Field of the Invention
This invention relates generally to hand power tools and more particularly relates to an apparatus for creating an impacting motion in a powered hand tool.
Description of the Related Art
Hand drills are rotary tools that impose a rotational force onto a screw bit to drive a screw into a medium. Similarly, hand impact devices use a repeated translational impacting motion to drive a nail into a medium. Often times a project requires the use of both devices, which would require different tools. Delivering both a translational impact force and a rotational force in a single tool would therefore provide advantages that are lacking in currently available hand tools.
The present invention has been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available impact devices. Accordingly, the present specification has been developed to provide an apparatus that allows a user the functionality of a rotary drill and an impact hammer in a single impacting device that overcomes many of the shortcomings in the art.
As described below, a hand tool impacting device may include, a rotating hollow drive shaft that has an aperture extending through a portion of its diameter, an impaler disk coupled to translate with the drive shaft, and a floating pin positioned within the aperture of the drive shaft that is configured to rotate the impaler disk along with the drive shaft. While engaged to the drive shaft, a set of circular ramps on the outer edge of the impaler disk may interact with a stationary pin insert to create a repeating impact motion. In one embodiment a pair of springs placed against either side of the floating pin may allow a specialized tool bit to engage or disengage the impaler disk, thereby allowing selective use of an impacting motion.
Additionally, as described below an impact bit for engaging the impaler disk may include, a tool head configured to engage a work piece and a tool shaft configured to be inserted into a tool chuck, and a tool shank that extends into a hollow drive shaft to engage a floating pin. According to one embodiment, the impact bit includes a plurality of sleeves to guide the tool head during operation.
The present invention provides a variety of advantages. It should be noted that references to features, advantages, or similar language within this specification does not imply that all of the features and advantages that may be realized with the present invention should be or are in any single embodiment of the invention. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present invention. Thus, discussion of the features and advantages, and similar language, throughout this specification may, but do not necessarily, refer to the same embodiment.
Furthermore, the described features, advantages, and characteristics of the invention may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the invention may be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the invention.
The aforementioned features and advantages of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
To enable the advantages of the invention to be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments that are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings, in which:
Reference throughout this specification to “one embodiment,” “an embodiment,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
In one embodiment, the impact device 100 may include a hollow drive shaft 110 which is configured to rotate. The hollow drive shaft 110 may include an aperture in which a floating pin 130 is positioned. The impact device 100 may also include an impaler disk 120 that is coaxial to the hollow drive shaft 110 and coupled to translate longitudinally with the drive shaft 110. According to one embodiment, a snap ring 126 and a circular protrusion 112 of the hollow drive shaft 110 ensure the impaler disk is coupled to translate with the drive shaft. The impaler disk 120 may be selectively coupled to the drive shaft 110 using the floating pin 130 such that when coupled, the impaler disk rotates with the drive shaft. Bearings 124 may be placed between the impaler disk 120 and the hollow drive shaft 110 to maintain the impaler disk stationary when not coupled to the drive shaft.
The impact device may also include a pin insert 140 with a plurality of raised pins 142. The pin insert 140 and raised pins 142 may remain stationary during the operation of the impact device 100. With the impaler disk 120 engaged, the plurality of raised pins 142 create a impacting motion.
One embodiment of the impacting device 100 includes a distal spring 132 and a proximal spring 134 that are configured to position the floating pin 130 within the aperture of the hollow drive shaft 110. In one example the springs 132, 134 align the floating pin 130 such that it does not engage the impaler disk 120. In another example the springs 132, 134 align the floating pin to engage the impaler disk 120. In this example the floating pin 130 is coupled to the impaler disk 120 which causes it to rotate with the drive shaft 110.
The impact device 100 may also include a coupling plate 170 that connects the hollow drive shaft 110 to an external power supply (not shown). In one embodiment an external power supply causes the coupling plate 170 to rotate. The coupling plate 170 may include a connecting shaft 172 that is configured to be inserted into the hollow drive shaft 110. This connecting shaft 172 transmits the rotational motion from the power supply to the drive shaft. 110. The connecting shaft 172 also allows the hollow drive shaft 110 to translate along its length.
The impact device 100 may also include a backing plate 180 that is configured to attach the impact device 100 to a hand power tool. One embodiment of the impact device 100 includes a tool chuck 160 configured to receive a tool bit. Tool bits that may be used include, but are not limited to a screw driver, a drill bit, a chisel, a punch, and a flat surface for pounding a nail into a medium. The impact device 100 may also include a housing 150 that encloses the impact device.
In one embodiment the impaler disk 120 may include a first plurality of circular ramps 222 which are positioned on the inner edge of a surface of the impaler disk 120. In this embodiment, a portion of the floating pin 130 may extend beyond the diameter of the hollow drive shaft 110. A shaft inserted into the hollow drive shaft 110 may position the extended portion of the floating pin 130 against the flat surface of the first plurality of circular ramps 222. In this fashion, as the hollow drive shaft 110 rotates in a counter clockwise direction, the floating pin 130 exerts a force against the flat surface of the first plurality of circular ramps 222 causing the impaler disk 120 to rotate with the drive shaft. In another mode of operation, as the drive shaft 110 rotates in a clockwise direction, the floating pin 130, slides along the incline of the first plurality of circular ramps 222. In this mode of operation the impaler disk 120 does not rotate with the drive shaft 110.
The impaler disk 120 may also include a second plurality of circular ramps 224 which are positioned on the outer edge of a surface of the impaler disk 120. With the impaler disk 120 rotationally coupled to the drive shaft 110, the second plurality of circular ramps 224 may interact with the stationary raised pins 142. The stationary raised pins 142 cause the impaler disk 120 and drive shaft 110 to translate backwards compressing the impaler spring 126 against the impaler plate 128. As the raised pins 142 slide off the flat surface of the second plurality of circular ramps 224, the impaler spring 126 forces the impaler disk 120 and drive shaft 110 forward, thus creating a translational impacting motion.
In one embodiment, the impact bit 400 may be configured to be inserted into a tool chuck 160, as shown in
The impact bit 400 may also include a tool head 410 to interact with a fastener. In one example the tool head 410 is a flat surface that is configured to pound a nail into a medium. Other examples of tool heads 410 that may be used include but are not limited to, a screwdriver, a drill bit, and a chisel. The impact bit 400 may also include an outer sleeve 430 that extends beyond the tool head 410 to align the tool head with the fastener. The impact bit may also include a retractable inner sleeve 440 that extends beyond the outer sleeve 430. A sleeve spring 450 allows the inner sleeve 440 to retract into the outer sleeve 430. For example, the inner sleeve 440 may retract into the outer sleeve 430 as it is pressed against the medium into which the fastener is being driven.
Obtaining 610 a impacting device may include obtaining a device comprising a hollow drive shaft with an aperture, an impaler disk coupled to translate longitudinally with the drive shaft, and a floating pin positioned within the aperture. The impaler disk may include a first plurality of circular ramps used to rotationally couple the impaler disk to the drive shaft. The impaler disk may also include a second plurality of circular ramps that create an impacting motion. In one embodiment, the obtained impacting device is the impacting device 100.
Obtaining 620 an impact bit may include obtaining a device comprising a tool head configured to engage a work piece, a tool shaft configured to be inserted into a tool chuck, and a tool shank configured to extend into a hollow drive shaft to engage an impacting device. In one embodiment, the obtained impact bit may be the impact bit 400.
The method may continue by engaging 630 the floating pin with the impact bit. This is done as the impact bit is inserted into the impacting device. In one embodiment the impact bit is configured to extend into the impacting device to engage the floating pin of the impacting device to create a translational impacting motion.
With the impact bit inserted into the impacting device, the method may continue by supplying 640 rotational motion to the drive shaft of the impacting device. In one example this rotational motion is supplied by an electric motor positioned within a powered hand tool.
The present invention provides an improved impacting device hand power tool and drive train. The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation of U.S. application Ser. No. 13/329,249, filed Dec. 17, 2011, which claims the benefit of and priority to U.S. Provisional Application No. 61/459,872, filed Dec. 20, 2010, the contents of each are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
701941 | Rowlands | Jun 1902 | A |
1925289 | Strobel | Sep 1933 | A |
2029326 | Lembke | Feb 1936 | A |
2825436 | Amtsberg | Mar 1958 | A |
2881884 | Amtsberg | Apr 1959 | A |
2889711 | Morris | Jun 1959 | A |
3203490 | Short | Aug 1965 | A |
3256946 | Jansen | Jun 1966 | A |
3599765 | Turner | Aug 1971 | A |
3613751 | Juhasz | Oct 1971 | A |
3834468 | Hettich et al. | Sep 1974 | A |
3931744 | Wunsch | Jan 1976 | A |
4346767 | Vaughan | Aug 1982 | A |
4378053 | Simpson | Mar 1983 | A |
4489792 | Fahim et al. | Dec 1984 | A |
4712625 | Kress | Dec 1987 | A |
4898250 | Neumaier et al. | Feb 1990 | A |
5060733 | Kress | Oct 1991 | A |
5199505 | Izumisawa | Apr 1993 | A |
5427188 | Fisher | Jun 1995 | A |
5653294 | Thurler | Aug 1997 | A |
5794325 | Fallandy | Aug 1998 | A |
5996452 | Chiang | Dec 1999 | A |
6192996 | Sakaguchi et al. | Feb 2001 | B1 |
6913090 | Droste et al. | Jul 2005 | B2 |
7131503 | Furuta et al. | Nov 2006 | B2 |
7987920 | Schroeder et al. | Aug 2011 | B2 |
20060024141 | Schad | Feb 2006 | A1 |
20060278417 | Hahn | Dec 2006 | A1 |
20080035360 | Furuta | Feb 2008 | A1 |
20110100662 | Wei | May 2011 | A1 |
Entry |
---|
boschtools.com, “1″ SDS-plus® BULLDOG Xtreme Rotary Hammer”, available online at <http://www.boschtools.com/Products/Tools/Pages/BoschProductDetail.aspx?pid=11255vsr>, retrieved on Nov. 18, 2014, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20150375376 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
61459872 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13329249 | Dec 2011 | US |
Child | 14793368 | US |