This invention relates to a handheld article, such as a digital camera, having apparatus to discriminate between voluntary and involuntary movement of the article.
Handheld articles such as digital cameras are subject to movement in use, either involuntary (hand-jitter) or voluntary (e.g. panning). It would be useful to discriminate between these two types of movement.
The object of the present invention is to provide apparatus, in a handheld article, to discriminate between voluntary and involuntary movement of the article.
According to the present invention there is provided a handheld article having at least one angular rate-sensing gyroscopic sensor and an electronic circuit responsive to the sensor output signal to discriminate between voluntary and involuntary movements of the article as a function of the number of zero crossings per unit time of the signal and the average of the absolute amplitude of the signal.
Preferably the article includes first and second angular rate-sensing gyroscopic sensors with transverse axes, the electronic circuit being responsive to both sensor output signals to discriminate between voluntary and involuntary movements of the article.
In an embodiment the article is a digital camera.
An embodiment of the invention will now be described, by way of example, with reference to the accompanying drawings, in which:
Ambient light exposure is determined using a light sensor 40 in order to automatically determine if a flash is to be used. The distance to the subject is determined using a focusing mechanism 50 which also focuses the image on an image capture device 60. If a flash is to be used, processor 120 causes a flash device 70 to generate a photographic flash in substantial coincidence with the recording of the image by the image capture device 60 upon full depression of the shutter button.
The image capture device 60 digitally records the image in colour. The image capture device is known to those familiar with the art and may include a CCD (charge coupled device) or CMOS to facilitate digital recording. The flash may be selectively generated either in response to the light sensor 40 or a manual input 72 from the user of the camera. The high resolution image recorded by image capture device 60 is stored in an image store 80 which may comprise computer memory such a dynamic random access memory or a non-volatile memory. The camera is equipped with a display 100, such as an LCD, for preview images.
In the case of preview images which are generated in the pre-capture mode 32 with the shutter button half-pressed, the display 100 can assist the user in composing the image, as well as being used to determine focusing and exposure. Temporary storage 82 is used to store one or plurality of the preview images and can be part of the image store 80 or a separate component. The preview image is usually generated by the image capture device 60. For speed and memory efficiency reasons, preview images usually have a lower pixel resolution than the main image taken when the shutter button is fully depressed, and are generated by sub-sampling a raw captured image using software 124 which can be part of the general processor 120 or dedicated hardware or combination thereof.
Various processing functions 90 carried out on the main, high-resolution, image, and/or low resolution preview images, such as redeye detection and correction 92 and de-blurring 94, can be integral to the camera 10 or part of an external processing device 20 such as a desktop computer.
The camera 10 also includes two angular rate-sensing gyroscopic sensors 130 having vertical and horizontal axes respectively (vertical and horizontal refers to the orientation of the axes when the camera is held perfectly upright and level). In the present embodiment each sensor 130 comprises an Analog Devices ADXRS401 single chip sensor capable of measuring up to 75 degrees per second about its axis. The analog output signals from the two sensors are sampled 40,000 times per second for analog-to-digital conversion and applied to the digital processor 120. This allows the processor 120 to discriminate between voluntary and involuntary movement of the camera, as well as between camera movement and electronic jitter, in the following manner.
In a digital camera one may encounter three situations:
1. There is no movement (
2. There is involuntary hand jitter (
3. There is voluntary, desired hand movement (
Sensor noise has a small amplitude and a large percentage of energy in the high frequency domain. Hand jitter increases the amplitude of the sensor output signals and the energy in the low frequency bands, while voluntary movement has the largest amplitude (due to a non-zero DC component) and most of the signal energy near zero frequency. The present embodiment discriminates between these three situations as a function of the number of zero-crossings per second NZC of each sensor signal, which is a measure of frequency, and the average of the absolute amplitude of each sensor signal |
The value of NZC (which refers to the number of zero crossings per second) need not be established by counting zero crossings over a full second, since NZC changes relatively slowly over time and a count of the number of zero crossings taken over, for example, 1/10th of a second can be scaled up (in this example by multiplying by 10) and expressed as the number per second. The absolute amplitude of the signal is preferably averaged over the same period as the zero crossing count, but again the absolute average changes relatively slowly over time so exact correspondence is not strictly necessary.
Our tests, using two Analog Devices ADXRS401 single chip sensors mounted on a test board with mutually perpendicular axes and sensor outputs sampled at 40,000 samples per second, have shown that for the three situations above the following criteria generally apply for both horizontal and vertical components of random movement:
1. No movement: NZCEε[180; 250] and |
2. Hand jitter: NZCEε[50; 160] and |
3. Voluntary movement: NZC<10 and |
These ranges can therefore be used for discriminating between the three situations. However, unless the movement is predominantly in one direction, the discrimination is likely to be less accurate if the criteria for only one direction (horizontal or vertical) are used for a decision, as one can see in the example below (
Therefore, we have found that a high degree of discrimination accuracy can be obtained by combining the criteria and computing the term:
In our tests, we found empirically that if TH were greater than 1200, noise was the predominant factor; if not, hand jitter was present. We found this 1200 threshold to be highly accurate in discriminating between sensor noise and hand jitter. In our tests there were 2% false alarms (noise detected as jitter) and 1.8% misdetection. In 0.16% cases the test indicated voluntary movement instead of hand jitter.
To discriminate between hand jitter and voluntary movement we compared TH with 400, which we found empirically to be a useful threshold to differentiate between these two types of movement. A TH of less than 400 indicated voluntary movement while a TH greater than 400 indicated hand jitter. For soft movements it is hard to define the physical threshold between hand jitter and a voluntary movement. For hard movements, however, the tests proved 100% accurate.
Of course, if different sensors are used, there will be different threshold levels.
NZChor=321
NZCvert=140
|
|
TH=54016.47
NZChor=78
NZCvert=119
|
|
TH=2345.03
NZChor=15
NZCvert=0
|
|
TH=82.42
The above technique is embodied in the camera 10 by the processor 120 iteratively calculating TH from the output signals from the sensors 150, comparing the calculated value with the thresholds 400 and 1200, and setting or clearing a respective flag according to whether TH is greater than 1200, less than 400, or between 400 and 1200. The state of the flags at any given moment will indicate whether the immediately preceding measurement detected sensor noise only, hand jitter or voluntary movement to a high degree of accuracy. This is done cyclically at least while the camera is in preview mode with the shutter button half-depressed, right up to the moment that the final full resolution image is captured. The final state of the flags at the moment the shutter is pressed can be stored as metadata with the image, and used in processing the image, e.g. as an input to the de-blur function 94 or alternatively, the state of the flag can be fed directly to the image processing function. During the preview phase the state of the flags can be used to determine whether to enable or disable an image stabilisation function or otherwise used as input to such a function to modify its operation.
In another application, the image processing functions include a face tracking module 96 as described in U.S. patent application Ser. No. 11/464,083 filed Aug. 11, 2006, now U.S. Pat. No. 7,315,631. Such a module periodically analyses acquired images to detect faces within the images and subsequently tracks these faces from one image to another in an image stream. Face detection is relatively processor intensive and needs to be performed as judiciously as possible. Thus, using the information provided with the present embodiment, the module 96 can for example decide to switch off face detection/tracking when a camera is being voluntarily moved as it might presume that it could not track face movement during panning of the camera, whereas if hand jitter is being experienced, the module can use the degree and direction of movement to attempt to predict where a face candidate region being tracked may have moved from one image in a stream to the next. If noise rather than hand jitter is being experienced, the module 96 could decide to use an existing location for a face candidate region rather than attempting to predict its location based on camera movement.
The invention is not limited to the embodiments described herein which may be modified or varied without departing from the scope of the invention.
This application is a Continuation of U.S. patent application Ser. No. 11/690,836, filed on Mar. 25, 2007, now U.S. Pat. No. 7,773,118, issued on Aug. 10, 2010, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5251019 | Moorman et al. | Oct 1993 | A |
5374956 | D'luna | Dec 1994 | A |
5392088 | Abe et al. | Feb 1995 | A |
5428723 | Ainscow et al. | Jun 1995 | A |
5510215 | Prince et al. | Apr 1996 | A |
5599766 | Boroson et al. | Feb 1997 | A |
5686383 | Long et al. | Nov 1997 | A |
5747199 | Roberts et al. | May 1998 | A |
5751836 | Wildes et al. | May 1998 | A |
5756239 | Wake | May 1998 | A |
5756240 | Roberts et al. | May 1998 | A |
5802220 | Black et al. | Sep 1998 | A |
5889277 | Hawkins et al. | Mar 1999 | A |
5889554 | Mutze | Mar 1999 | A |
5909242 | Kobayashi et al. | Jun 1999 | A |
5981112 | Roberts | Nov 1999 | A |
6028960 | Graf et al. | Feb 2000 | A |
6035072 | Read | Mar 2000 | A |
6041078 | Rao | Mar 2000 | A |
6061462 | Tostevin et al. | May 2000 | A |
6081606 | Hansen et al. | Jun 2000 | A |
6114075 | Long et al. | Sep 2000 | A |
6122017 | Taubman | Sep 2000 | A |
6124864 | Madden et al. | Sep 2000 | A |
6134339 | Luo | Oct 2000 | A |
6269175 | Hanna et al. | Jul 2001 | B1 |
6297071 | Wake | Oct 2001 | B1 |
6297846 | Edanami | Oct 2001 | B1 |
6326108 | Simons | Dec 2001 | B2 |
6330029 | Hamilton et al. | Dec 2001 | B1 |
6360003 | Doi et al. | Mar 2002 | B1 |
6365304 | Simons | Apr 2002 | B2 |
6381279 | Taubman | Apr 2002 | B1 |
6387577 | Simons | May 2002 | B2 |
6407777 | DeLuca | Jun 2002 | B1 |
6535244 | Lee et al. | Mar 2003 | B1 |
6555278 | Loveridge et al. | Apr 2003 | B1 |
6567536 | McNitt et al. | May 2003 | B2 |
6599668 | Chari et al. | Jul 2003 | B2 |
6602656 | Shore et al. | Aug 2003 | B1 |
6607873 | Chari et al. | Aug 2003 | B2 |
6618491 | Abe | Sep 2003 | B1 |
6625396 | Sato | Sep 2003 | B2 |
6643387 | Sethuraman et al. | Nov 2003 | B1 |
6741960 | Kim et al. | May 2004 | B2 |
6863368 | Sadasivan et al. | Mar 2005 | B2 |
6892029 | Tsuchida et al. | May 2005 | B2 |
6947609 | Seeger et al. | Sep 2005 | B2 |
6961518 | Suzuki | Nov 2005 | B2 |
7019331 | Winters et al. | Mar 2006 | B2 |
7072525 | Covell | Jul 2006 | B1 |
7084037 | Gamo et al. | Aug 2006 | B2 |
7160573 | Sadasivan et al. | Jan 2007 | B2 |
7177538 | Sato et al. | Feb 2007 | B2 |
7180238 | Winters | Feb 2007 | B2 |
7195848 | Roberts | Mar 2007 | B2 |
7292270 | Higurashi et al. | Nov 2007 | B2 |
7315324 | Cleveland et al. | Jan 2008 | B2 |
7315630 | Steinberg et al. | Jan 2008 | B2 |
7315631 | Corcoran et al. | Jan 2008 | B1 |
7316630 | Tsukada et al. | Jan 2008 | B2 |
7316631 | Tsunekawa | Jan 2008 | B2 |
7317815 | Steinberg et al. | Jan 2008 | B2 |
7336821 | Ciuc et al. | Feb 2008 | B2 |
7369712 | Steinberg et al. | May 2008 | B2 |
7403643 | Ianculescu et al. | Jul 2008 | B2 |
7453493 | Pilu | Nov 2008 | B2 |
7453510 | Kolehmainen et al. | Nov 2008 | B2 |
7460695 | Steinberg et al. | Dec 2008 | B2 |
7469071 | Drimbarean et al. | Dec 2008 | B2 |
7489341 | Yang et al. | Feb 2009 | B2 |
7548256 | Pilu | Jun 2009 | B2 |
7551755 | Steinberg et al. | Jun 2009 | B1 |
7565030 | Steinberg et al. | Jul 2009 | B2 |
7593144 | Dymetman | Sep 2009 | B2 |
7623153 | Hatanaka | Nov 2009 | B2 |
7657172 | Nomura et al. | Feb 2010 | B2 |
7692696 | Steinberg et al. | Apr 2010 | B2 |
7738015 | Steinberg et al. | Jun 2010 | B2 |
20010036307 | Hanna et al. | Nov 2001 | A1 |
20020006163 | Hibi et al. | Jan 2002 | A1 |
20030052991 | Stavely et al. | Mar 2003 | A1 |
20030058361 | Yang | Mar 2003 | A1 |
20030091225 | Chen | May 2003 | A1 |
20030103076 | Neuman | Jun 2003 | A1 |
20030151674 | Lin | Aug 2003 | A1 |
20030152271 | Tsujino et al. | Aug 2003 | A1 |
20030169818 | Obrador | Sep 2003 | A1 |
20030193699 | Tay | Oct 2003 | A1 |
20030219172 | Caviedes et al. | Nov 2003 | A1 |
20040066981 | Li et al. | Apr 2004 | A1 |
20040076335 | Kim | Apr 2004 | A1 |
20040090532 | Imada | May 2004 | A1 |
20040120598 | Feng | Jun 2004 | A1 |
20040120698 | Hunter | Jun 2004 | A1 |
20040130628 | Stavely | Jul 2004 | A1 |
20040145659 | Someya et al. | Jul 2004 | A1 |
20040169767 | Norita et al. | Sep 2004 | A1 |
20040212699 | Molgaard | Oct 2004 | A1 |
20040218057 | Yost et al. | Nov 2004 | A1 |
20040218067 | Chen et al. | Nov 2004 | A1 |
20040247179 | Miwa et al. | Dec 2004 | A1 |
20050010108 | Rahn et al. | Jan 2005 | A1 |
20050019000 | Lim et al. | Jan 2005 | A1 |
20050031224 | Prilutsky et al. | Feb 2005 | A1 |
20050041121 | Steinberg et al. | Feb 2005 | A1 |
20050041123 | Ansari et al. | Feb 2005 | A1 |
20050047672 | Ben-Ezra et al. | Mar 2005 | A1 |
20050052553 | Kido et al. | Mar 2005 | A1 |
20050057687 | Irani et al. | Mar 2005 | A1 |
20050068446 | Steinberg et al. | Mar 2005 | A1 |
20050068452 | Steinberg et al. | Mar 2005 | A1 |
20050140801 | Prilutsky et al. | Jun 2005 | A1 |
20050140829 | Uchida et al. | Jun 2005 | A1 |
20050195317 | Myoga | Sep 2005 | A1 |
20050201637 | Schuler et al. | Sep 2005 | A1 |
20050219391 | Sun et al. | Oct 2005 | A1 |
20050231625 | Parulski et al. | Oct 2005 | A1 |
20050248660 | Stavely et al. | Nov 2005 | A1 |
20050259864 | Dickinson et al. | Nov 2005 | A1 |
20050270381 | Owens et al. | Dec 2005 | A1 |
20050281477 | Shiraki et al. | Dec 2005 | A1 |
20060006309 | Dimsdale et al. | Jan 2006 | A1 |
20060017837 | Sorek et al. | Jan 2006 | A1 |
20060038891 | Okutomi et al. | Feb 2006 | A1 |
20060039690 | Steinberg et al. | Feb 2006 | A1 |
20060093212 | Steinberg et al. | May 2006 | A1 |
20060098237 | Steinberg et al. | May 2006 | A1 |
20060098890 | Steinberg et al. | May 2006 | A1 |
20060098891 | Steinberg et al. | May 2006 | A1 |
20060119710 | Ben-Ezra et al. | Jun 2006 | A1 |
20060120599 | Steinberg et al. | Jun 2006 | A1 |
20060125938 | Ben-Ezra et al. | Jun 2006 | A1 |
20060133688 | Kang et al. | Jun 2006 | A1 |
20060140455 | Costache et al. | Jun 2006 | A1 |
20060170786 | Won | Aug 2006 | A1 |
20060171464 | Ha | Aug 2006 | A1 |
20060187308 | Lim et al. | Aug 2006 | A1 |
20060204034 | Steinberg et al. | Sep 2006 | A1 |
20060204054 | Steinberg et al. | Sep 2006 | A1 |
20060204110 | Steinberg et al. | Sep 2006 | A1 |
20060285754 | Steinberg et al. | Dec 2006 | A1 |
20070025714 | Shiraki | Feb 2007 | A1 |
20070058073 | Steinberg et al. | Mar 2007 | A1 |
20070083114 | Yang et al. | Apr 2007 | A1 |
20070086675 | Chinen et al. | Apr 2007 | A1 |
20070097221 | Stavely et al. | May 2007 | A1 |
20070110305 | Corcoran et al. | May 2007 | A1 |
20070147820 | Steinberg et al. | Jun 2007 | A1 |
20070189748 | Drimbarean et al. | Aug 2007 | A1 |
20070201724 | Steinberg et al. | Aug 2007 | A1 |
20070234779 | Hsu et al. | Oct 2007 | A1 |
20070269108 | Steinberg et al. | Nov 2007 | A1 |
20070296833 | Corcoran et al. | Dec 2007 | A1 |
20080012969 | Kasai et al. | Jan 2008 | A1 |
20080037827 | Corcoran et al. | Feb 2008 | A1 |
20080037839 | Corcoran et al. | Feb 2008 | A1 |
20080037840 | Steinberg et al. | Feb 2008 | A1 |
20080043121 | Prilutsky et al. | Feb 2008 | A1 |
20080166115 | Sachs et al. | Jul 2008 | A1 |
20080175481 | Petrescu et al. | Jul 2008 | A1 |
20080211943 | Egawa et al. | Sep 2008 | A1 |
20080218611 | Parulski et al. | Sep 2008 | A1 |
20080219581 | Albu et al. | Sep 2008 | A1 |
20080219585 | Kasai et al. | Sep 2008 | A1 |
20080220750 | Steinberg et al. | Sep 2008 | A1 |
20080231713 | Florea et al. | Sep 2008 | A1 |
20080232711 | Prilutsky et al. | Sep 2008 | A1 |
20080240555 | Nanu et al. | Oct 2008 | A1 |
20080240607 | Sun et al. | Oct 2008 | A1 |
20080259175 | Muramatsu et al. | Oct 2008 | A1 |
20080267530 | Lim | Oct 2008 | A1 |
20080292193 | Bigioi et al. | Nov 2008 | A1 |
20080309769 | Albu et al. | Dec 2008 | A1 |
20080309770 | Florea et al. | Dec 2008 | A1 |
20090003652 | Steinberg et al. | Jan 2009 | A1 |
20090009612 | Tico et al. | Jan 2009 | A1 |
20090080713 | Bigioi et al. | Mar 2009 | A1 |
20090080796 | Capata et al. | Mar 2009 | A1 |
20090080797 | Nanu et al. | Mar 2009 | A1 |
20090179999 | Albu et al. | Jul 2009 | A1 |
20090185041 | Kang et al. | Jul 2009 | A1 |
20090185753 | Albu et al. | Jul 2009 | A1 |
20090190803 | Neghina et al. | Jul 2009 | A1 |
20090196466 | Capata et al. | Aug 2009 | A1 |
20090284610 | Fukumoto et al. | Nov 2009 | A1 |
20090303342 | Corcoran et al. | Dec 2009 | A1 |
20090303343 | Drimbarean et al. | Dec 2009 | A1 |
20100026823 | Sawada | Feb 2010 | A1 |
20100053349 | Watanabe et al. | Mar 2010 | A1 |
20100126831 | Ceelen | May 2010 | A1 |
20110090352 | Wang et al. | Apr 2011 | A1 |
20110102642 | Wang et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
3729324 | Mar 1989 | DE |
10154203 | Jun 2002 | DE |
10107004 | Sep 2002 | DE |
0944251 | Sep 1999 | EP |
944251 | Apr 2003 | EP |
1583033 | Oct 2005 | EP |
1779322 | Jan 2008 | EP |
1429290 | Jul 2008 | EP |
10285542 | Oct 1998 | JP |
11327024 | Nov 1999 | JP |
2008-520117 | Jun 2008 | JP |
WO9843436 | Oct 1998 | WO |
WO0113171 | Feb 2001 | WO |
WO0245003 | Jun 2002 | WO |
WO2007093199 | Aug 2007 | WO |
WO2007093199 | Aug 2007 | WO |
WO2007142621 | Dec 2007 | WO |
WO2007143415 | Dec 2007 | WO |
WO2008017343 | Feb 2008 | WO |
WO2008131438 | Oct 2008 | WO |
WO2008151802 | Dec 2008 | WO |
WO2009036793 | Mar 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20100238309 A1 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11690836 | Mar 2007 | US |
Child | 12789300 | US |