Hand switched combined electrosurgical monopolar and bipolar device

Abstract
An electrosurgical instrument connectivity system providing monopolar and bipolar plugs each having a plurality of conductors which allow for use of combination monopolar/bipolar electrosurgical devices with industry standard electrosurgical generator outlets.
Description
FIELD

The present teachings generally relate to electrosurgical instrument connector configurations and devices for use in combination monopolar/bipolar electrosurgical devices. More specifically, the present teachings allow for the use of combination monopolar/bipolar electrosurgical devices using industry standard connectors (e.g., plugs).


BACKGROUND

Typically, industry standard, electrosurgical generators can be utilized with stand-alone monopolar and stand-alone bipolar electrosurgical devices. However, it is often desired that a surgeon have the capability of switching between monopolar and bipolar devices during surgical procedures. Such switching may cause delays which result in additional challenges during surgical procedures. The development of combination monopolar/bipolar electrosurgical instruments has allowed for simplified switching between monopolar and bipolar functionality during surgical procedures. However, such combination devices generally require a dedicated outlet (e.g., port) in the electrosurgical generator and as such, cannot be utilized with industry standard generators. Thus, the use of such combination devices typically requires a generator having a dedicated output port for dual functionality.


Some examples of such combination devices and associated connectors may be found in U.S. Pat. Nos. 4,463,759; 6,113,596; 6,652,514; 7,232,440; 7,722,607, and U.S. Publication Nos. 2011/0054462; and 2011/0178515, all of which are incorporated by reference herein for all purposes. It would be desirable to have an electrosurgical device connector system which would allow for the use of combination monopolar/bipolar devices with industry standard electrosurgical generators. It would be further beneficial to have combination monopolar/bipolar electrosurgical devices that can be used without a dedicated outlet in an electrosurgical generator.


SUMMARY

The present teachings meet one or more of the needs identified herein by providing a connectivity system including an electric cable for use with an electrosurgical instrument comprising a first plug including a first, second and third conductor extending therefrom, wherein the first and second conductors are first and second electrosurgical leads and the third conductor is a first electrosurgical activation switch return lead. The system may further include a first electrosurgical activation switch connected between one of the electrosurgical leads and the first electrosurgical activation switch return lead. The system may also include a second plug including a fourth, fifth and optionally a sixth conductor extending therefrom, wherein the fourth conductor is a third electrosurgical lead and the fifth and sixth conductors are second and third electrosurgical activation switch return leads. A second electrosurgical activation switch may also be included whereby the second activation switch is connected between the fourth conductor and the fifth conductor. The system may further include a third electrosurgical activation switch connected between the fourth conductor and the sixth conductor. The system may be designed such that the third conductor is common with one of the fifth or sixth conductors.


In another embodiment of the present teachings, the system may comprise a first plug configured to plug into a bipolar outlet, the first plug including three conductors extending therefrom wherein a first and second conductor are bipolar HF (high frequency electric current) leads, and a third conductor is a bipolar switch return lead. The system may further comprise a bipolar activation switch connecting one of the bipolar HF leads and the bipolar switch return lead and a second plug configured to plug into a monopolar outlet, the second plug including two conductors extending therefrom wherein a fourth conductor is a monopolar HF lead and a fifth conductor is a monopolar switch return lead. The system may also include a monopolar activation switch connecting the monopolar HF lead and the monopolar switch return lead. The system may be provided so that the bipolar switch return lead is common with one of the monopolar switch return leads, so that four or less conductors are used.


Another possible embodiment of the present teachings includes a cable comprising a first plug configured to plug into a bipolar outlet, the first plug including a first, second and third bipolar conductor extending therefrom, wherein the first and second bipolar conductors are bipolar HF leads and the third bipolar conductor is a bipolar switch return lead. The cable may further comprise a bipolar activation switch connected between one of the bipolar HF leads and the bipolar switch return lead. The cable may also include a second plug adapted to plug into a monopolar outlet, the second plug including a first, second and third monopolar conductor extending therefrom, wherein the first monopolar conductor is a monopolar HF lead and the second and third monopolar conductors are monopolar switch return leads. The cable may further include a monopolar cut activation switch connected between the monopolar HF lead and the second monopolar switch return lead and a monopolar coag activation switch connected between the monopolar HF lead and the third monopolar switch return lead. The cable may be constructed so that the bipolar switch return lead also operates as one of the second or third monopolar switch return leads.


The teachings herein provide for electrosurgical instrument connectivity systems and cables that facilitate the use of combination monopolar/bipolar electrosurgical devices with industry standard electrosurgical generators and avoid the need for proprietary and/or devoted outlets for such devices.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows example of traditional monopolar and bipolar outlets of an electrosurgical generator.



FIG. 2 shows an illustrative example of an industry standard monopolar and bipolar generator outlet arrangement connected to a combination monopolar/bipolar device.



FIG. 3 shows an additional illustrative example of an industry standard monopolar and bipolar generator outlet arrangement connected to a combination monopolar/bipolar device.



FIG. 4 shows an additional illustrative example of an industry standard monopolar and bipolar generator outlet arrangement connected to a combination monopolar/bipolar device.



FIG. 5 shows an additional illustrative example of an industry standard monopolar and bipolar generator outlet arrangement connected to a combination monopolar/bipolar device.



FIG. 6 shows an additional illustrative example of an industry standard monopolar and bipolar generator outlet arrangement connected to a combination monopolar/bipolar device.



FIG. 7 shows an additional illustrative example of an industry standard monopolar and bipolar generator outlet arrangement connected to a combination monopolar/bipolar device.



FIG. 8 shows an additional illustrative example of an industry standard monopolar and bipolar generator outlet arrangement connected to a combination monopolar/bipolar device.



FIG. 9 shows an additional illustrative example of an industry standard monopolar and bipolar generator outlet arrangement connected to a combination monopolar/bipolar device.





DETAILED DESCRIPTION

This application is related to and claims the benefit of the filing date of U.S. Provisional Application Ser. No. 61/787,731 filed Mar. 15, 2013, the contents of this application being hereby incorporated by reference for all purposes.


The explanations and illustrations presented herein are intended to acquaint others skilled in the art with the teachings, its principles, and its practical application. Those skilled in the art may adapt and apply the teachings in its numerous forms, as may be best suited to the requirements of a particular use. Accordingly, the specific embodiments of the present teachings as set forth, are not intended as being exhaustive or limiting of the teachings. The scope of the teachings should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes. Other combinations are also possible as will be gleaned from the following claims, which are also hereby incorporated by reference into this written description.


The present teachings are directed toward electrosurgical instrument connectivity systems. Such systems are generally those associated with electrosurgical forceps and more specifically, with combination monopolar/bipolar electrosurgical forceps. The electrosurgical instruments which are associated with the connectivity systems may be any device that is used by a surgeon to perform a surgical procedure. The electrosurgical device may be used to cut, perform hemostasis, coagulate, desiccate, fulgurate, electrocauterize, or any combination thereof. The electrosurgical instrument connectivity systems disclosed herein are preferably utilized with industry standard outlets associated with electrosurgical generators as opposed to generator outlets devoted specifically to combination monopolar/bipolar devices. The connectivity systems described herein are preferably utilized in either open or laparoscopic surgery as opposed to solely laparoscopic procedures.


As mentioned above, the connectivity systems are preferably utilized with combination monopolar/bipolar devices. The connectivity systems may be designed so that one or more conductors associated with either a monopolar or bipolar plug are integrated with other conductors to form common conductors that provide the functionality of both of the integrated conductors. Typically, industry standard electrosurgical generators include a monopolar plug and a bipolar plug, each connecting to one or more ports (e.g., outlets) (e.g., one, two or three or more bipolar ports, and one, two, three or more monopolar ports). Preferably, each connector (e.g., plug) includes leads connecting to one or more outlets. In most standard generators, at least one of the bipolar outlets and at least one of the monopolar outlets may be an HF outlet for connecting to an HF lead and transmitting electrical current. Preferably, the bipolar plug connects to two HF outlets and the monopolar plug connects to only one HF outlet. Any remaining connectors may be electrosurgical switch return leads. For example, the monopolar plug may include one or more monopolar switch return leads and the bipolar plug may include one or more bipolar switch return leads. Each such switch return lead may be a cut switch return lead or a coag switch return lead. In one preferred embodiment, the bipolar plug may include one switch return lead and the monopolar plug may include two switch return leads.


The monopolar and bipolar HF leads may remain isolated (e.g., each plug may extend from the generator to a device free of commonality with other HF or switch leads). Alternatively, one or more HF leads may be joined with another HF lead, thus minimizing the lines and complexity of cables required for connectivity. As one example, a bipolar HF lead may share a common line with a monopolar HF lead.


The connectivity may also be modified so that the monopolar conductors provide only one of cut or coag functionality. As a result, the connectivity would allow for one monopolar switch and one bipolar switch (as opposed to one bipolar switch and two monopolar switches). Thus, the monopolar functionality (either cut or coag) would be predetermined on the switch line selected. This arrangement may be utilized with either the isolated HF leads or with the joined (e.g., common) HF leads as discussed above. As another example, the connectivity system may be arranged so that the bipolar switch lead is common with one of the monopolar switch leads (e.g., the monopolar cut switch lead or the monopolar coag switch lead). This arrangement would rely on the switch leads that are not active to provide isolation between HF lines (e.g., when bipolar coag is pressed, the monopolar coag switch isolates the two bipolar HF lines).


The connectivity system may be arranged so that there is no common line sharing. Thus, the connectivity system may include a first connector and a second connector. The first connector may be a bipolar plug and the second connector may be a monopolar plug. The first and second connectors may each include one or more conductors. They may each include two or more conductors. They may each include three or more conductors. Each of the first and second connector may have the same number of conductors or may have differing numbers of conductors. Each of the conductors may be HF leads or switch return leads. Each connector may have multiple HF leads and only one switch return lead, or each connector may have multiple switch return leads and only one HF lead. The bipolar plug may include one or more bipolar HF leads. The bipolar plug may include one or more bipolar switch return leads. The bipolar plug may include two bipolar HF leads and one bipolar switch return leads (e.g., two conductors are bipolar HF leads and one conductor is a bipolar switch return lead). The bipolar plug may include exactly one bipolar switch return lead. The monopolar plug may include one or more monopolar HF leads. The monopolar plug may include one or more monopolar switch return leads. The monopolar plug may include one monopolar HF lead. The monopolar plug may include two monopolar switch return leads (e.g., two conductors are monopolar switch return leads and one conductor is a monopolar HF lead). The monopolar plug may include exactly one monopolar HF lead. Each of the monopolar switch return leads may be selected from monopolar cut switch return leads or monopolar coag switch return leads. The connectivity system may include only one monopolar switch return lead, which may be one of a cut switch return lead or coag switch return lead. Thus the functionality of the electrosurgical device may be reduced in that only cut or only coag capability may be present in monopolar mode.


As an alternative to connectivity systems where there is no common line sharing, one or more of the conductors discussed above may have a shared connectivity lines with other conductors to reduce the cable complexity. In other words, one or more HF leads may share a line (e.g., may be integrated) with one or more other HF leads or one or more switch return leads. More specifically, one of the bipolar HF leads may be common with one or the monopolar HF leads. In the event that there are two bipolar HF leads and one monopolar HF lead, the monopolar HF lead may be common with either one of the bipolar HF leads. Such an arrangement may be combined with any other arrangements suggested herein. For example, one or more HF leads may share a common line while the monopolar plug includes only one switch return lead, thereby reducing the number of lines utilized by two. In another embodiment, one or more switch return leads may share a common line. As one specific example, a bipolar switch return lead may be common with a monopolar switch return lead. In an embodiment where there are two monopolar switch return leads (one cut, one coag), the bipolar switch return lead may be common with either of the monopolar switch return leads. Such an arrangement would reduce the number of lines by one and may be combined with other arrangements discussed herein to reduce the number of lines by two. Even more specifically, one or more HF leads may be common and one or more switch return leads while only monopolar functionality is present (cut only or coag only). As a result, the number of lines may be reduced by three.


The electrosurgical devices for which the connectivity systems described herein may be applicable include electrosurgical forceps. Accordingly, the connectivity systems may include one or more activation switches. Each activation is located such that the mode in which the forceps are functioning can be alternated via the activation switches. For example, the device may include one or more bipolar activation switches and one or more monopolar activation switches. More specifically, the monopolar activation switches may comprise a monopolar cut activation switch and a monopolar coag activation switch.


Typically, electrosurgical forceps are stand-alone monopolar or stand-alone bipolar devices which connect to an electrosurgical generator as shown at FIG. 1. Combination monopolar/bipolar forceps typically connect to an electrosurgical generator via a dedicated outlet (as opposed to the outlets shown at FIG. 1). The connectivity systems shown at FIGS. 2-9 however, allow for combination monopolar/bipolar forceps to function using the standard outlets shown at FIG. 1. The forceps may be any forceps that may be used to grip, hold, squeeze, or a combination thereof one or more objects. The forceps may include one or more finger grips (i.e., configured like scissors) that may be used to move the forceps so that they may be used to grip one or more objects. The forceps may be free of finger grips and be actuated by direct pressure being applied to opposing sides of the forceps so that, the forceps close and grip an object. The forceps include the first and second arms.


The arms of the forceps may be located within a housing. The housing may be any device that may include one or more arms and be gripped by a user during use. The housing may provide for electrical connection, mechanical connection or a combination thereof between two or more arms. The housing includes space to facilitate connection of the forceps to an electrosurgical generator via one or more cables (e.g., one or more wires housed within one or more cables). Thus one or more cables may extend from the housing at one or more locations along the housing. The housing may be electrically insulating. The housing may include one or more activation buttons. The activation buttons may allow for switching between monopolar and bipolar mode during use of the forceps. The housing may also include one or more printed circuit boards and associated controls, one or more monopolar electrodes, one or more bipolar electrodes, one or more shields, one or more channels, or a combination thereof.


The connectivity systems described herein provide sufficient power and energy for combination electrosurgical devices. While industry standard electrosurgical generators typically provide sufficient power for only stand-alone monopolar or stand-alone bipolar electrosurgical devices, the connectivity systems described herein allow for sufficient power supply to a combination device via industry standard electrosurgical generator outlets. While such energy may traditionally be provided via a dedicated outlet, the systems herein allow for necessary energy provision via the stand-alone monopolar and bipolar outlets.



FIG. 1 shows example outlets for stand-alone monopolar and stand-alone bipolar outlets on an industry standard electrosurgical generator. The monopolar outlet 10 includes an HF output 12, a cut switch 14 and a coag switch 18. The bipolar outlet 18 includes two HF outputs 20, 22 and a coag switch 24.



FIG. 2 is a diagram depicting a connectivity system including a bipolar plug (e.g., bipolar connector) 26 and a monopolar plug (e.g., monopolar connector) 28. The bipolar plug 26 includes a plurality of conductors including a first bipolar HF lead 30 and a second bipolar HF lead 32. The bipolar plug further includes a bipolar coag switch return lead 34. The monopolar plug 28 includes a plurality of conductors including a monopolar HF lead 36 and a first and second monopolar switch return lead 38, 40. The first monopolar switch return lead 38 is a monopolar cut switch return lead and the second monopolar switch return lead 40 is a monopolar coag switch return lead. The diagram depicts no common lines, so that there are six lines 42a, 42b, 42c, 42d, 42e, 42f that form the cable running from the monopolar outlet 10 and bipolar outlet 18 to the electrosurgical device (not shown). The system further includes a bipolar activation switch 48, and two monopolar activation switches 50, 52. The monopolar switches include a monopolar cut activation switch 50 and a monopolar coag activation switch 52.



FIG. 3 shows a connectivity system whereby the first bipolar HF lead 30 is common with the monopolar HF lead 36. Thus the common HF leads 30, 36 are connected (e.g., shunted) at a connection point 44 prior to connecting to the electrosurgical device itself (not shown). As a result of the common line, there are five lines 42a, 42b, 42c, 42d, 42e that form the cable running from the monopolar outlet 10 and bipolar outlet 18 to the electrosurgical device. The system further includes a first electrode 54 and a second electrode 56 within the electrosurgical device. FIG. 3 depicts that the second electrode 56 operates as both a monopolar electrode and bipolar electrode, as shown by the illustrated connectivity.



FIG. 4 shows a connectivity system whereby the first bipolar HF lead 30 is common with the monopolar HF lead 36, as shown in FIG. 3, and also the bipolar switch return lead 34 is common with the first monopolar switch return lead 38 (e.g., the monopolar cut switch return lead). Thus, the common HF leads 30, 36 are connected (e.g., shunted) at a connection point 44 prior to connecting to the electrosurgical device itself (not shown). Also, the common switch return leads 34, 38 are connected (e.g., shunted) at a connection point 46 prior to connecting with the electrosurgical device. As a result of the common line, there are four lines 42a, 42b, 42c, 42d that form the cable running from the monopolar outlet 10 and bipolar outlet 18 to the electrosurgical device. The system further includes a first electrode 54 and a second electrode 56 within the electrosurgical device. FIG. 4 depicts that the second electrode 56 operates as both a monopolar electrode and bipolar electrode, as shown by the illustrated connectivity.



FIG. 5 shows a connectivity system including a monopolar outlet 10 and bipolar outlet 18 prior to connection with the bipolar plug 26 and monopolar plug 28. The bipolar switch return lead 34 is common with the first monopolar switch return lead 38. The common switch return leads 34, 38 are connected (e.g., shunted) at a connection point 44 prior to connecting to the electrosurgical device itself (not shown). In addition, there are five lines 42a, 42b, 42c, 42d, 42e that form the cable running from the bipolar plug 26 and monopolar plug 28 to the electrosurgical device. The portions within the electrosurgical device 60 are indicated by the boxed area of the figure. The system further includes a first electrode 54, a second electrode 56, and a third electrode 58 within the electrosurgical device. FIG. 5 also depicts a bipolar activation switch 48, a monopolar cut activation switch 50 and a monopolar coag activation switch 52.



FIG. 6 shows a connectivity system whereby the bipolar switch return lead 34 is common with the first (and only) monopolar switch return lead 38. The common switch return leads 34, 38 are connected (e.g., shunted) at a connection point 44 prior to connecting to the electrosurgical device itself (not shown). In addition, there are four lines 42a, 42b, 42c, 42d (given that there was only one monopolar switch lead as opposed to two) that form the cable running from the bipolar plug 26 and monopolar plug 28 to the electrosurgical device. The system further includes a first electrode 54, a second electrode 56, and a third electrode 58 within the electrosurgical device. FIG. 6 also depicts a bipolar activation switch 48, and a monopolar activation switch 50.



FIG. 7 shows a connectivity system whereby the first bipolar HF lead 30 is common with the monopolar HF lead 36. Thus the common HF leads 30, 36 are connected (e.g., shunted) at a connection point 44 prior to connecting to the electrosurgical device itself (not shown). The bipolar switch return lead 34 is also common with the first monopolar switch return lead 38. The common switch return leads 34, 38 are connected (e.g., shunted) at a connection point 46 prior to connecting to the electrosurgical device itself (not shown). As a result, there are only four lines 42a, 42b, 42c, 42d that form the cable running from the bipolar plug 26 and monopolar plug 28 to the electrosurgical device. The four lines connect to a first electrode 54, a second electrode 56, and a third electrode 58 within the electrosurgical device. FIG. 7 also depicts a bipolar activation switch 48, and a monopolar activation switch 50.



FIG. 8 shows a connectivity system whereby the bipolar switch return lead 34 is common with the first monopolar switch return lead 38. The common switch return leads 34, 38 are connected (e.g., shunted) at a connection point 44 prior to connecting to the electrosurgical device itself (not shown). In addition, there are five lines 42a, 42b, 42e, 42d, 42e that form the cable running from the bipolar plug 26 and monopolar plug 28 to the electrosurgical device.



FIG. 9 shows a connectivity system whereby the first bipolar HF lead 30 is common with the monopolar HF lead 36. Thus the common HF leads 30, 36 are connected (e.g., shunted) at a connection point 44 prior to connecting to the electrosurgical device itself (not shown). The bipolar switch return lead 34 is common with the first (and only) monopolar switch return lead 38. The common switch return leads 34, 38 are connected (e.g., shunted) at a connection point 46 prior to connecting to the electrosurgical device itself (not shown). In addition, there are three lines 42a, 42b, 42c (given that there was only one monopolar switch lead as opposed to two) that form the cable running from the bipolar plug 26 and monopolar plug 28 to the electrosurgical device.


Any numerical values recited herein include all values from the lower value to the upper value in increments of one unit provided that there is a separation of at least 2 units between any lower value and any higher value. As art example, if it is stated that the amount of a component or a value of a process variable such as, for example, temperature, pressure, time and the like is, for example, from 1 to 90, preferably from 20 to 80, more preferably from 30 to 70, it is intended that values such as 15 to 85, 22 to 68, 43 to 51, 30 to 32 etc. are expressly enumerated in this specification. For values which are less than one, one unit is considered to be 0.0001, 0.001, 0.01 or 0.1 as appropriate. These are only examples of what is specifically intended and all possible combinations of numerical values between the lowest value and the highest value enumerated are to be considered to be expressly stated in this application in a similar manner.


Unless otherwise stated, all ranges include both endpoints and all numbers between the endpoints. The use of “about” or “approximately” in connection with a range applies to both ends of the range. Thus, “about 20 to 30” is intended to cover “about 20 to about 30”, inclusive of at least the specified endpoints.


The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes. The term “consisting essentially of” to describe a combination shall include the elements, ingredients, components or steps identified, and such other elements ingredients, components or steps that do not materially affect the basic and novel characteristics of the combination. The use of the terms “comprising” or “including” to describe combinations of elements, ingredients, components or steps herein also contemplates embodiments that consist essentially of the elements, ingredients, components or steps. By use of the term “may” herein, it is intended that any described attributes that “may” be included are optional.


Plural elements, ingredients, components or steps can be provided by a single integrated element, ingredient, component or step. Alternatively, a single integrated element, ingredient, component or step might be divided into separate plural elements, ingredients, components or steps. The disclosure of “a” or “one” to describe an element, ingredient, component or step is not intended to foreclose additional elements, ingredients, components or steps.


It is understood that the above description is intended to be illustrative and not restrictive. Many embodiments as well as many applications besides the examples provided will be apparent to those of skill in the art upon reading the above description. The scope of the teachings should, therefore, be determined not with reference to the above description, but should instead be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. The disclosures of all articles and references, including patent applications and publications, are incorporated by reference for all purposes. The omission in the following claims of any aspect of subject matter that is disclosed herein is not a disclaimer of such subject matter, nor should it be regarded that the inventors did not consider such subject matter to be part of the disclosed inventive subject matter.

Claims
  • 1. An electrical cable for a monopolar/bipolar device comprising: a first plug configured to plug into a bipolar outlet and including three conductors extending therefrom wherein a first and second conductor are bipolar HF leads, and a third conductor is a bipolar switch return lead;a bipolar activation switch connecting one of the bipolar HF leads and the bipolar switch return lead;a second plug configured to plug into a monopolar outlet and including two conductors extending therefrom wherein a fourth conductor is a monopolar HF lead and a fifth conductor is a monopolar switch return lead;a first monopolar activation switch connecting the monopolar HF lead and the monopolar switch return lead;wherein the bipolar switch return lead is a shared conductivity line integrated with the monopolar switch return lead, so that the device is configured to use four or fewer conductors.
  • 2. The cable of claim 1, wherein the monopolar switch lead is a monopolar cut switch return lead or a monopolar coag return lead.
  • 3. The cable of claim 2, wherein the bipolar switch return lead is a shared conductivity line integrated with the monopolar cut switch return lead.
  • 4. The cable of claim 2, wherein the bipolar switch return lead is a shared conductivity line integrated with the monopolar coag switch return lead.
  • 5. The cable of claim 1, wherein: (i) the first plug engages a bipolar outlet;(ii) the second plug engages a monopolar outlet;(iii) the bipolar activation switch connects the first conductor to the bipolar switch return lead.
  • 6. The cable of claim 1, wherein the bipolar activation switch connects the second conductor to the bipolar switch return lead.
  • 7. The cable of claim 1, including a sixth conductor.
  • 8. The cable of claim 7, wherein the sixth conductor is a monopolar switch return lead.
  • 9. The cable of claim 7, wherein the sixth conductor is a shared conductivity line integrated with the one of the bipolar HF leads.
  • 10. The cable of claim 9, wherein exactly six conductors are connected via a series of switches and shared connectivity lines to exactly three electrodes within the device.
  • 11. The cable of claim 1, wherein the monopolar HF lead is a shared conductivity line integrated with one of the bipolar HF leads so that the device is configured to use only three conductors.
  • 12. The cable of claim 1, including a second monopolar activation switch.
  • 13. The cable of claim 12, wherein the first monopolar activation switch is a cut activation switch and the second monopolar activation switch is a coag activation switch.
  • 14. The cable of claim 1, wherein the cable connects to three or less electrodes within the device.
  • 15. The cable of claim 1, wherein the cable connects to two bipolar electrodes and one monopolar electrode within the device.
  • 16. The cable of claim 1, wherein at least one conductor is free of any direct connectivity with an activation switch.
  • 17. The cable of claim 1, wherein the cable connects to a single monopolar electrode within the device via two monopolar activation switches.
  • 18. The cable of claim 1, wherein the cable connects to a single monopolar electrode within the device via only one monopolar activation switch.
  • 19. The cable of claim 1, wherein exactly five conductors are connected via a series of switches and shared connectivity lines to exactly three electrodes within the device.
  • 20. An electrical cable for a monopolar/bipolar device comprising: a first plug configured to plug into a bipolar outlet and including three conductors extending therefrom wherein a first and second conductor are bipolar HF leads, and a third conductor is a bipolar switch return lead;a bipolar activation switch connecting one of the bipolar HF leads and the bipolar switch return lead;a second plug configured to plug into a monopolar outlet and including two conductors extending therefrom wherein a fourth conductor is a monopolar HF lead and a fifth conductor is a monopolar switch return lead;a first monopolar activation switch connecting the monopolar HF lead and the monopolar switch return lead; anda second monopolar activation switch;wherein the bipolar switch return lead is a shared conductivity line integrated with the monopolar switch return lead, so that the device is configured to use four or fewer conductors; andwherein one of the first monopolar activation switch or the second monopolar activation switch is a cut activation switch and the other one of the first monopolar activation switch or the second monopolar activation switch is a coag activation switch.
Parent Case Info

This present application is a continuation of U.S. application Ser. No. 14/209,071 filed Mar. 13, 2014, now U.S. Pat. No. 9,901,388, which claims priority to U.S. Provisional Application Ser. No. 61/787,731 filed Mar. 15, 2013, the entire contents of which are incorporated herein by reference.

US Referenced Citations (330)
Number Name Date Kind
1198958 Risely Sep 1916 A
1530952 Lawton Mar 1925 A
2042985 Gardella Jun 1936 A
2214984 Bachmann Sep 1940 A
2381084 Slad Aug 1945 A
2575652 Bovee Nov 1951 A
2894424 Vaughan Jul 1959 A
3399583 Hall Sep 1968 A
3417752 Butler Dec 1968 A
3465621 Ladd Sep 1969 A
3576072 Foster Apr 1971 A
3643663 Sutter Feb 1972 A
3685518 Beuerle et al. Aug 1972 A
3699632 Anhalt Oct 1972 A
3817078 Reed et al. Jun 1974 A
3818784 McClure Jun 1974 A
3913586 Baumgarten Oct 1975 A
4041952 Morrison, Jr. et al. Aug 1977 A
4154226 Hennig et al. May 1979 A
4171700 Farin Oct 1979 A
4202337 Hren et al. May 1980 A
4318313 Tartaglia Mar 1982 A
4375218 DiGeronimo Mar 1983 A
4407069 Conners Oct 1983 A
4418692 Guay Dec 1983 A
4443935 Zamba et al. Apr 1984 A
4463759 Garito et al. Jul 1984 A
4492231 Auth Jan 1985 A
4492832 Taylor Jan 1985 A
4494543 Hart Jan 1985 A
4504707 Ochiai Mar 1985 A
4524648 Chung Jun 1985 A
4552143 Lottick Nov 1985 A
4655215 Pike Apr 1987 A
4669470 Brandfield Jun 1987 A
4686980 Williams et al. Aug 1987 A
4688569 Rabinowitz Aug 1987 A
4713885 Keklak et al. Dec 1987 A
4757612 Peyrot Jul 1988 A
4784136 Klein Nov 1988 A
4860745 Farin et al. Aug 1989 A
4896661 Bogert et al. Jan 1990 A
4935027 Yoon Jun 1990 A
5021616 Hardt Jun 1991 A
5035695 Weber, Jr. et al. Jul 1991 A
5071426 Dolgin et al. Dec 1991 A
5104397 Vasconcelos et al. Apr 1992 A
5108392 Spingler Apr 1992 A
5147378 Markham Sep 1992 A
5176702 Bales et al. Jan 1993 A
5190541 Abele et al. Mar 1993 A
5196009 Kirwan, Jr. Mar 1993 A
5207691 Nardella May 1993 A
5207696 Matwijcow May 1993 A
5208983 Masse May 1993 A
5226904 Gentelia et al. Jul 1993 A
5281216 Klicek Jan 1994 A
5290286 Parins Mar 1994 A
5293878 Bales et al. Mar 1994 A
5318589 Lichtman Jun 1994 A
5342359 Rydell Aug 1994 A
5370659 Sakashita Dec 1994 A
5403312 Yates et al. Apr 1995 A
5413575 Haenggi May 1995 A
5423814 Zhu et al. Jun 1995 A
5425743 Nicholas Jun 1995 A
5440813 Roskam Aug 1995 A
5441498 Perkins Aug 1995 A
5443463 Stern et al. Aug 1995 A
5456695 Herve Dallemagne Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5472442 Klicek Dec 1995 A
5483952 Aranyi Jan 1996 A
5484435 Fleenor et al. Jan 1996 A
5499998 Meade Mar 1996 A
5531744 Nardella et al. Jul 1996 A
5540685 Parins et al. Jul 1996 A
5562503 Ellman et al. Oct 1996 A
5573424 Poppe Nov 1996 A
5626577 Harris May 1997 A
5658281 Heard Aug 1997 A
5674220 Fox et al. Oct 1997 A
5693052 Weaver Dec 1997 A
5702390 Austin et al. Dec 1997 A
5709680 Yates et al. Jan 1998 A
5735849 Baden et al. Apr 1998 A
5779701 McBrayer et al. Jul 1998 A
5810805 Sutcu et al. Sep 1998 A
5827281 Levin Oct 1998 A
5884954 Trozera Mar 1999 A
5891140 Ginn et al. Apr 1999 A
5902301 Olig May 1999 A
5922001 Yoon Jul 1999 A
5951545 Schilling et al. Sep 1999 A
6024741 Williamson, IV et al. Feb 2000 A
6030384 Nezhat Feb 2000 A
6039734 Goble Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053908 Crainich et al. Apr 2000 A
6074386 Goble et al. Jun 2000 A
6099550 Yoon Aug 2000 A
6102909 Chen et al. Aug 2000 A
6110171 Rydell Aug 2000 A
6113596 Hooven Sep 2000 A
6117158 Measamer et al. Sep 2000 A
6117169 Moe Sep 2000 A
6152923 Ryan Nov 2000 A
6174309 Wrublewski et al. Jan 2001 B1
6190386 Rydell Feb 2001 B1
6270497 Sekino et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6325795 Lindemann et al. Dec 2001 B1
6355032 Hovda et al. Mar 2002 B1
6358268 Hunt et al. Mar 2002 B1
6402747 Lindemann et al. Jun 2002 B1
6428538 Blewett et al. Aug 2002 B1
6458128 Schulze Oct 2002 B1
6464704 Schmaltz et al. Oct 2002 B2
6486419 Horiguchi et al. Nov 2002 B2
6494886 Wilk et al. Dec 2002 B1
6514252 Nezhat et al. Feb 2003 B2
6551313 Levin Apr 2003 B1
6585735 Frazier et al. Jul 2003 B1
6619038 Takada et al. Sep 2003 B2
6623499 Andreini et al. Sep 2003 B1
6641595 Moran et al. Nov 2003 B1
6652514 Ellman et al. Nov 2003 B2
6679882 Kornerup Jan 2004 B1
6689130 Arai et al. Feb 2004 B2
6695840 Schulze Feb 2004 B2
6726686 Buysse et al. Apr 2004 B2
6749610 Kirwan, Jr. et al. Jun 2004 B2
6752767 Turovskiy et al. Jun 2004 B2
6773434 Ciarrocca Aug 2004 B2
6808525 Latterell et al. Oct 2004 B2
6827717 Brommersma et al. Dec 2004 B2
6860882 Battles et al. Mar 2005 B2
6926716 Baker et al. Aug 2005 B2
6942662 Goble et al. Sep 2005 B2
7083613 Treat Aug 2006 B2
7094231 Ellman et al. Aug 2006 B1
7108694 Miura et al. Sep 2006 B2
7112199 Cosmescu Sep 2006 B2
7147637 Goble Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7150749 Dycus et al. Dec 2006 B2
7156846 Dycus et al. Jan 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7244257 Podhajsky et al. Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7344536 Lunsford et al. Mar 2008 B1
7367976 Lawes et al. May 2008 B2
7377902 Burbank et al. May 2008 B2
7473253 Dycus et al. Jan 2009 B2
7481810 Dumbauld Jan 2009 B2
7503917 Sartor et al. Mar 2009 B2
7604635 McClurken et al. Oct 2009 B2
7625391 Kebel et al. Dec 2009 B2
7651494 Mcclurken et al. Jan 2010 B2
7671261 Garito et al. Mar 2010 B1
7686827 Hushka Mar 2010 B2
7722607 Dumbauld et al. May 2010 B2
7753909 Chapman et al. Jul 2010 B2
7758577 Nobis et al. Jul 2010 B2
7789878 Dumbauld et al. Sep 2010 B2
7879035 Garrison et al. Feb 2011 B2
7896875 Heim et al. Mar 2011 B2
7909820 Lipson et al. Mar 2011 B2
7922718 Moses et al. Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
7931668 Sloat Apr 2011 B2
7938469 Ait-Mani May 2011 B2
7942872 Ein-Gal May 2011 B2
7955331 Truckai et al. Jun 2011 B2
7998140 McClurken et al. Aug 2011 B2
8062292 Slater Nov 2011 B1
8100894 Mucko et al. Jan 2012 B2
8162940 Johnson et al. Apr 2012 B2
8216231 Behl et al. Jul 2012 B2
8226649 Falkenstein et al. Jul 2012 B2
8246094 Long et al. Aug 2012 B2
8251989 Newton et al. Aug 2012 B1
8257352 Lawes et al. Sep 2012 B2
8262655 Ghabrial et al. Sep 2012 B2
8267935 Couture et al. Sep 2012 B2
8287534 Balog Oct 2012 B2
8328170 Wasinger Dec 2012 B2
8361065 West et al. Jan 2013 B2
8361072 Dumbauld et al. Jan 2013 B2
8485413 Scheib et al. Jul 2013 B2
8491626 Roy et al. Jul 2013 B2
8496603 Mamourian Jul 2013 B2
8568411 Falkenstein et al. Oct 2013 B2
8628529 Aldridge et al. Jan 2014 B2
8632553 Sakamoto et al. Jan 2014 B2
8702691 Weber Apr 2014 B2
8702700 Maeda et al. Apr 2014 B2
8882756 Greeley et al. Nov 2014 B2
8939972 Twomey Jan 2015 B2
9023035 Allen et al. May 2015 B2
9204879 Shelton Dec 2015 B2
9320563 Brustad et al. Apr 2016 B2
9326810 Shiley et al. May 2016 B2
9358065 Ladtkow et al. Jun 2016 B2
9439665 Marczyk et al. Sep 2016 B2
9445863 Batchelor et al. Sep 2016 B2
9452009 Batchelor et al. Sep 2016 B2
9452011 Batchelor et al. Sep 2016 B2
9668805 Batchelor et al. Jun 2017 B2
9763730 Batchelor et al. Sep 2017 B2
9901388 Batchelor et al. Feb 2018 B2
9901389 Batchelor Feb 2018 B2
10085793 Batchelor Oct 2018 B2
10271895 Batchelor et al. Apr 2019 B2
10292757 Batchelor et al. May 2019 B2
20020106609 Palermo et al. Aug 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020115997 Truckai et al. Aug 2002 A1
20030014850 Banitt et al. Jan 2003 A1
20030018329 Hooven Jan 2003 A1
20030144652 Baker et al. Jan 2003 A1
20030050633 Ellman Mar 2003 A1
20030097126 Woloszko May 2003 A1
20030106609 Leoncavallo Jun 2003 A1
20030109876 Yamauchi Jun 2003 A1
20030114850 McClurken Jun 2003 A1
20030144605 Burbank et al. Jul 2003 A1
20030181904 Levine et al. Sep 2003 A1
20040030330 Brassell et al. Feb 2004 A1
20040082946 Malis Apr 2004 A1
20040097117 Gonnering May 2004 A1
20040097912 Gonnering May 2004 A1
20050065510 Carmel et al. Mar 2005 A1
20050113824 Sartor May 2005 A1
20050113825 Cosmescu May 2005 A1
20050113827 Dumbauld et al. May 2005 A1
20050159745 Truckai et al. Jul 2005 A1
20050187512 Isola et al. Aug 2005 A1
20050216019 Eckman Sep 2005 A1
20060004355 Anders et al. Jan 2006 A1
20060084973 Hushka Apr 2006 A1
20060167450 Johnson et al. Jul 2006 A1
20060190035 Hushka et al. Aug 2006 A1
20060217701 Young et al. Sep 2006 A1
20070049922 Rontal Mar 2007 A1
20070078458 Dambauld et al. Apr 2007 A1
20070093857 Rogers et al. Apr 2007 A1
20070106295 Garrison et al. May 2007 A1
20070123855 Morley et al. May 2007 A1
20070129716 Daw Jun 2007 A1
20070179491 Kratoska et al. Aug 2007 A1
20080033428 Artale et al. Feb 2008 A1
20080077129 Van Wyk et al. Mar 2008 A1
20080147092 Rogge et al. Jun 2008 A1
20080154300 Jabbour Jun 2008 A1
20080236860 Howe Oct 2008 A1
20080287948 Newton et al. Nov 2008 A1
20090030414 Bayat Jan 2009 A1
20090062786 Garito et al. Mar 2009 A1
20090062792 Vakharia et al. Mar 2009 A1
20090062830 Hiraoka Mar 2009 A1
20090082768 Bacher et al. Mar 2009 A1
20090093804 Newton Apr 2009 A1
20090138003 DeVille et al. May 2009 A1
20090138013 Thorne et al. May 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090192509 Curtis Jul 2009 A1
20090248002 Takashino et al. Oct 2009 A1
20100042096 Ellman Feb 2010 A1
20100069940 Miller et al. Mar 2010 A1
20100087814 Desinger et al. Apr 2010 A1
20100137854 Hosier Jun 2010 A1
20100179545 Twomey et al. Jul 2010 A1
20100228249 Mohr Sep 2010 A1
20100233913 Kuhne Sep 2010 A1
20100241119 Bayat Sep 2010 A1
20100298865 Aufaure et al. Nov 2010 A1
20110045680 Beller Feb 2011 A1
20110054462 Ellman Mar 2011 A1
20110071525 Dumbauld et al. Mar 2011 A1
20110077648 Lee et al. Mar 2011 A1
20110098733 Huynh Apr 2011 A1
20110112530 Keller May 2011 A1
20110178515 Bloom et al. Jul 2011 A1
20110224669 Podany Sep 2011 A1
20110230875 Walberg et al. Sep 2011 A1
20110251613 Guerra et al. Oct 2011 A1
20110319892 Blomeyer Dec 2011 A1
20120022530 Woodruff Jan 2012 A1
20120078292 Banju Mar 2012 A1
20120095460 Rooks et al. Apr 2012 A1
20120101501 Nishimura et al. Apr 2012 A1
20120107517 Shibata et al. May 2012 A1
20120123405 Moua et al. May 2012 A1
20120123409 Tani et al. May 2012 A1
20120150165 Conley et al. Jun 2012 A1
20120202388 Selig Aug 2012 A1
20120232553 Bloom et al. Sep 2012 A1
20120310229 Gregg Dec 2012 A1
20130023874 Lawes Jan 2013 A1
20130066317 Evans et al. Mar 2013 A1
20130079762 Twomey et al. Mar 2013 A1
20130079764 Schaller et al. Mar 2013 A1
20130138096 Benn May 2013 A1
20130178852 Allen, IV Jul 2013 A1
20130237982 Rencher et al. Sep 2013 A1
20130296846 Canady et al. Nov 2013 A1
20140100569 Lawes et al. Apr 2014 A1
20140236202 Palmer et al. Aug 2014 A1
20140276772 Batchelor et al. Sep 2014 A1
20140276785 Batchelor et al. Sep 2014 A1
20140276786 Batchelor Sep 2014 A1
20140276794 Batchelor et al. Sep 2014 A1
20140276795 Batchelor et al. Sep 2014 A1
20140276796 Batchelor et al. Sep 2014 A1
20140276797 Batchelor et al. Sep 2014 A1
20140276798 Batchelor et al. Sep 2014 A1
20140276799 Batchelor et al. Sep 2014 A1
20140276800 Batchelor et al. Sep 2014 A1
20140276804 Batchelor Sep 2014 A1
20150119885 Windgassen et al. Apr 2015 A1
20150148798 Windgassen et al. May 2015 A1
20150320485 Batchelor et al. Nov 2015 A1
20160051273 Batchelor et al. Feb 2016 A1
20160051275 Batchelor et al. Feb 2016 A1
20160051314 Batchelor et al. Feb 2016 A1
20160346033 Batchelor et al. Dec 2016 A1
20180333196 Batchelor Nov 2018 A1
20190239942 Batchelor et al. Aug 2019 A1
20190247110 Batchelor et al. Aug 2019 A1
Foreign Referenced Citations (163)
Number Date Country
2014235755 Jul 2015 AU
201520783 Aug 2015 AU
2015205939 Aug 2015 AU
2015205939 Mar 2017 AU
2015207838 Mar 2017 AU
2014235755 Nov 2018 AU
122015018776 Aug 2019 BR
122015018777 Aug 2019 BR
1149519 May 1997 CN
1889893 Jan 2007 CN
1929794 Mar 2007 CN
101460110 Jun 2009 CN
101902979 Dec 2010 CN
102068307 May 2011 CN
102164556 Aug 2011 CN
102525639 Jul 2012 CN
102836006 Dec 2012 CN
104994802 Oct 2015 CN
105025833 Nov 2015 CN
105142556 Dec 2015 CN
105142557 Dec 2015 CN
105163683 Dec 2015 CN
105208055 Dec 2015 CN
105208956 Dec 2015 CN
105246424 Jan 2016 CN
105246425 Jan 2016 CN
105286992 Feb 2016 CN
105380711 Mar 2016 CN
105451678 Mar 2016 CN
104994802 Sep 2017 CN
105286992 Oct 2017 CN
105025833 Nov 2017 CN
105208956 Nov 2017 CN
105380711 Jan 2018 CN
105246424 Feb 2018 CN
105246425 Mar 2018 CN
108078625 May 2018 CN
105163683 Jun 2018 CN
105142557 Jul 2018 CN
105208955 Nov 2018 CN
105142556 Jan 2019 CN
105451678 Jul 2019 CN
0392548 Oct 1994 EP
1089664 Apr 2001 EP
1411847 Jan 2005 EP
1530952 May 2005 EP
1769765 Apr 2007 EP
1810629 Jul 2007 EP
1977706 Oct 2008 EP
2403422 Jan 2012 EP
2928402 Oct 2015 EP
2945557 Nov 2015 EP
2967718 Jan 2016 EP
2967719 Jan 2016 EP
2967720 Jan 2016 EP
2967724 Jan 2016 EP
2967732 Jan 2016 EP
2967735 Jan 2016 EP
2967739 Jan 2016 EP
2967741 Jan 2016 EP
2974682 Jan 2016 EP
2974684 Jan 2016 EP
2945557 Jan 2017 EP
2967718 Apr 2017 EP
3158963 Apr 2017 EP
2928402 May 2017 EP
2967720 May 2017 EP
2967719 Jul 2017 EP
2974682 Aug 2017 EP
2974684 Aug 2017 EP
3210560 Aug 2017 EP
2967732 Nov 2017 EP
2967724 Dec 2017 EP
2967741 Feb 2018 EP
3308731 Apr 2018 EP
2967739 May 2018 EP
2967735 Aug 2018 EP
3427682 Jan 2019 EP
3210560 Jul 2019 EP
3308731 Oct 2019 EP
4353CHENP2015 Jul 2016 IN
4990CHENP2015 Jul 2016 IN
4991CHENP2015 Jul 2016 IN
58193907 Dec 1983 JP
H08322847 Dec 1996 JP
H09503423 Apr 1997 JP
H09122140 May 1997 JP
H10199 Jan 1998 JP
H1057390 Mar 1998 JP
H10-137259 May 1998 JP
H10-504485 May 1998 JP
H10137259 May 1998 JP
2000070280 Mar 2000 JP
2000102545 Apr 2000 JP
2001170070 Jun 2001 JP
2002078717 Mar 2002 JP
2002528166 Sep 2002 JP
2003210483 Jul 2003 JP
2004508875 Mar 2004 JP
2004147724 May 2004 JP
2005144192 Jun 2005 JP
2005518864 Jun 2005 JP
2005521465 Jul 2005 JP
2005538748 Dec 2005 JP
2006116320 May 2006 JP
2008018226 Jan 2008 JP
2008119465 May 2008 JP
2009182479 Aug 2009 JP
2009247893 Oct 2009 JP
2011506008 Mar 2011 JP
2011212449 Oct 2011 JP
2012152561 Aug 2012 JP
2012517869 Aug 2012 JP
2012518490 Aug 2012 JP
2013502248 Jan 2013 JP
2016047264 Apr 2016 JP
2016510633 Apr 2016 JP
2016510634 Apr 2016 JP
2016510635 Apr 2016 JP
2016510636 Apr 2016 JP
2016512079 Apr 2016 JP
2016512081 Apr 2016 JP
2016512720 May 2016 JP
2016513539 May 2016 JP
2016515864 Jun 2016 JP
2016516482 Jun 2016 JP
2016185321 Oct 2016 JP
2017038982 Feb 2017 JP
6109908 Mar 2017 JP
6129400 Apr 2017 JP
6141506 May 2017 JP
6153654 Jun 2017 JP
6161780 Jun 2017 JP
6193469 Aug 2017 JP
6216031 Sep 2017 JP
6273346 Jan 2018 JP
6275813 Jan 2018 JP
6386010 Aug 2018 JP
2018140222 Sep 2018 JP
6440677 Nov 2018 JP
96005776 Feb 1996 WO
9966850 Dec 1999 WO
0224089 Mar 2002 WO
2006122279 Nov 2006 WO
2007002545 Jan 2007 WO
2007093857 Aug 2007 WO
WO-2009141624 Nov 2009 WO
2010101897 Sep 2010 WO
2012053530 Apr 2012 WO
2014096815 Jun 2014 WO
WO-2014143472 Sep 2014 WO
WO-2014143476 Sep 2014 WO
WO-2014143477 Sep 2014 WO
WO-2014149250 Sep 2014 WO
WO-2014150682 Sep 2014 WO
WO-2014150754 Sep 2014 WO
WO-2014150774 Sep 2014 WO
WO-2014151560 Sep 2014 WO
WO-2014152108 Sep 2014 WO
WO-2014152258 Sep 2014 WO
WO-2014152433 Sep 2014 WO
WO-2015047611 Apr 2015 WO
WO-2017123189 Jul 2017 WO
Non-Patent Literature Citations (397)
Entry
PCT International Preliminary Report on Patentability dated Sep. 24, 2015; Application No. PCT/US2014/025999.
Potentially related U.S. Appl. No. 14/177,780, filed Feb. 11, 2014.
Potentially related U.S. Appl. No. 14/178,411, filed Feb. 12, 2014.
Potentially related U.S. Appl. No. 14/205,598, filed Mar. 12, 2014.
Potentially related U.S. Appl. No. 14/205,919, filed Mar. 12, 2014.
Potentially related to U.S. Appl. No. 14/206,010, filed Mar. 12, 2014.
Potentially related U.S. Appl. No. 14/210,535, filed Mar. 14, 2014.
Potentially related U.S. Appl. No. 14/210,741, filed Mar. 14, 2014.
Potentially related U.S. Appl. No. 14/211,042, filed Mar. 14, 2014.
Potentially related U.S. Appl. No. 14/178,569, filed Feb. 12, 2014.
Potentially related U.S. Appl. No. 14/178,577, filed Feb. 12, 2014.
315MHZ sliding remote cover, available at website http://www.aliexpress.com/item/Sliding-Cover-Gate-Remote-Control-Duplicator-Adjustable-Frequency-Remote-Copy-100pCS-lot-Free-Shipping-by-DHL/566451354.html?tracelog=back_to_detail_a (accessed on Feb. 21, 2013).
Sliding Gate Remote Control Duplicator, available at website: http://www.aliexpress.com/item/315MHZ-sliding-cover-remote-controller-duplicating-remote-controller-sliding-gate-remote-garager-door-remote/491795542.html (accessed on Feb. 21, 2013).
PCT International Preliminary Report on Patentability dated Sep. 24, 2015 for Application No. PCT/US2014/025999.
International Search Report & Written Opinion for Application No. PCT/US2014/025999 dated Jul. 22, 2014.
Japanese Office Action dated Nov. 1, 2016 for Application No. 2016-502020.
Chinese Office Action dated Dec. 2, 2016 for Application No. 201480015301.X.
European Patent Office Action dated Dec. 13, 2016 for Application No. 14720793.0.
Potentially related U.S. Appl. No. 14/589,482, filed Jan. 5, 2015 published as 2015/0148798 on May 28, 2015.
Potentially related U.S. Appl. No. 14/589,515, filed Jan. 5, 2015, published as 2015/0119885 on Apr. 30, 2015.
Potentially related U.S. Appl. No. 14/829,725, filed Aug. 19, 2015.
Potentially related U.S. Appl. No. 14/830,069, filed Aug. 19, 2015.
Potentially related U.S. Appl. No. 14/830,255, filed Aug. 19, 2015.
Potentially related U.S. Appl. No. 14/177,780, filed Feb. 11, 2014, published as 2014/0276794 on Sep. 18, 2014.
Potentially related U.S. Appl. No. 14/178,411, filed Feb. 12, 2014, published as 2014/0276785 on Sep. 18, 2014.
Potentially related U.S. Appl. No. 14/178,569, filed Feb. 12, 2014, published as 2014/0276804 on Sep. 18, 2014.
Potentially related U.S. Appl. No. 14/178,577, filed Feb. 12, 2014, published as 2014/0276786 on Sep. 18, 2014.
Potentially related U.S. Appl. No. 14/205,598, filed Mar. 12, 2014, published as 2014/0276795 on Sep. 18, 2014.
Potentially related U.S. Appl. No. 14/205,919, filed Mar. 12, 2014 published as 2014/0276796 on Sep. 18, 2014.
Potentially related U.S. Appl. No. 14/210,535, filed Mar. 14, 2014, published as 2014/0276799 on Sep. 18, 2014.
Potentially related U.S. Appl. No. 14/210,741, filed Mar. 14, 2014, published as 2014/0276800 on Sep. 18, 2104.
Potentially related U.S. Appl. No. 14/211,042, filed Mar. 14, 2014, published as 2014/0276772 on Sep. 18, 2014.
Potentially related U.S. Appl. No. 14/209,071, filed Mar. 13, 2014, 19 pgs.
“U.S. Appl. No. 14/178,411, Advisory Action dated Jul. 6, 2018”, 3 pgs.
“U.S. Appl. No. 14/178,411, Advisory Action dated Jul. 19, 2017”, 3 pgs.
“U.S. Appl. No. 14/178,411, Examiner Interview Summary dated May 24, 2018”, 3 pgs.
“U.S. Appl. No. 14/178,411, Examiner Interview Summary dated Jun. 2, 2017”, 4 pgs.
“U.S. Appl. No. 14/178,411, Examiner Interview Summary dated Aug. 10, 2016”, 3 pgs.
“U.S. Appl. No. 14/178,411, Final Office Action dated Mar. 15, 2016”, 10 pgs.
“U.S. Appl. No. 14/178,411, Final Office Action dated Apr. 12, 2017”, 10 pgs.
“U.S. Appl. No. 14/178,411, Final Office Action dated Apr. 23, 2018”, 11 pgs.
“U.S. Appl. No. 14/178,411, Non Final Office Action dated Nov. 16, 2015”, 10 pgs.
“U.S. Appl. No. 14/178,411, Non Final Office Action dated Dec. 20, 2017”, 12 pgs.
“U.S. Appl. No. 14/178,411, Non Final Office Action dated Dec. 27, 2016”, 10 Pgs.
“U.S. Appl. No. 14/178,411, Notice of Allowance dated Jan. 17, 2019”, 9 pgs.
“U.S. Appl. No. 14/178,411, Response filed Feb. 16, 2016 to Non Final Office Action dated Nov. 16, 2015”, 10 pgs.
“U.S. Appl. No. 14/178,411, Response filed Mar. 20, 2018 to Non Final Office Action dated Dec. 20, 2017”, 9 pgs.
“U.S. Appl. No. 14/178,411, Response filed Mar. 27, 2017 to Non Final Office Action dated Dec. 27, 2016”, 7 pgs.
“U.S. Appl. No. 14/178,411, Response filed Jun. 25, 2018 to Final Office Action dated Apr. 23, 2018”, 10 pgs.
“U.S. Appl. No. 14/178,411, Response filed Jul. 12, 2017 to Final Office Action dated Apr. 12, 2017”, 8 pgs.
“U.S. Appl. No. 14/178,411, Response filed Aug. 11, 2017 to Advisory Action dated Jul. 19, 2017”, 8 pgs.
“U.S. Appl. No. 14/178,411, Response filed Aug. 15, 2016 to Final Office Action dated Mar. 15, 2016”, 8 pgs.
“U.S. Appl. No. 14/178,411, Supplemental Amendment filed Mar. 3, 2016”, 10 pgs.
“U.S. Appl. No. 14/178,569, 312 Amendment filed Dec. 27, 2017”, 8 pgs.
“U.S. Appl. No. 14/178,569, Advisory Action dated Nov. 16, 2016”, 3 pgs.
“U.S. Appl. No. 14/178,569, Examiner Interview Summary dated Jul. 14, 2017”, 4 pgs.
“U.S. Appl. No. 14/178,569, Examiner Interview Summary dated Aug. 8, 2016”, 4 pgs.
“U.S. Appl. No. 14/178,569, Final Office Action dated Sep. 8, 2016”, 16 pgs.
“U.S. Appl. No. 14/178,569, Non Final Office Action dated Apr. 7, 2017”, 16 pgs.
“U.S. Appl. No. 14/178,569, Non Final Office Action dated Apr. 20, 2016”, 19 pgs.
“U.S. Appl. No. 14/178,569, Notice of Allowance dated Sep. 29, 2017”, 10 pgs.
“U.S. Appl. No. 14/178,569, PTO Response to Rule 312 Communication dated Jan. 24, 2018”, 2 pgs.
“U.S. Appl. No. 14/178,569, Response filed Jul. 7, 2017 to Non Final Office Action dated Apr. 7, 2017”, 20 pgs.
“U.S. Appl. No. 14/178,569, Response filed Jul. 20, 2016 to Non Final Office Action dated Apr. 20, 2016”, 19 pgs.
“U.S. Appl. No. 14/178,569, Response filed Nov. 8, 2016 to Final Office Action dated Sep. 8, 2016”, 17 pgs.
“U.S. Appl. No. 14/178,577, 312 Amendment filed Jul. 30, 2018”, 9 pgs.
“U.S. Appl. No. 14/178,577, Advisory Action dated Nov. 16, 2016”, 3 pgs.
“U.S. Appl. No. 14/178,577, Examiner Interview Summary dated Jul. 14, 2017”, 3 pgs.
“U.S. Appl. No. 14/178,577, Examiner Interview Summary dated Aug. 4, 2016”, 4 pgs.
“U.S. Appl. No. 14/178,577, Examiner Interview Summary dated Dec. 13, 2017”, 3 pgs.
“U.S. Appl. No. 14/178,577, Final Office Action dated Sep. 8, 2016”, 21 pgs.
“U.S. Appl. No. 14/178,577, Final Office Action dated Sep. 27, 2017”, 10 pgs.
“U.S. Appl. No. 14/178,577, Non Final Office Action dated Apr. 6, 2017”, 18 pgs.
“U.S. Appl. No. 14/178,577, Non Final Office Action dated Apr. 21, 2016”, 19 pgs.
“U.S. Appl. No. 14/178,577, Notice of Allowance dated May 2, 2018”, 16 pgs.
“U.S. Appl. No. 14/178,577, PTO Response to Rule 312 Communication dated Jul. 9, 2018”, 2 pgs.
“U.S. Appl. No. 14/178,577, PTO Response to Rule 312 Communication dated Aug. 29, 2018”, 2 pgs.
“U.S. Appl. No. 14/178,577, Response filed Jul. 6, 2017 to Non Final Office Action dated Apr. 6, 2017”, 19 pgs.
“U.S. Appl. No. 14/178,577, Response filed Jul. 21, 2016 to Non Final Office Action dated Apr. 21, 2016”, 21 pgs.
“U.S. Appl. No. 14/178,577, Response filed Nov. 7, 2016 to Final Office Action dated Sep. 8, 2016”, 19 pgs.
“U.S. Appl. No. 14/178,577, Response filed Dec. 27, 2017 to Final Office Action dated Sep. 27, 2017”, 15 pgs.
“U.S. Appl. No. 14/205,598, Examiner Interview Summary dated Mar. 10, 2016”, 3 pgs.
“U.S. Appl. No. 14/205,598, Final Office Action dated Apr. 22, 2016”, 16 pgs.
“U.S. Appl. No. 14/205,598, Non Final Office Action dated Dec. 8, 2015”, 18 pgs.
“U.S. Appl. No. 14/205,598, Notice of Allowance dated Aug. 8, 2016”, 10 pgs.
“U.S. Appl. No. 14/205,598, Preliminary Amendment filed Mar. 18, 2015”, 6 pgs.
“U.S. Appl. No. 14/205,598, Response filed Mar. 8, 2016 to Non Final Office Action dated Dec. 8, 2015”, 14 pgs.
“U.S. Appl. No. 14/205,598, Response filed Jun. 21, 2016 to Final Office Action dated Apr. 22, 2016”, 12 pgs.
“U.S. Appl. No. 14/206,010, Advisory Action dated Nov. 22, 2016”, 6 pgs.
“U.S. Appl. No. 14/206,010, Examiner Interview Summary dated May 2, 2016”, 3 pgs.
“U.S. Appl. No. 14/206,010, Examiner Interview Summary dated Jul. 10, 2018”, 3 pgs.
“U.S. Appl. No. 14/206,010, Examiner Interview Summary dated Jul. 24, 2018”, 3 pgs.
“U.S. Appl. No. 14/206,010, Examiner Interview Summary dated Sep. 15, 2017”, 3 pgs.
“U.S. Appl. No. 14/206,010, Final Office Action dated Feb. 13, 2018”, 17 pgs.
“U.S. Appl. No. 14/206,010, Final Office Action dated Jul. 26, 2019”, 14 pgs.
“U.S. Appl. No. 14/206,010, Final Office Action dated Aug. 26, 2016”, 13 pgs.
“U.S. Appl. No. 14/206,010, Non Final Office Action dated Jan. 2, 2019”, 15 pgs.
“U.S. Appl. No. 14/206,010, Non Final Office Action dated Jan. 29, 2016”, 11 pgs.
“U.S. Appl. No. 14/206,010, Non Final Office Action dated Jun. 2, 2017”, 13 pgs.
“U.S. Appl. No. 14/206,010, Response filed Apr. 18, 2019 to Non Final Office Action dated Jan. 2, 2019”, 10 pgs.
“U.S. Appl. No. 14/206,010, Response filed Apr. 28, 2016 to Non Final Office Action dated Jan. 29, 2016”, 9 pgs.
“U.S. Appl. No. 14/206,010, Response filed Jun. 26, 2018 to Final Office Action dated Feb. 13, 2018”, 9 pgs.
“U.S. Appl. No. 14/206,010, Response filed Sep. 8, 2017 to Non Final Office Action dated Jun. 2, 2017”, 11 pgs.
“U.S. Appl. No. 14/206,010, Response filed Oct. 13, 2016 to Final Office Action dated Aug. 26, 2016”, 6 pgs.
“U.S. Appl. No. 14/206,010, Response filed Dec. 19, 2016 to Advisory Action dated Nov. 22, 2016”, 8 pgs.
“U.S. Appl. No. 14/209,071, Corrected Notice of Allowability dated Jun. 2, 2017”, 2 pgs.
“U.S. Appl. No. 14/209,071, Examiner Interview Summary dated Sep. 20, 2016”, 3 pgs.
“U.S. Appl. No. 14/209,071, Final Office Action dated Dec. 30, 2016”, 10 pgs.
“U.S. Appl. No. 14/209,071, Non Final Office Action dated Mar. 25, 2016”, 15 pgs.
“U.S. Appl. No. 14/209,071, Notice of Allowance dated Apr. 18, 2017”, 7 pgs.
“U.S. Appl. No. 14/209,071, Notice of Allowance dated Nov. 8, 2017”, 5 pgs.
“U.S. Appl. No. 14/209,071, Response filed Feb. 28, 2017 to Final Office Action dated Dec. 30, 2016”, 6 pgs.
“U.S. Appl. No. 14/209,071, Response filed Sep. 26, 2016 to Non Final Office Action dated Mar. 25, 2016”, 7 pgs.
“U.S. Appl. No. 14/210,535, 312 Amendment filed Jul. 5, 2016”, 7 pgs.
“U.S. Appl. No. 14/210,535, Examiner Interview Summary dated May 10, 2016”, 3 pgs.
“U.S. Appl. No. 14/210,535, Non Final Office Action dated Feb. 4, 2016”, 12 pgs.
“U.S. Appl. No. 14/210,535, Notice of Allowance dated May 25, 2016”, 11 pgs.
“U.S. Appl. No. 14/210,535, PTO Response to Rule 312 Communication dated Jul. 19, 2016”, 2 pgs.
“U.S. Appl. No. 14/210,535, Response filed May 4, 2016 to Non Final Office Action dated Feb. 4, 2016”, 14 pgs.
“U.S. Appl. No. 14/589,482, Advisory Action dated Jan. 24, 2018”, 3 pgs.
“U.S. Appl. No. 14/589,482, Examiner Interview Summary dated Jul. 25, 2017”, 3 pgs.
“U.S. Appl. No. 14/589,482, Examiner Interview Summary dated Dec. 28, 2017”, 3 pgs.
“U.S. Appl. No. 14/589,482, Final Office Action dated Oct. 21, 2019”, 14 pgs.
“U.S. Appl. No. 14/589,482, Final Office Action dated Nov. 2, 2017”, 13 pgs.
“U.S. Appl. No. 14/589,482, Non Final Office Action dated Feb. 26, 2019”, 13 pgs.
“U.S. Appl. No. 14/589,482, Non Final Office Action dated Apr. 19, 2017”, 12 pgs.
“U.S. Appl. No. 14/589,482, Non Final Office Action dated Aug. 6, 2018”, 15 pgs.
“U.S. Appl. No. 14/589,482, Preliminary Amendment filed Jan. 5, 2015”, 8 pgs.
“U.S. Appl. No. 14/589,482, Response filed Jun. 4, 2019 to Non Final Office Action dated Feb. 26, 2019”, 11 pgs.
“U.S. Appl. No. 14/589,482, Response filed Jul. 20, 2017 to Non Final Office Action dated Apr. 19, 2017”, 10 pgs.
“U.S. Appl. No. 14/589,482, Response filed Oct. 24, 2018 to Non Final Office Action dated Aug. 6, 2018”, 12 pgs.
“U.S. Appl. No. 14/589,482, Response filed Dec. 20, 2017 to Final Office Action dated Nov. 2, 2017”, 9 pgs.
“U.S. Appl. No. 14/589,482, Response filed Dec. 23, 2019 to Final Office Action dated Oct. 21, 2019”, 17 pgs.
“U.S. Appl. No. 14/589,515, Advisory Action dated Feb. 5, 2018”, 3 pgs.
“U.S. Appl. No. 14/589,515, Examiner Interview Summary dated Jul. 7, 2017”, 3 pgs.
“U.S. Appl. No. 14/589,515, Final Office Action dated Mar. 21, 2019”, 14 pgs.
“U.S. Appl. No. 14/589,515, Final Office Action dated Oct. 5, 2017”, 13 pgs.
“U.S. Appl. No. 14/589,515, Non Final Office Action dated Mar. 24, 2017”, 17 pgs.
“U.S. Appl. No. 14/589,515, Non Final Office Action dated Sep. 4, 2018”, 15 pgs.
“U.S. Appl. No. 14/589,515, Notice of Allowance dated Nov. 25, 2019”, 8 pgs.
“U.S. Appl. No. 14/589,515, Preliminary Amendment filed Jan. 5, 2015”, 7 pgs.
“U.S. Appl. No. 14/589,515, Response filed May 20, 2019 to Final Office Action dated Mar. 21, 2019”, 11 pgs.
“U.S. Appl. No. 14/589,515, Response filed Jun. 20, 2017 to Non Final Office Action dated Mar. 24, 2017”, 12 pgs.
“U.S. Appl. No. 14/589,515, Response filed Nov. 30, 2018 to Non Final Office Action dated Sep. 4, 2018”, 12 pgs.
“U.S. Appl. No. 14/589,515, Response filed Dec. 4, 2017 to Final Office Action dated Oct. 5, 2017”, 12 pgs.
“U.S. Appl. No. 14/589,515, Supplemental Amendment filed Jun. 29, 2017”, 12 pgs.
“U.S. Appl. No. 15/235,506, Corrected Notice of Allowability dated Dec. 28, 2018”, 4 pgs.
“U.S. Appl. No. 15/235,506, Examiner Interview Summary dated Nov. 26, 2018”, 3 pgs.
“U.S. Appl. No. 15/235,506, Non Final Office Action dated Aug. 10, 2018”, 10 pgs.
“U.S. Appl. No. 15/235,506, Notice of Allowance dated Dec. 19, 2018”, 11 pgs.
“U.S. Appl. No. 15/235,506, Preliminary Amendment filed Aug. 12, 2016”, 7 pgs.
“U.S. Appl. No. 15/235,506, Response filed Nov. 27, 2018 to Non Final Office Action dated Aug. 10, 2018”, 9 pgs.
“U.S. Appl. No. 16/048,553, Preliminary Amendment filed Jul. 30, 2018”, 6 pgs.
“U.S. Appl. No. 16/385,013, Preliminary Amendment filed Apr. 16, 2019”, 6 pgs.
“Australian Application Serial No. 2015205939, Examination Report dated Dec. 8, 2016”, 3 pgs.
“Australian Application Serial No. 2015207838, First Examination Report dated Dec. 8, 2016”, 3 pgs.
“Chinese Application Serial No. 201480008984.6, Office Action dated Oct. 17, 2016”, with English translation of claims, 17 pgs.
“Chinese Application Serial No. 201480011492.2, Office Action dated Oct. 26, 2016”, with English translation of claims, 14 pgs.
“Chinese Application Serial No. 201480023592.7, Office Action dated May 14, 2018”, W/English Translation, 11 pgs.
“Chinese Application Serial No. 201480023592.7, Office Action dated Sep. 11, 2017”, W/English Translation, 9 pgs.
“Chinese Application Serial No. 201510671557.2, Office Action dated Apr. 6, 2017”, with English translation of claims, 8 pgs.
“Chinese Application Serial No. 201510673032.2, Office Action dated Apr. 5. 2017”, with English translation of claims, 7 pgs.
“European Application Serial No. 14706460.4, Communication Pursuant to Article 94(3) EPC dated Apr. 19, 2016”, 6 pgs.
“European Application Serial No. 14706759.9, Communication Pursuant to Article 94(3) EPC dated Apr. 19, 2016”, 7 pgs.
“European Application Serial No. 14706759.9, Intention to Grant dated Feb. 2, 2017”, 43 pgs.
“European Application Serial No. 14706759.9, Intention to Grant dated May 31, 2017”, 40 pgs.
“European Application Serial No. 14706759.9, Response filed May 3, 2017 to Intention to Grant dated Feb. 2, 2017”, 9 pgs.
“European Application Serial No. 14706759.9, Response filed Aug. 18, 2016 to Communication Pursuant to Article 94(3) EPC dated Apr. 19, 2016”, 46 pgs.
“European Application Serial No. 14708170.7, Communication Pursuant to Article 94(3) EPC dated Apr. 19, 2016”, 6 pgs.
“European Application Serial No. 14709449.4, Communication Pursuant to Article 94(3) EPC dated Apr. 19, 2016”, 6 pgs.
“European Application Serial No. 14709449.4, Communication Pursuant to Article 94(3) EPC dated Dec. 9, 2016”, 5 pgs.
“European Application Serial No. 14709449.4, Intention to Grant dated Jul. 26, 2017”, 44 pgs.
“European Application Serial No. 14709449.4, Response filed Mar. 28, 2017 to Communication Pursuant to Article 94(3) EPC dated Dec. 9, 2016”, 4 pgs.
“European Application Serial No. 14709449.4, Response filed Aug. 18, 2016 to Communication Pursuant to Article 94(3) EPC dated Apr. 19, 2016”, 25 pgs.
“European Application Serial No. 14719559.8, Communication Pursuant to Article 94(3) EPC dated Jul. 11, 2017”, 5 pgs.
“European Application Serial No. 14719559.8, Communication Pursuant to Article 94(3) EPC dated Nov. 18, 2016”, 5.
“European Application Serial No. 14719559.8, Intention to Grant dated Mar. 21, 2018”, 83 pgs.
“European Application Serial No. 14719559.8, Response filed Mar. 6, 2017 to Communication Pursuant to Article 94(3) EPC dated Nov. 18, 2016”, 8 pgs.
“European Application Serial No. 14719559.8, Response filed Nov. 7, 2017 to Communication Pursuant to Article 94(3) EPC dated Jul. 11, 2017”, 98 pgs.
“European Application Serial No. 14719559.8, Response to Communication pursuant to Rules 161(1) and 162 EPC filed Apr. 10, 2016”, 50 pgs.
“European Application Serial No. 14720816.9, Communication Pursuant to Article 94(3) EPC dated Jan. 27, 2016”, 5 pgs.
“European Application Serial No. 14720816.9, Intention to Grant dated Aug. 22, 2016”, 56 pgs.
“European Application Serial No. 14720816.9, Response filed May 20, 2016 to Communication Pursuant to Article 94(3) EPC dated Jan. 27, 2016”, 39 pgs.
“European Application Serial No. 14720821.9, Communication Pursuant to Article 94(3) EPC dated Apr. 15, 2016”, 5 pgs.
“European Application Serial No. 14720821.9, Communication Pursuant to Article 94(3) EPC dated Nov. 16, 2016”, 5 pgs.
“European Application Serial No. 14720821.9, Intention to Grant dated Sep. 26, 2017”, 54 pgs.
“European Application Serial No. 14720821.9, Response filed Feb. 28, 2017 to Communication Pursuant to Article 94(3) EPC dated Nov. 16, 2016”, 8 pgs.
“European Application Serial No. 14720821.9, Response filed Aug. 4, 2016 to Communication Pursuant to Article 94(3) EPC dated Apr. 15, 2016”, 40 pgs.
“European Application Serial No. 14722009.9, Communication pursuant to Article 94(3) EPC dated May 10, 2016”, 4 pgs.
“European Application Serial No. 16197628.7, Communication Pursuant to Article 94(3) EPC dated Oct. 9, 2018”, 5 pgs.
“European Application Serial No. 16197628.7, Extended European Search Report dated Mar. 2, 2017”, 7 pgs.
“European Application Serial No. 16197628.7, Response filed Jan. 30, 2019 to Communication Pursuant to Article 94(3) EPC dated Oct. 9, 2018”, 8 pgs.
“European Application Serial No. 16197628.7, Response filed Oct. 17, 2017 to Extended European Search Report dated Mar. 2, 2017”, 37 pgs.
“European Application Serial No. 17199065.8, Extended European Search Report dated Feb. 27, 2018”, 8 pgs.
“European Application Serial No. 17199065.8, Intention to Grant dated Mar. 26, 2019”, 43 pgs.
“European Application Serial No. 17199065.8, Intention to Grant dated May 27, 2019”, 43 pgs.
“European Application Serial No. 17199065.8, Response filed Oct. 16, 2018 to Extended European Search Report dated Feb. 27, 2018”, 25 pgs.
“European Application Serial No. 18186355.6, Extended European Search Report dated Nov. 28, 2018”, 5 pgs.
“European Application Serial No. 18186355.6, Response filed Jul. 12, 2019 to Extended European Search Report dated Nov. 28, 2018”, 101 pgs.
“International Application Serial No. PCT/US2014/015812, International Preliminary Report on Patentability dated Sep. 24, 2015”, 9 pgs.
“International Application Serial No. PCT/US2014/015812, International Search Report dated Apr. 9, 2014”, 5 pgs.
“International Application Serial No. PCT/US2014/015812, Written Opinion dated Apr. 9, 2014”, 7 pgs.
“International Application Serial No. PCT/US2014/015916, International Search Report dated May 12, 2014”, 5 pgs.
“International Application Serial No. PCT/US2014/015916, Written Opinion dated May 12, 2014”, 7 pgs.
“International Application Serial No. PCT/US2014/015923, International Preliminary Report on Patentability dated Sep. 15, 2015”, 7 pgs.
“International Application Serial No. PCT/US2014/015923, International Search Report dated May 2, 2014”, 4 pgs.
“International Application Serial No. PCT/US2014/015923, Written Opinion dated May 2, 2014”, 6 pgs.
“International Application Serial No. PCT/US2014/015948, International Preliminary Report on Patentability dated Sep. 24, 2015”, 9 pgs.
“International Application Serial No. PCT/US2014/015948, International Search Report dated Apr. 30, 2014”, 5 pgs.
“International Application Serial No. PCT/US2014/015948, Written Opinion dated Apr. 30, 2014”, 7 pgs.
“International Application Serial No. PCT/US2014/023958, International Preliminary Report on Patentability dated Mar. 5, 2015”, 14 pgs.
“International Application Serial No. PCT/US2014/023958, International Search Report dated Jul. 21, 2014”, 4 pgs.
“International Application Serial No. PCT/US2014/023958, Written Opinion dated Jul. 21, 2014”, 6 pgs.
“International Application Serial No. PCT/US2014/024134, International Search Report dated Apr. 30, 2014”, 4 pgs.
“International Application Serial No. PCT/US2014/024134, Written Opinion dated Apr. 30, 2014”, 5 pgs.
“International Application Serial No. PCT/US2014/024197, International Search Report dated Jul. 21, 2014”, 4 pgs.
“International Application Serial No. PCT/US2014/024197, Written Opinion dated Jul. 21, 2014”, 5 pgs.
“International Application Serial No. PCT/US2014/026960, International Preliminary Report on Patentability dated Sep. 24, 2015”, 6 pgs.
“International Application Serial No. PCT/US2014/026960, International Search Report dated Jul. 21, 2014”, 4 pgs.
“International Application Serial No. PCT/US2014/026960, Written Opinion dated Jul. 21, 2014”, 5 pgs.
“International Application Serial No. PCT/US2014/027131, International Preliminary Report on Patentability dated Sep. 24, 2015”, 7 pgs.
“International Application Serial No. PCT/US2014/027131, International Search Report dated Jul. 21, 2014”, 4 pgs.
“International Application Serial No. PCT/US2014/027131, Written Opinion dated Jul. 21, 2014”, 5 pgs.
“Japanese Application Serial No. 2015-218856, Office Action dated Dec. 20, 2016”, with English translation of claims, 9 pgs.
“Japanese Application Serial No. 2015-218855, Office Action dated Oct. 25, 2016”, with English translation of claims, 4 pgs.
“Japanese Application Serial No. 2015-218856, Office Action dated Jul. 10, 2018”, with English translation of claims, 7 pgs.
“Japanese Application Serial No. 2016-230392, Office Action dated Oct. 3, 2017”, with English translation of claims, 8 pgs.
“Japanese Application Serial No. 2016-500236, Notice of Reason for Rejection dated May 9, 2017”, w/ English Translation, 10 pgs.
“Japanese Application Serial No. 2016-500236, Notice of Reason for Rejection dated Oct. 25, 2016”, with English translation of claims, 11 pgs.
“Japanese Application Serial No. 2016-500236, Response filed Feb. 20, 2017 to Notice of Reason for Rejection dated Oct. 25, 2016”, w/ English Translation, 14 pgs.
“Japanese Application Serial No. 2016-500236, Response filed Aug. 9, 2017 to Notice of Reason for Rejection dated May 9, 2017”, w/ English Translation, 7 pgs.
“Japanese Application Serial No. 2016-500239, Office Action dated Oct. 18, 2016”, with English translation of claims, 8 pgs.
“Japanese Application Serial No. 2016-500240, Notice of Allowance dated Dec. 15, 2017”, with English translation of claims, 5 pgs.
“Japanese Application Serial No. 2016-500240, Office Action dated Oct. 25, 2016”, with English translation of claims, 8 pgs.
“Japanese Application Serial No. 2016-500240, Office Action dated Dec. 15, 2017”, with English translation of claims, 5 pgs.
“Japanese Application Serial No. 2016-500243, Office Action dated Oct. 25, 2016”, with English translation of claims, 8 pgs.
“Japanese Application Serial No. 2016-501435, Office Action dated Jul. 24, 2018”, with English translation of claims, 6 pgs.
“Japanese Application Serial No. 2016-501435, Office Action dated Oct. 3, 2017”, with English translation of claims, 8 pgs.
“Japanese Application Serial No. 2016-502290, Office Action dated Aug. 24, 2016”, with English translation of claims, 6 pgs.
“Japanese Application Serial No. 2018-094142, Office Action dated May 21, 2019”, with English translation of claims, 6 pgs.
“U.S. Appl. No. 14/177,780, Examiner Interview Summary dated Aug. 10, 2016”, 3 pgs.
“U.S. Appl. No. 14/177,780, Final Office Action dated Mar. 29, 2016”, 10 pgs.
“U.S. Appl. No. 14/177,780, Non Final Office Action dated Jan. 20, 2017”, 10 pgs.
“U.S. Appl. No. 14/177,780, Non Final Office Action dated Nov. 13, 2015”, 11 pgs.
“U.S. Appl. No. 14/177,780, Notice of Allowance dated May 23, 2017”, 7 pgs.
“U.S. Appl. No. 14/177,780, Response filed Feb. 15, 2016 to Non Final Office Action dated Nov. 13, 2015”, 11 pgs.
“U.S. Appl. No. 14/177,780, Response filed Apr. 20, 2017 to Non Final Office Action dated Jan. 20, 2017”, 10 pgs.
“U.S. Appl. No. 14/177,780, Response filed Aug. 29, 2016 to Final Office Action dated Mar. 29, 2016”, 9 pgs.
“Australian Application Serial No. 2014235755, First Examination Report dated Nov. 27, 2017”, 3 pgs.
“Australian Application Serial No. 2014235755, Office Action dated Jun. 29, 2018”, 3 pgs.
“Australian Application Serial No. 2014235755, Response filed May 29, 2018 to First Examination Report dated Nov. 27, 2017”, 16 pgs.
“Australian Application Serial No. 2014235755, Response filed Oct. 8, 2018 to Office Action dated Jun. 29, 2018”, 14 pgs.
“Chinese Application Serial No. 201480015016.8, Office Action dated Jan. 25, 2017”, with English translation of claims, 10 pgs.
“Chinese Application Serial No. 201480015016.8, Office Action dated Mar. 26, 2018”, with English translation of claims, 8 pgs.
“Chinese Application Serial No. 201480015016.8, Office Action dated Oct. 13, 2017”, with English translation of claims, 14 pgs.
“Chinese Application Serial No. 201480015016.8, Response filed Dec. 22, 2017”, WIPO transalation, 14 pgs.
“Chinese Application Serial No. 201480015301.X, Office Action dated Feb. 2, 2016”, with English translation of claims, 18 pgs.
“Chinese Application Serial No. 201480015301.X, Office Action dated Jan. 29, 2018”, with English translation of claims, 9 pgs.
“Chinese Application Serial No. 201480015301.X, Office Action dated Apr. 10, 2017”, with English translation of claims, 14 pgs.
“Chinese Application Serial No. 201480015301.X, Office Action dated Aug. 10, 2017”, with English translation of claims, 11 pgs.
“Chinese Application Serial No. 201480015301.X, Reexamination Request filed Oct. 10, 2017”, with English translation of claims, 12 pgs.
“Chinese Application Serial No. 201480015301.X, Response filed Mar. 22, 2018”, with English translation of claims, 13 pgs.
“Chinese Application Serial No. 201480021729.5, Office Action dated Jul. 12, 2017”, w/ English translation, 17 pgs.
“Chinese Application Serial No. 201480021729.5, Office Action dated Dec. 15, 2017”, w/English translation, 8 pgs.
“Chinese Application Serial No. 201480021729.5, Office Action dated Dec. 26, 2016”, w/English translation, 14 pgs.
“European Application Serial No. 14716688.8, Communication Pursuant to Article 94(3) EPC dated Apr. 19, 2016”, 6 pgs.
“European Application Serial No. 14716688.8, Communication Pursuant to Article 94(3) EPC dated Nov. 25, 2016”, 4 pgs.
“European Application Serial No. 14716688.8, Intention to Grant dated Jul. 31, 2017”, 86 pgs.
“European Application Serial No. 14716688.8, Response filed Mar. 16, 2017 to Communication Pursuant to Article 94(3) EPC dated Nov. 25, 2016”, 14 pgs.
“European Application Serial No. 14716688.8, Response filed Aug. 15, 2016 to Communication Pursuant to Article 94(3) EPC dated Apr. 19, 2016”, 9 pgs.
“European Application Serial No. 14722009.9, Communication Pursuant to Article 94(3) EPC dated Dec. 2, 2015”, 5 pgs.
“European Application Serial No. 14722009.9, Intention to Grant dated Nov. 30, 2016”, 83 pgs.
“European Application Serial No. 14722009.9, Response filed Mar. 16, 2016 to Communication Pursuant to Article 94(3) EPC dated Dec. 2, 2015”, 8 pgs.
“European Application Serial No. 14722009.9, Response filed Sep. 7, 2016 to Communication Pursuant to Article 94(3) EPC dated May 10, 2016”, 14 pgs.
“Indian Application Serial No. 4353/CHENP/2015, First Examination Report dated Jan. 31, 2020”, 5 pgs.
“Indian Application Serial No. 4900/CHENP/2015, First Examination Report dated Feb. 12, 2020”, 6 pgs.
“International Application Serial No. PCT/US2014/015916, International Preliminary Report on Patentability dated Sep. 15, 2015”, 8 pgs.
“International Application Serial No. PCT/US20141015812, Written Opinion dated Apr. 9, 2014”, 7 pgs.
“International Application Serial No. PCT/US2014/015916, International Search Report dated May 12, 2014”, 12 pgs.
“International Application Serial No. PCT/US2014/015916,Written Opinion dated May 12, 2014”, 13 pgs.
“International Application Serial No. PCT/US2014/024134, International Preliminary Report on Patentability dated Sep. 24, 2015”, 7 pgs.
“International Application Serial No. PCT/US2014/024134, International Search Report dated Jun. 11, 2014”, 4 pgs.
“International Application Serial No. PCT/US2014/024134, Written Opinion dated Jun. 11, 2014”, 5 pgs.
“International Application Serial No. PCT/US2014/024197, International Preliminary Report on Patentability dated Sep. 24, 2015”, 7 pgs.
“Japanese Application Serial No. 2015-218856, Office Action dated Aug. 29, 2017”, with English translation of claims, 11 pgs.
“Japanese Application Serial No. 2018-094142, Notification of Reasons for Rejection dated May 21, 2019”, W/English Translation, 6 pgs.
“Japanese Application Serial No. 2018-094142, Response filed 08-08-19 to Notification of Reasons for Rejection dated May 21, 2019”, with English translation of claims, 6 pgs.
U.S. Appl. No. 14/205,919, filed Mar. 12, 2014, “Combination Electrosurgical Device”.
U.S. Appl. No. 14/210,741, U.S. Pat. No. 9,445,863, filed Mar. 12, 2014, “Combination Electrosurgical Device”.
U.S. Appl. No. 14/211,042, U.S. Pat. No. 9,668,805, filed Mar. 12, 2014, “Combination Electrosurgical Device”.
“U.S. Appl. No. 14/205,919, Examiner Interview Summary dated May 3, 2016”, 3 pgs.
“U.S. Appl. No. 14/205,919, Final Office Action dated May 3, 2017”, 16 pgs.
“U.S. Appl. No. 14/205,919, Non Final Office Action dated Jan. 29, 2016”, 14 pgs.
“U.S. Appl. No. 14/205,919, Non Final Office Action dated Oct. 17, 2016”, 15 pgs.
“U.S. Appl. No. 14/205,919, Response filed Jan. 17, 2017 to Non Final Office Action dated Oct. 17, 2016”, 9 pgs.
“U.S. Appl. No. 14/205,919, Response filed Apr. 28, 2016 to Non Final Office Action dated Jan. 29, 2016”, 11 pgs.
“U.S. Appl. No. 14/210,741, Examiner Interview Summary dated May 10, 2016”, 3 pgs.
“U.S. Appl. No. 14/210,741, Non Final Office Action dated Feb. 11, 2016”, 11 pgs.
“U.S. Appl. No. 14/210,741, Notice of Allowance dated May 24, 2016”, 10 pgs.
“U.S. Appl. No. 14/210,741, Response filed May 4, 2016 to Non Final Office Action dated Feb. 11, 2016”, 12 pgs.
“U.S. Appl. No. 14/211,042, Examiner Interview Summary dated Dec. 23, 2016”, 3 pgs.
“U.S. Appl. No. 14/211,042, Non Final Office Action dated Jul. 21, 2016”, 12 pgs.
“U.S. Appl. No. 14/211,042, Notice of Allowance dated Mar. 27, 2017”, 13 pgs.
“U.S. Appl. No. 14/211,042, Response filed Dec. 20, 2016 to Non Final Office Action dated Jul. 21, 2016”, 9 pgs.
“U.S. Appl. No. 14/589,482, Non Final Office Action dated Mar. 13, 2020”, 15 pgs.
“U.S. Appl. No. 14/589,515, Notice of Allowance dated Mar. 31, 2020”, 5 pgs.
“U.S. Appl. No. 16/395,142, Preliminary Amendment filed May 30, 2019”, 8 pgs.
“Australian Application Serial No. 2015205939, First Examination Report dated Dec. 8, 2016”, 3 pgs.
“Australian Application Serial No. 2015205939, Response filed Feb. 17, 2017 to First Examination Report dated Dec. 8, 2016”, 13 pgs.
“Australian Application Serial No. 2015207838, Response filed Feb. 17, 2017 to First Examination Report dated Dec. 8, 2016”, 11 pgs.
“Chinese Application Serial No. 201480007117.0, Amendment filed Aug. 11, 2017”, with machine translation, 17 pgs.
“Chinese Application Serial No. 201480007117.0, Office Action dated Mar. 13, 2017”, with English translation of claims, 9 pgs.
“Chinese Application Serial No. 201480007117.0, Response filed Jul. 26, 2017 to Office Action dated Mar. 13, 2017”, with machine translation, 93 pgs.
“Chinese Application Serial No. 201480006984.6, Office Action dated Jun. 8, 2017”, with English translation of claims, 7 pgs.
“Chinese Application Serial No. 201480008984.6, Response filed Jun. 27, 2017 to Office Action dated Jun. 8, 2017”, with machine translation, 17 pgs.
“Chinese Application Serial No. 201480011492.2, Office Action dated Jun. 1, 2017”, with English translation of claims, 15 pgs.
“Chinese Application Serial No. 201480011492.2, Response filed Mar. 9, 2017 to Office Action dated Oct. 26, 2018”, with English translation of claims, 4 pgs.
“Chinese Application Serial No. 201480011492.2, Response filed Aug. 8, 2017 to Office Action dated Jun. 1, 2017”, with English translation of claims, 13 pgs.
“Chinese Application Serial No. 201480015301.X, Response filed Mar. 21, 2017 to Office Action dated Dec. 2, 2016”, w/o English Translation, 9 pgs.
“Chinese Application Serial No. 201480015301.X, Response filed Jun. 23, 2017 to Office Action dated Apr. 10, 2017”, w/o English Translation, 5 pgs.
“Chinese Application Serial No. 201480021729.5, Response filed Feb. 22, 2018 to Office Action dated Dec. 15, 2017”, W/English Translation, 23 pgs.
“Chinese Application Serial No. 201480021729.5, Response filed Mar. 23, 2017 to Office Action dated Dec. 26, 2016”, W/English Translation, 8 pgs.
“Chinese Application Serial No. 201480021729.5, Response filed Sep. 4, 2017 to Office Action dated Jul. 12, 2017”, W/English Translation, 9 pgs.
“Chinese Application Serial No. 201480027040.3, Office Action dated Mar. 2, 2017”, w/ English translation, 19 pgs.
“Chinese Application Serial No. 201480027040.3, Response filed Jul. 14, 2017 to Office Action dated Mar. 2, 2017”, w/ English translation, 13 pgs.
“Chinese Application Serial No. 201480027558.7, Office Action dated Feb. 24, 2018”, w/ English Translation, 8 pgs.
“Chinese Application Serial No. 201480027558,7, Office Action dated Aug. 1, 2017”, w/ English Translation, 11 pgs.
“Chinese Application Serial No, 201480027558.7, Office Action dated Dec. 28, 2018”, w/ English Translation, 11 pgs.
“Chinese Application Serial No. 201480027558.7, Response filed May 11, 2017 to Office Action dated Dec 28, 2016”, w/o English Translation, 8 pgs.
“Chinese Application Serial No. 201480027558.7, Response filed May 11, 2018 to Office Action dated Feb. 24, 2018”, w/o English Translation, 10 pgs.
“Chinese Application Serial No. 201480027558.7, Response flied Oct. 12, 2017 Office Action dated Aug. 1, 2017”, w/o English Translation, 8 pgs.
“Chinese Application Serial No. 201480028116.4, Office Action dated Feb. 14, 2017”, with English translation of claims, 11 pgs.
“Chinese Application Serial No. 201480028116.4, Response filed Jun. 27, 2017 to Office Action dated Feb. 14, 2017”, with machine translation, 25 pgs.
“Chinese Application Serial No. 201510671557.2, Response filed Aug. 1, 2017 to Office Action dated Apr. 6, 2017”, with machine translation, 21 pgs.
“Chinese Application Serial No. 201510673032.2, Amendment filed Aug. 16, 2017”, with machine translation, 19 pgs.
“Chinese Application Serial No. 201510673032.2, Response filed Jul. 26, 2017 to Office Action dated Apr. 5, 2017”, with machine translation, 17 pgs.
“Chinese Application Serial No. 201810113314.0, Office Action dated Apr. 10, 2020”, W/English Translation, 10 pgs.
“European Application Serial No. 14706460.4, Intention to Grant dated Dec. 9, 2016”, 45 pgs.
“European Application Serial No. 14706460.4, Response filed Aug. 13, 2016 to Communication Pursuant to Article 94(3) EPC dated Apr. 19, 2016”, 57 pgs.
“European Application Serial No. 14708170.7, Office Action dated Dec. 20, 2016”, 4 pgs.
“European Application Serial No. 14708170.7, Response filed Mar. 15, 2017 to Office Action dated Dec. 20, 2016”, 5 pgs.
“European Application Serial No. 14708170.7, Response filed Aug. 13, 2016 to Communication Pursuant to Article 94(3) EPC dated Apr. 19, 2016”, 57 pgs.
“European Application Serial No. 14720793.0, Communication Pursuant to Article 94(3) EPC dated Apr. 19, 2016”, 6 pgs.
“European Application Serial No. 14720793.0, Intention to Grant dated Feb. 8, 2018”, 23 pgs.
“European Application Serial No. 14720793.0, Intention to Grant dated Sep. 22, 2017”, 25 pgs.
“European Application Serial No. 14720793.0, Response filed Jan. 9, 2018 to Intention to Grant dated Sep. 22, 2017”, 14 pgs.
“European Application Serial No. 14720793.0, Response filed Mar. 22, 2017 to Communication Pursuant to Article 94(3) EPC dated Dec. 13, 2016”, 30 pgs.
“European Application Serial No. 14720793.0, Response filed Aug. 18, 2016 to Communication Pursuant to Article 94(3) EPC dated Apr. 19, 2016”, 29 pgs.
“European Application Serial No. 15178743.9, Extended European Search Report dated Nov. 27, 2015”, 6 pgs.
“European Application Serial No. 15173743.9, Intention to Grant dated Mar. 3, 2017”, 84 pgs.
“European Application Serial No. 15178743.9, lntention to Grant dated Jul. 25, 2017”, 21 pgs.
“European Application Serial No. 15178743.9, Response filed Jun. 30, 2017 to Intention to Grant dated Mar. 3, 2017”, 16 pgs.
“European Application Serial No. 15178743.9, Response filed Jul. 8, 2016 to Extended European Search Report dated Nov. 27, 2015”, 104 pgs.
“European Application Serial No. 15180662.7, Extended European Search Report dated Dec. 23, 2015”, 7 pgs.
“European Application Serial No. 15180662.7, Intention to Grant dated Mar. 20, 2017”, 81 pgs.
“European Application Serial No. 15180662.7, Response flied Jul. 7, 2016 to Extended European Search Report dated Dec. 23, 2015”, 100 pgs.
“European Application Serial No. 17161375.5, Extended European Search Reportdated Jul. 10, 2017”, 7 pgs.
“European Application Serial No. 17161375.5, Office Action dated Jan. 4, 2019”, 6 pgs.
“European Application Serial No. 17161375.5, Response filed Jan. 31, 2018 to Extended European Search Report dated Jul. 10, 2017”, 9 pgs.
“European Application Serial No. 17161375.5, Response filed Apr. 26, 2019 to Office Action dated Jan. 4, 2019”, 7 pgs.
“International Application Serial No. PCT/US2014/027336, International Preliminary Report on Patentability dated Sep. 15, 2015”, 6 pgs.
“International Application Serial No. PCT/US2014/027336, International Search Report dated Jul. 30, 2014”, 4 pgs.
“International Application Serial No. PCT/US2014/027336, Written Opinion dated Jul. 30, 2014”, 5 pgs.
“Japanese Application Serial No. 2015-218855, Amendment filed Mar. 25, 2016”, w/ English Translation, 6 pgs.
“Japanese Application Serial No. 2015-.215355, Response filed Jan 23, 2017 to Office Action dated Oct. 25, 2016”, w/ English Translation, 8 pgs.
“Japanese Application Serial No. 2015-218856, Examiners Decision of Final Refusal dated Jul. 17, 2018”, with English translation, 4 pgs.
“Japanese Application Serial No. 2015-218856, Office Action dated Sep. 5, 2017”, with English translation of claims, 9 pgs.
“Japanese Application Serial No. 2015-218856, Office Action dated Dec. 20, 2016”, W/English Translation, 6 pgs.
“Japanese Application Serial No. 2015-218856, Response filed Feb. 1, 2018 to Office Action dated Sep. 5, 2017”, W/English Translation, 17 pgs.
“Japanese Application Serial No. 2015-218856, Response filed Apr. 13, 2017 to Office Action dated Dec. 20, 2016”, W/English Translation, 10 pgs.
“Japanese Application Serial No. 2016-230392, Notification of Reasons for Refusal dated Oct. 3, 2017”, with English translation of claims, 8 pgs.
“Japanese Application Serial No. 2016-230392, Response filed Mar. 2, 2018 to Notification of Reasons for Refusal dated Oct. 3, 2017”, with English translation of claims, 7 pgs.
“Japanese Application Serial No. 2016-500239, Office Action dated May 16, 2017”, with English translation of claims, 4 pgs.
“Japanese Application Serial No. 2016-500239, Response filed Jan. 18, 2017 to Office Action dated Oct. 18, 2016”, with English translation of claims, 7 pgs.
“Japanese Application Serial No. 2016-500239, Response filed Jul. 16, 2017 to Office Action dated May 16, 2017”, with English translation of claims, 5 pgs.
“Japanese Application Serial No. 2016-500240, Notice of Reason for Rejection dated May 9, 2017”, W/ English Translation, 7 pgs.
“Japanese Application Serial No. 2016-500240, Response filed Feb. 15, 2017 to Notice of Reason for Rejection dated Oct. 25, 2016” W/ English Translation, 15 pgs.
“Japanese Application Serial No. 2016-500240, Response filed Jul. 12, 2017 to Notice of Reason for Rejection dated May 9, 2017”, W/ English Translation, 10 pgs.
“Japanese Application Serial No. 2016-500243, Response filed Feb. 23, 2017 to Notice of Reason for Rejection dated Oct. 25, 2016”, W/ English Translation, 10 pgs.
“Japanese Application Serial No. 2016-501393, Office Action dated Apr. 25, 2017”, w/ English translation, 5 pgs.
“Japanese Application Serial No. 2016-501393, Office Action dated Sep. 6, 2016”, w/ English translation, 10 pgs.
“Japanese Application Serial. No. 2016-501393, Response filed Nov. 30, 2016 to Office Action dated Sep. 6, 2016”, w/ English translation, 8 pgs.
“Japanese Application Serial No. 2016-501425, Office Action dated Jun. 29, 2017”, with English translation of claims, 8 pgs.
“Japanese Application Serial No. 2016-501425, Office Action dated Nov. 22, 2016”, with English translation of claims, 10 pgs.
“Japanese Application Serial No. 2016-501425, Response filed Apr. 18, 2017 to Office Action dated Nov. 22, 2016”, with English translation of claims, 14 pgs.
“Japanese Application Serial No. 2016-501425, Response filed Oct. 17, 2017 to Office Action dated Jun. 29, 2017”, with English translation of claims, 7 pgs.
“Japanese Application Serial No. 2016-501435, Office Action dated Jul. 13, 2018”, with English translation of claims, 6 pgs.
“Japanese Application Serial No. 2016-501435, Office Action dated Sep. 14, 2017”, with English translation of claims, 8 pgs.
“Japanese Application Serial No. 2016-501435, Response filed Feb. 23, 2018 to Office Action dated Sep. 14, 2017”, with English translation of claims, 10 pgs.
“Japanese Application Serial No. 2016-501435, Response filed Oct. 18, 2018 to Office Action dated Aug. 13, 2018”, with English translation of claims, 5 pgs.
“Japanese Application Serial No. 2016-502020, Response filed Jan. 30, 2017 to Office Action dated Nov. 1, 2016”, with English translation of claims, 10 pgs.
“Japanese Appiication Serial No. 2016-502290, Response filed Nov. 28, 2016 to Notification of Reasons for Rejection dated Aug. 24, 2016”, with English translation of claims, 9 pgs.
“Japanese Application Serial No. 2016-502344, Amendment filed Nov. 13, 2015”, with English translation of claims, 8 pgs.
“Japanese Application Serial No. 2016-502344, Notification of Reasons for Rejection dated Apr. 11, 2017”, w/English Translation, 6 pgs.
“Japanese Application Serial No. 2016-502344, Notification of Reasons for Rejection dated Nov. 1, 2016”, w/English Translation, 10 pgs.
“Japanese Application Serial No. 2016-502344, Response filed Mar. 30, 2017 to Notification of Reasons for Rejection dated Nov. 1, 2016”, with English translation of claims, 12 pgs.
“Japanese Application Serial No. 2016-502344, Response filed Jul. 10, 2017 to Notification of Reasons for Rejection dated Apr. 11, 2017”, w/English Translation, 8 pgs.
Related Publications (1)
Number Date Country
20170319263 A1 Nov 2017 US
Provisional Applications (1)
Number Date Country
61787731 Mar 2013 US
Continuations (1)
Number Date Country
Parent 14209071 Mar 2014 US
Child 15658641 US