section 51 typically first is threaded onto the exposed pin end of the drill bit head protruding from wall mount drill hole opening 36, forming a stem pipe joint 111. Then pin end 53 of stem pipe 51 is threaded into adapter 32 to form a joint 93, preferably wherein flats on both joint components are aligned forming joint 93. Joint 93 can be formed by moving carriage 20 and its attached rotary drive assembly forward and rotating stem adapter 32 clockwise by manipulating controls 420 and 410, respectively, engaging adapter 32 with pin end 53. Carriage 20 and attached rotary drive component 18 then are moved further forward along chassis 12, feeding pipe stem 51 and drill string 59 into the bore hole, until. adapter/stem pipe joint 93 is at the wall mount plate (referred to herein as “stage 1”), in position with the stem joint wrench breakout system. Wrench element 85 is released from its storage position on wrench stop 96 and legs or jaws 87 are engaged with the wrench flats 55 on the drill stem end. Joint 93 then is cracked open, eg., by rotating drill adapter 32 in the counter-clockwise direction by manipulating rotational control 410, and drill string 59 is disengaged from adapter 32 by continuing the counter-clockwise rotation. Wrench 85 is returned to a storage position on wrench stop 96 and component 18 driven backward along roller chain 300 to a “re-set” stage 0 position to receive another drill stem, by manipulating directional control 420. Directional drilling device 10 now is ready to add additional drill stem sections 51 to the developing drill string by repeating the steps described here in Example 2B.
In this example a process for retrieving a drill string is described. As in the examples above, the directional drive mechanism used in this example comprises a roller chain. Once a drill string has been created and a bore hole drilled underground to an intended destination, the drill string is retrieved. Typically the drill head has been drilled to a destination access pit, the drill head removed, and a cable, duct, or pipe attached to the front of the drill string to be threaded back through the bore hole underground as the drill string is retracted. Once the cable, pipe or duct is attached, retrieval of the drill string begins. As will be appreciated by those having ordinary skill in the art, a reamer head could be added to the front of the drill string, before attaching the cable, duct or pipe as desired. In this case, however, a drill bit hole 36 on wall mount 16 would need to be provided having dimensions sufficient to accommodate the reamer head.
To start, component 18 is at the wall mount, with stem adapter 32 forming a joint 93 with pin end 53 of the last stem section 51 in drill string 59. Wrench element 85 is released from its storage position on wrench stop 96. Wrench legs or gripping jaws 87 are engaged with wrench flats 55 on stem section 51. Joint 93 then is cracked open, eg., by rotating drill adapter 32 in the counter-clockwise direction by manipulating directional control 410, and wrench stop slot 97 holds wrench 85 in place, breaking the joint seal. Wrench 85 then is returned to its resting position and collar 34 is moved laterally forward over adapter/stem joint 93, engaging the joint to prevent premature unthreading of the now loosened joint. Carriage 20 then is moved back by manipulating directional control 420, retracting drill string 59 and proximal section 51 out of the bore hole until until it is in the full back “re-set” or stage 0 position. This step completes extraction of the front end of stem pipe section 51 from the bore hole and through drill hole 36, exposing a first stem section joint 111 to be cracked open. Wrench element 85 is released from its storage position on wrench stop 96 and wrench legs or gripping jaws 87 are engaged with wrench flats 55 on the pin end 61 of drill string 59. Newly exposed section joint 111 then is cracked open as described above, ie., by rotating drill adapter 32 in the counter-clockwise direction by manipulating rotational control 410. Collar 34 is moved laterally back off its joint 93 and pipe section 51 is unthreaded from both stem adapter 32 and the pin end 61 of the drill string.
Carriage 20 now is moved forward by means of directional control 420 until adapter 32 can be threaded onto pin end 61 of the exposed drill string 59 to form a joint 93 with what is now the distal stem in the drill string. As above, threading is performed by manipulating rotational control 410. Collar 34 is moved laterally forward to engage with this new joint 93. Carriage 20 then is moved backward by manipulating directional control 420, retracting drill string 59 and exposing a section 51 out of the bore hole until. i carriage is in the full back “re-set” or stage 0 position. This step completes extraction of the front end of a newly exposed stem pipe section 51 from the bore hole and through drill hole 36, exposing a new stem section joint 111 to be cracked open. Wrench 85 is released from its storage position on wrench stop 96 and wrench legs or gripping jaws 87 are engaged with wrench flats 55 on the pin end 61 of drill string 59. Newly exposed section joint 111 then is cracked open as described above, ie., by rotating drill adapter 32 in the counter-clockwise direction by manipulating rotational control 410. Collar 34 is moved laterally back off its joint 93 and pipe section 51 is unthreaded from both stem adapter 32 and the pin end 61 of the drill string. Subsequent pipe sections 51 can be removed from the drill string by repeating the steps outlined in this Example 3B.
One example of a spindle assembly is described. Spindle or shaft 76 can have an overall length in the range of about 5.0-6.5 inches, shaft 76's length being selected to match that of housing 86. Useful outer diameters for shaft 76 can be in the range of about 1.7-2.0 inches and again are selected to accommodate inner cavity 103 dimensions of housing 86. Useful inner spline diameters 75 for shaft 76 accommodate and engage splines 68 of motor 62. Useful such diameters are in the range of about 1.0-1.2 inches. Housing 86 can have an overall outer diameter in the range of about 3.37-4.62 inches, more typically in the range at least about 4.0-4.3 inches. Useful radial wall thicknesses of housing 86 can be in the range of about 0.125-0.25 inches. Optional housing frame 79 provides a means for stabilizing rotary drive unit 24 in frame 118 and has dimensions to accommodate positioning housing 86 in frame 118. Useful frame 79 dimensions can be substantially equal lengths and widths in the range of about 5-6 inches and have a wall thickness in the range of about 0.25-1.0 inches. As illustrated in
One example of a drill stem joint wrench system or wrench breakout system is disclosed herein for use with a directional drilling device. As will be appreciated by those having ordinary skill in the art, other configurations and dimensions are within the skill of the art to design and fabricate once provided with the present disclosure. In the example, wrench element 85 has a substantial horseshoe wrench shape, and an overall length in the range of about 6-10 inches, and even 7-9 inches. For application on a 0.75-1.0-inch drill stem pipe flat 55, wrench legs or jaws 87 are in the range of about 3-4 inches, typically in the range of about 1.5-1.7 inches, and have a radius 89 dimensioned for a snug fit; for example in the range of about 0.8 inches, or an overall diameter in the range of about 0.16 inches. Wrench element 85 also has a handle 95 defined by an opening in the wrench body, with dimensions suitable for easy gripping. Useful dimensions include an opening with a length in the range of about 1-3 inches, and a width in the range of about 0.5-2 inches. A wrench stop bracket 96 is integrally mounted to wall mount 16 and extends out from the wall mount in a perpendicular orientation to the wall plate for a distance in the range of about 2-5 inches or even 3-4 inches. Useful widths for stop bracket 96 are in the range of about 4-7 inches, including 5-6 inches. Useful widths are wide enough for easy passage of wrench 85 through the bracket and narrow enough to provide a functional stop for wrench 85 to prevent its rotation about the stem pipe radial axis while breaking open the pipe stem joint. Bracket 96 also includes a crossbar 69 creating slot 97 to minimize movement of wrench 85 along the longitudinal axis of the pipe stem while also acting as rotational stop. In this example, the drill stem joint wrench system is magnetized by means of at least one magnet, typically a rare earth magnet, positioned, for example, on crossbar 69 and of sufficient magnetic strength to removably attach wrench 85 to crossbar 69 when placed in its vicinity. Magnet 98 can be placed on either the front or back face of crossbar 69. In the present example magnet 98 is located substantially at the center of the front face of crossbar 69. A useful magnet is a ⅜-inch N50 rare earth magnet, also known as a neodymium magnet.
One example of a magnetized lock nut or wrench collar is described below for application in a directional drilling device. In this example collar 34 has an overall length in the range of about 2.7-3.5 inches, more typically in the range of about 3-inches, and has an outer diameter in the range of about 2.2-2.7 inches. Collar 34's inner diameter has parallel, mutually opposing flats that run the length of the collar and have a width substantially equal to that of the wrench flats on a stem pipe section, typically in the range of 0.7-1.0 inches. At its widest, collar 34's inner diameter generally can be in the range of about 1.70-2.0 inches, more typically in the range of about 1.75-1.85 inches. As will be appreciated by those having ordinary skill in the art, collar 34's inner dimensions provide enough clearance to allow collar 34 to slide on and off a pipe joint 93 and also to fit closely or snugly enough to prevent substantial rotational movement or torquing between the pipe joint members when collar 34 is removably engaged with joint 93. In this example, collar 34 is made of a heat-tempered stainless steel, such as 17/4 stainless steel, and its outer surface is textured, for example by cross-hatching, to enhance gripping during operation. In this example collar 34 also includes 2 magnets on the collar's outer circumference, diametrically opposed, e.g., at 180° to one another, about the collar's circumference. Useful magnets 90 can be ⅜-inch (0.375-inch) N50 magnets, also known as rare earth or neodymium magnets, and magnets of stronger and weaker strength also are contemplated.
Embodiments of this disclosure may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the disclosure being indicated by the appended claims rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein. While illustrative embodiments have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3554298 | Klein | Jan 1971 | A |
5205671 | Handford | Apr 1993 | A |
6109831 | Handford | Aug 2000 | A |
6202758 | Jenne | Mar 2001 | B1 |
7478685 | Ferrand | Jan 2009 | B2 |
Number | Date | Country |
---|---|---|
0904461 | Aug 2006 | EP |
2013055389 | Aug 2013 | WO |
Entry |
---|
Mclaughlin Pit Launch Directional Drill http://www.mclaughlinunderground.com/wp-content/uploads/2013/08/McL-10-Lit.pdf. |
Bor-it Model 12 “Mighty Max” http://www.bor-it.com/resources/pdfs/12.pdf. |
Grundopit 40/60 Mini-Directional Drill—marketing brochure by TT Technologies, Inc.,2020 E New York Street, Aurora, IL 60502, dated 2005. |
U.S. Appl. No. 14/163,322, filed Jan. 24, 2014, Herrick. |
Number | Date | Country | |
---|---|---|---|
20170183911 A1 | Jun 2017 | US |