This invention relates to a hand-worn device such as a watch, and in particular a hand-worn device with programmable memory.
Traditional hand-worn devices such as watches allow a user to know the present time. Nowadays, more and more functions are incorporated into the watch, however it is difficult to find a watch that all functions are desired by the user. Also, more functions generally means a larger volume, higher cost and more power consumption.
In the light of the foregoing background, it is an object of the present invention to provide an alternate hand-worn device that solves at least one of the aforementioned problems.
Accordingly, the present invention, in one aspect, is an apparatus comprising a display unit, an attachment strap attached to the display unit where the attachment strap is adapted to attach the apparatus to a user, and a processing unit electrically coupled to the display unit. The apparatus further comprises a programmable memory, the programmable memory having at least one operation algorithm installable therein. The processing unit runs one of the operation algorithms to operate the apparatus at a corresponding operation mode, where at least one parameter is displayed on the display unit.
In an exemplary embodiment of the present invention, the apparatus further comprises a communication unit electrically coupled to the processing unit. The communication unit is adapted to receive the operation algorithm from a remote device and install in the programmable memory.
In a further embodiment, the communication unit is adapted to transmit the displayed parameter to the remote device. In another embodiment, the communication unit is adapted to communicate with at least one sensor in a sensing device for obtaining the parameter for display.
In yet another embodiment, the sensing device comprises a chest belt and the sensor comprises a heart rate sensor
In an exemplary embodiment of the present invention, the operation algorithm is removable from the programmable memory.
In another embodiment, the apparatus further comprises at least one sensor for detecting the parameters for display. The sensor comprises an accelerometer.
There are many advantages to the present invention. A first advantage is that the programmable memory allows the user to install only the desired operation algorithms, while avoiding installing any undesired operation algorithms. As a result, the limited resource of memory space is most efficiently utilized for optimized performance of the device. By communicating to an external sensor, the range of parameters detected and displayed can be expanded.
A second advantage is that the user can download from a host device and install a new operation algorithm onto the apparatus, so that the apparatus can be re-configured to perform a new function when such new operation algorithm is invoked. In one embodiment, the apparatus can perform not only as a real-time clock but also as a weather forecasting station, an exercise monitoring device, a calorie coach and also a heart-rate monitor.
Another advantage of the present invention is that the choice and settings of the display unit is optimized for minimum power consumption, allowing the majority of the power to be used in communication and/or detection of parameters.
As used herein and in the claims, “comprising” means including the following elements but not excluding others.
As used herein and in the claims, “couple” or “connect” refers to electrical coupling or connection either directly or indirectly via one or more electrical means unless otherwise stated.
Referring now to
Referring now to
In an exemplary embodiment as shown in
In an exemplary embodiment, the downloaded operation algorithms can be deleted from the programmable memory 30. This feature ensures that the limited size of the programmable memory 30 will not be permanently wasted for modes that are no longer useful to the user. New operation algorithms can also be downloaded to replace the deleted operation algorithms. In an exemplary embodiment, the condition for starting the deletion process is sufficiently complex in order to prevent accidental deletion. In a specific embodiment, a first combination of control buttons 26 are simultaneously pressed for a first predetermined period of time, then a second combination of control buttons 26 are then subsequently simultaneously pressed for a second predetermined period of time to trigger a deletion process. It is obvious that the number of such combinations are arbitrary and is preferably to be three or above.
In one embodiment, there are three control buttons on one side of the apparatus 20 for the users to select and control the apparatus 20. They are labeled as K1 (26a), K2 (26b) and K3 (26c) in
In an exemplary embodiment, a first operation mode is a time mode. As shown in
In an exemplary embodiment, a second operation mode is a calorie coach mode.
In an exemplary embodiment, a third operation mode is a running mode. The operational state diagram is shown in
In an exemplary embodiment, a fourth operation mode is a workout mode. The operational state diagram of this mode is shown in
In an embodiment, a fifth operation mode is a hiking mode. The hiking mode displays a direction of the watch from an internal or external compass, for example in the form of cardinal points. The latitude and longitude of the watch are also displayed for example from a link to a device with global positioning system. A barometric pressure sensor can also be installed in the device and the pressure can be displayed.
In an embodiment, a sixth operation mode is a fishing mode. The fishing mode displays a fish amount prediction based on predetermined parameters, and also moon phase data which affects fish behavior. The moon phase data information is not affected by weather, and thus is more reliable than the naked eye.
In an embodiment, a seventh operation mode is a weather forecast mode. The weather forecast mode displays a current weather such as sunny, cloudy or raining etc., and can also display a forecast for a predetermined period of time. Internal or external thermometers and/or humidity sensors can also allow temperature and humidity information to be displayed on the display unit 22. Any weather alerts, such as typhoon warnings, snow alert, or any other alerts issued by the government can also be displayed by connecting the device 20 to the appropriate sources, or to the remote device 34.
In an exemplary embodiment, data or parameters displayed on the display unit 22 in any of the operation modes can be recorded and uploaded back to the remote device 34. In one embodiment, the recorded data type is fixed for each operation mode, while in other embodiments the recorded data type can be customized. The data is stored in the programmable memory 30 for a predetermined period of time in order to limit memory usage, and will be permanently deleted if the data is not uploaded to the remote device 34 within the period of time. Once the upload is completed, the uploaded data will also be deleted from the device 20.
In an exemplary embodiment, the display unit 22 of the device 20 is made of a black-and-white LCD display with backlight. This option ensures minimum power consumption for displaying the necessary parameters such that the majority of the power can be used for communicating with other devices and/or detecting the parameters.
The exemplary embodiments of the present invention are thus fully described. Although the description referred to particular embodiments, it will be clear to one skilled in the art that the present invention may be practiced with variation of these specific details. Hence this invention should not be construed as limited to the embodiments set forth herein.
For example, the operation modes listed above are only described by way of example but not limitation. It is obvious to one skilled in the art that any combination of parameters displayed and detected, either through internal or external sensors, are possible without departing from the spirit of the invention. In one embodiment, the user can customize the combination of parameters displayed through a program for example in the remote device 34.
This application claims benefit under 35 U.S.C. §119(e) of U.S. Provisional Application having Ser. No. 61612386 filed on Mar. 18, 2012, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
61612386 | Mar 2012 | US |