This invention relates to hand operable brake mechanisms and particularly, to a handbrake load limiter for railway cars.
Railway car handbrake mechanisms are well known and may include a rotatable wheel or lever that provides upward tension on a chain that is secured at its distal end to a brake rigging of the railway car. Sufficient force must be applied on the brake shoes of the railway car to releasably secure the wheels in a locked position to prevent the railway car from moving. An under applied brake can result in unwanted movement of the car, for example a runaway car. On the opposite end of the spectrum, an over applied brake may result in damage or failure to the brake rigging.
Previously, it has been industry standard to apply 125 pounds of force to the end of the brake lever or 125 pounds of torque force on a wheel to properly apply the handbrake. Currently, certain segments of the railway industry have lowered the 125 pound requirement to 74 pounds. This lowered threshold can result in many more instances when the handbrake is over applied. When the brake is to be fully applied with 125 pounds, there exists the possibility of the handbrake being under applied. Thus, a mechanism is needed that alerts the operator when the brake is properly applied to within a predetermined range and prevents the application of excessive input force.
The present invention recognizes and addresses the foregoing disadvantages, and others, of prior art constructions and methods.
The present invention provides a brake mechanism for activating the brake rigging of a railway car. The brake mechanism comprises a housing, a handle mechanism coupled to the housing, a quick release mechanism mounted in the housing and in operative engagement with the first shaft, and a chain drum mechanism.
The handle mechanism has a first handle, a first shaft rotatably received in the first handle and the housing, a first ratchet wheel rotationally fixed to the first shaft, and a first pawl mounted proximate to, and in operative engagement with the first ratchet wheel. The first pawl is biased into engagement with the first ratchet wheel and rotationally fixes the first ratchet wheel in a first direction while ratcheting over the first ratchet wheel in an opposite second direction.
The quick release mechanism has a second handle rotatably coupled to the housing, a second ratchet wheel rotationally fixed to the first shaft, and a second pawl rotatably coupled to the housing and in operative engagement with the first and the second handles. The chain drum mechanism has a second shaft, a first gear connected to the railway car brake rigging, a second gear rotatably mounted on the second shaft and in operative engagement with the first shaft, and a clutch mounted on the second shaft intermediate the first gear and the second gear. The clutch is moveable between a first position in which the first gear is rotationally coupled to the second gear, and a second position in which the first gear rotates with respect to the second gear.
The first shaft may define axial splines thereon that rotationally couple the second gear to the first spline so that rotation of the first shaft in the first direction causes the second gear to rotate in the opposite second direction. The second gear may define a plurality of ramped teeth on an end thereon, and the clutch may define a plurality of ramped teeth on an end thereon, wherein the second gear and the clutch are positioned so that the second gear teeth and the clutch teeth are in engagement with each other. When the second gear rotates in the second opposite direction, the second gear can rotate with respect to the clutch when a predetermined input torque is reached and the second gear is rotationally fixed with the clutch in the first direction.
The clutch may have a splined hub rotatably received on the second shaft, the splined hub being rotationally fixed to the first gear. A clutch may also contain a coupler received on, and rotationally fixed to, the splined hub, where the coupler is positioned between the second gear and the splined hub. At least one spring is positioned intermediate the splined hub and the coupler for biasing the coupler into engagement with the second gear. The clutch may also have an adjustment plate for adjusting the level of the predetermined torque required for the second gear to rotate with respect to the clutch.
The second handle may be rotated to cause the second pawl to disengage from the second ratchet wheel allowing the first shaft to rotate in the second opposite direction. The second pawl is releasably maintained in the disengaged position so that the torque applied to the railway car brake rigging is fully released. The second pawl may be biased back into engagement with the second ratchet wheel by rotating the first handle to prevent the first shaft from rotating in the second opposite direction.
A chain may be in operative engagement with the first gear and the railway car brake rigging such that rotation of the first shaft in the first direction causes the chain to engage the railway car brake rigging.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one or more embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended drawings, in which:
Repeat use of reference characters in the present specification and drawings is intended to represent same or analogous features or elements of the invention.
Reference will now be made in detail to presently preferred embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present invention without departing from the scope and spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Referring to
With reference to
Referring again to
Handle mechanism 50 comprises handle 14, a ratchet wheel 56, a pawl 58, a spring 60 and a pinion shaft 62. Handle 14 is formed in two halves which allows for the handle ratchet mechanism to be located in a compartment 15 formed in handle 14. Ratchet wheel 56 is placed in compartment 15 and is received on a first end 64 of pinion shaft 62 against a ledge 66 formed on the shaft. Shaft end 64 extends into handle compartment 15 and has a polygonal shaped cross-section that matches to a polygonal shaped bore 68 formed through ratchet wheel 56. The polygonal shaped bore and shaft end rotationally lock the ratchet wheel to the shaft. Ratchet wheel 56 defines a plurality of teeth 70 on an outer circumference thereon that interengage with pawl 58. Pawl 58 is rotatably mounted in compartment 15 about a pawl shaft 72 that is received through a bore 74 formed through pawl 58. Spring 60 is mounted in compartment 15 proximate pawl 58 such that the spring rotationally biases pawl 58 into engagement with ratchet wheel teeth 70. Handle 14 is axially secured to shaft end 64 by a fastener 76 and washer 78 into bearing 79. Fastener 76 is threadedly received in a blind bore formed in shaft end 64.
Quick release mechanism 52 comprises a quick release handle 16, a ratchet wheel 80, a pawl 82 and two mounting shafts 84 and 86. Quick release handle 16 is rotatably mounted in first compartment 46 about a shaft 86. Shaft 86 is formed with threads on a first end 86a and a slot on a second end 86b. Thus, shaft 86 is threadedly received in a threaded bore (not shown) formed in dividing wall 44 and can be positioned using a flat head screwdriver engaged in slotted shaft second end 86b. Ratchet wheel 80 defines a plurality of teeth 88 on an outer circumference thereon and a splined bore 90 therethrough that is countersunk on a side facing handle 14. Ratchet wheel 80 is received on a splined portion 92 of pinion shaft 62 such that the countersunk portion of the bore is adjacent a smooth surface 94 of pinion shaft 62. Splined bore 90 and pinion shaft splines 92 rotationally fix ratchet wheel 80 to pinion shaft 62. A bearing 96 is received in an opening 98 formed in first side wall 34 and rotationally supports pinion shaft 62 at shaft smooth surface 94. The bearing facilitates rotation of the shaft during operation.
Pawl 82 is rotationally received in compartment 46 about shaft 84. Shaft 84, like shaft 86, has a threaded first end 84a and a slotted second end 84b. Shaft 84 is threadedly received in a threaded bore (not shown) formed in dividing wall 44 and can be positioned using a flat head screwdriver engaged in slotted shaft second end 84b. Pawl 82 has two fingers 100 and 102, the former coupled with a spring and the latter received between two radial extensions 104 and 106 extending from quick release handle 16. Pawl finger 100 is coupled to a pivoting yoke pin 108 that receives a spring 110. The end of yoke pin 108 is received through a hole 109 (
Quick release handle radial extension 104 includes a opening 126 that receives one end of a spring 128, and the opposite end of spring 128 is coupled to top wall 38 (
Still referring to
Adjusting plate 130 is generally circular in shape and contains a bore therethrough. Three load screws 152 are received in respective threaded bores 154, which extend from the opposite side of adjusting plate 130 into contact with load plate 132. Load plate 132 contains a bore therethrough that defines a plurality of radially inward pointing splines 156. Thrust bearing 136 contains a plurality of radially oriented rollers 158, and is sandwiched between thrust washers 134 and 138. A bearing 160 is received in a bore 162 formed through gear wheel 140. Gear ring 140 defines a plurality of teeth 164 on an outer circumference thereon that interengage with a plurality of gear teeth 168 on pinion shaft 62. Spring plates 146 are Belleville type spring plates, model no. 096042 manufactured by Dodge. Hub 148 is generally cylindrical in shape and contains a plurality of axially extending splines 176 formed on an outer circumference thereof. Additionally, hub 148 contains a discontinuous radially extending flange 177 formed at a first end 179 thereof. Chain drum 150 contains a plurality of radially extending teeth 182 that engage the loops of chain 18.
In one preferred embodiment, first coupler 142 contains a plurality of axially extending teeth 170 that couple with a plurality of axially extending teeth 172 (
The connection of the parts of the gear mechanism 54 will now be described with reference to
Chain drum 150 is rotatably received on output shaft 184 over a bearing 204. Hub 148 is received over output shaft 184 and is rotationally fixed to the chain drum by a polygonally shaped blind bore 190 formed in hub 148 that receives a polygonally shaped portion 192 of chain drum 150. Spring plates 146 are placed on hub 148 so that the inner diameter of the spring plates abut hub flange 177. Next, first coupler 142 is inserted on hub 148 so that first coupler splines 178 engage with hub splines 176 rotationally fixing first coupler 142 to hub 148. Gear wheel 140 is rotatably received on hub 148 and rotates about the hub on bearing 160. First coupler 142 and gear wheel 140 are positioned such that first coupler teeth 170 engage with second coupler teeth 172. Thrust washers 134 and 138 and roller bearing 136 are placed on hub 148 adjacent to gear wheel 140. Load plate 132 is received on hub 148 adjacent to thrust washer 134 and is rotationally fixed to the hub via load plate splines 156 and hub splines 176. Lastly, adjusting plate 130 is threadedly received on hub 148 by a threaded inner bore 189 formed through adjusting plate 130 and a thread 191 formed on an end of hub splines 176. Thus, once adjusting plate 130 is threaded onto hub 148, it is rotationally fixed to the hub via a set screw 188 (
Referring to
The operation of handbrake 10 is described herein with reference to FIGS. 4 and 5A-5C. To begin operation of the handbrake, the operator lifts upward on handle 14, which in turn imparts counterclockwise rotation on ratchet wheel 56 (with respect to
As pinion shaft 62 rotates counterclockwise, pinion teeth 168 interengage with gear wheel teeth 164 causing gear wheel 140 to rotate clockwise. Gear wheel 140 can rotate with respect to adjusting plate 130 and load plate 132 because of roller bearing 136 and plain bearing 160. Gear wheel 140 can also rotate with respect to first coupler 142 when the first coupler teeth are not engaged with second coupler teeth 172. As a result of the interconnection of all of the parts, first coupler 142 and second coupler 174 rotationally fix gear wheel 140 to chain drum 150 through hub 148. Thus, as the gear wheel rotates clockwise the hub and chain drum also rotate clockwise causing the chain to be pulled upward through housing 12. Upward tension on chain 18 causes the railway car brakes to engage to hold the car stationary.
The connection of first coupler 142 to second coupler 174 is facilitated by the interaction of first coupler teeth 170 and second coupler teeth 172 (
The angle of each tooth is chosen so that a predetermined input force can be exerted on handle 14 and chain 18 before the coupler teeth slip over each other. Thus, if the rotational torque exerted by the movement of lever 14 is less than the input set point sufficient to cause the coupler teeth to slip over each other, then once handle 14 reaches the top of its full swing, the operator lowers the handle to return it to vertical.
As handle 14 is lowered, pinion shaft 62 is held rotationally still since pawl 82 restricts the rotation of gear wheel 80 in the clockwise direction. Because pawl 58 will ratchet over ratchet wheel teeth 70, the handle will rotate clockwise with respect to ratchet wheel 70. Once handle 14 is substantially vertical, the operator once again lifts up on handle 14 and additional input force is exerted on pinion shaft 62. As such, pinion shaft gear teeth 168 rotate in the counterclockwise direction (looking to the right with respect to
Referring to
To release the tension exerted on chain 18, the operator lifts quick release handle 16. Referring to
While one or more preferred embodiments of the invention have been described above, it should be understood that any and all equivalent realizations of the present invention are included within the scope and spirit thereof. The embodiments depicted are presented by way of example and are not intended as limitations upon the present invention. Thus, those of ordinary skill in this art should understand that the present invention is not limited to these embodiments since modifications can be made. Therefore, it is contemplated that any and all such embodiments are included in the present invention as may fall within the scope and spirit thereof.
This application claims priority to U.S. Provisional Patent Application No. 60/718,292, filed Sep. 19, 2005, the entire disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4236424 | Kanjo et al. | Dec 1980 | A |
4282771 | Grube | Aug 1981 | A |
4368648 | Houseman et al. | Jan 1983 | A |
4706791 | Magliano | Nov 1987 | A |
6039158 | Fox et al. | Mar 2000 | A |
6427811 | Wedge et al. | Aug 2002 | B1 |
6789855 | Herron | Sep 2004 | B2 |
6848754 | Ring et al. | Feb 2005 | B2 |
20070056814 | Michel et al. | Mar 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20070151812 A1 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
60718292 | Sep 2005 | US |