Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone

Information

  • Patent Grant
  • 11529523
  • Patent Number
    11,529,523
  • Date Filed
    Thursday, January 3, 2019
    5 years ago
  • Date Issued
    Tuesday, December 20, 2022
    a year ago
Abstract
A bridge device includes a housing, a plurality of electrodes exposed outside of the housing such that at least two of the plurality of electrodes can be concurrently placed in contact with a patient's skin. A controller is disposed within the housing. A first communications module is operably coupled to the controller and to the at least two of the plurality of electrodes. The first communications module is configured to allow the controller to communicate with an implantable medical device via at least two of the plurality of electrodes using conducted communication. A second communications module is operably coupled to the controller and is configured to allow the controller to communicate with a remote device external to the patient.
Description
TECHNICAL FIELD

The present disclosure pertains to medical devices, and more particularly to medical devices that are configured to communicate with an implanted medical device such as leadless cardiac pacemaker as well as an external device such as a smartphone.


BACKGROUND

Implantable medical devices are commonly used today to monitor physiological or other parameters of a patient and/or deliver therapy to a patient. In one example, to help patients with heart related conditions, various medical devices (e.g., pacemakers, defibrillators, sensors, etc.) can be implanted in a patient's body. Such devices may monitor and in some cases provide electrical stimulation (e.g. pacing, defibrillation, etc.) to the heart to help the heart operate in a more normal, efficient and/or safe manner. In some cases, there is a desire to obtain information from and/or provide commands to an implantable medical device.


SUMMARY

The present disclosure pertains to medical devices, and more particularly to medical devices that are configured to communicate with an implanted medical device such as leadless cardiac pacemaker as well as an external device such as a smartphone. In some cases, the present disclose provides a handheld bridge device for providing a communication bridge between the implanted medical device and the device that is external to the patient.


In a particular example of the disclosure, a handheld bridge device provides a communication bridge between a leadless cardiac pacemaker and a smartphone. The illustrative bridge device includes a housing and a plurality of electrodes that are exposed outside of the housing such that at least two of the plurality of electrodes can be concurrently placed in contact with a patient's skin. A power source is disposed within the housing. A controller is disposed within the housing and is operably powered by the power source. In some cases, the bridge device includes a conducted communications module that is disposed within the housing and is operably coupled to the controller and to the at least two of the plurality of electrodes that can be concurrently placed in contact with a patient's skin. The conducted communications module is configured to allow the controller to communicate with a leadless cardiac pacemaker via at least two of the plurality of electrodes that can be concurrently placed in contact with a patient's skin using conducted communication. The illustrative bridge device may further include a RF communications module that is disposed within the housing and operably coupled to the controller. The RF communications module may be configured to allow the controller to communicate with a smartphone external to the patient using RF communication. In some cases, the bridge device may provide a communication bridge between the leadless cardiac pacemaker and the smartphone such that the leadless cardiac pacemaker can provide information/data to the smartphone and/or the smartphone may provide commands and/or requests to the leadless cardiac pacemaker. It is contemplated that the bridge device may provide one-way or bidirectional communication.


Alternatively or additionally, the bridge device may further include a memory that is operably coupled to the controller such that information received from the leadless cardiac pacemaker by conducted communication via the at least two of the plurality of electrodes can be saved to the memory prior to subsequent communication of the information to the smartphone via the RF communications module.


Alternatively or additionally, the bridge device may further include one or more sensors operatively coupled to the controller for sensing one or more sensed parameters, wherein the controller is configured to communicate the one or more sensed parameters to the smartphone via the RF communications module.


Alternatively or additionally, the one or more sensors may include one or more of an accelerometer, a gyroscope, an impendence sensor, an electrogram sensor, a force sensor, an audio sensor and a button.


Alternatively or additionally, the bridge device may further include a user interface that is operably coupled to the controller. The controller may be configured to communicate with the patient via the user interface and the user interface may include one or more of a vibrator, a speaker and a Light Emitting Diode (LED).


In another example of the disclosure, a bridge device provides a communication bridge between an implantable medical device that is configured to sense cardiac electrical activity of a patient's heart and a remote device that is external to the patient. The bridge device includes a housing and a plurality of electrodes that are exposed outside of the housing such that at least two of the plurality of electrodes can be concurrently placed in contact with a patient's skin. A power source is disposed within the housing, as is a controller that is operably powered at least in part by the power source. The bridge device includes a first communications module that is disposed within the housing and operably coupled to the controller and to the at least two of the plurality of electrodes that can be concurrently placed in contact with a patient's skin, the first communications module being configured to allow the controller to communicate with an implantable medical device via at least two of the plurality of electrodes that can be concurrently placed in contact with a patient's skin using conducted communication. A second communications module is disposed within the housing and is operably coupled to the controller, the second communications module being configured to allow the controller to communicate with a remote device external to the patient.


Alternatively or additionally, the implantable medical device may be a leadless cardiac pacemaker and the remote device may be a smartphone.


Alternatively or additionally, the second communications module may be configured to allow the controller to communicate with the remote device external to the patient using wireless communication.


Alternatively or additionally, the wireless communication may include Radio Frequency (RF) communication.


Alternatively or additionally, the wireless communication may include one or more of bluetooth communication, WiFi communication, inductive communication, infrared (IR) communication and optical communication.


Alternatively or additionally, the second communications module may be configured to allow the controller to communicate with the remote device external to the patient using wired communication.


Alternatively or additionally, the bridge device may further include one or more sensors that are operatively coupled to the controller for sensing one or more sensed parameters, wherein the controller is configured to communicate the one or more sensed parameters to the remote device external to the patient via the second communications module.


Alternatively or additionally, the one or more sensors may include one or more of an accelerometer, a gyroscope, an impendence sensor, an electrogram sensor, a force sensor, an audio sensor and a button.


Alternatively or additionally, the bridge device may further include a user interface that is operably coupled to the controller. The controller may be configured to communicate with the patient via the user interface and the user interface may include one or more of a vibrator, a speaker and a Light Emitting Diode (LED).


Alternatively or additionally, the housing may have a first side and an opposing second side, and the first side may have at least two of the plurality of electrodes.


Alternatively or additionally, the second side may have at least two of the plurality of electrodes.


Alternatively or additionally, the housing may have a side wall extending between the first side and the second side and the side wall may have at least one of the plurality of electrodes.


Alternatively or additionally, the first side may have at least four electrodes arranged in a kite configuration.


In another example of the disclosure, an external bridge device may be configured to serve as a communications bridge between a medical device implantable within a patient and a remote device exterior to the patient, the external bridge device configured to communicate with the medical device implantable within a patient via conducted communication and to communicate with the remote device exterior to the patient using a wireless communications protocol. The external bridge device includes a substrate and two or more electrodes that are disposed on the substrate such that the two or more electrodes are configured to be temporarily disposed in contact with the patient's skin. A controller is operably coupled to the two or more electrodes and is configured to receive conducted communication from the medical device implantable within a patient via two of the two or more electrodes. A transceiver is operable coupled to the controller. The controller is configured to receive information via conducted communication and to transmit the information to the remote device exterior to the patient via the transceiver.


Alternatively or additionally, the external bridge device may further include one or more sensors that are operatively coupled to the controller for sensing one or more sensed parameters, wherein the controller is configured to communicate the one or more sensed parameters to the remote device via the transceiver.


The above summary of some illustrative embodiments is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The Figures, and Description, which follow, more particularly exemplify some of these embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may be more completely understood in consideration of the following description in connection with the accompanying drawings, in which:



FIG. 1 is a schematic block diagram of a system including an implantable medical device (IMD), an external device and a bridge device to facilitate communication between the IMD and the external device in accordance with an example of the disclosure;



FIG. 2 is a schematic block diagram of a bridge device useable in the system of FIG. 1 in accordance with an example of the disclosure;



FIG. 3 is a schematic block diagram of a bridge device useable in the system of FIG. 1 in accordance with an example of the disclosure;



FIG. 4 is a schematic block diagram of a bridge device useable in the system of FIG. 1 in accordance with an example of the disclosure;



FIG. 5 is a perspective view of a bridge device useable in the system of FIG. 1 in accordance with an example of the disclosure;



FIG. 6 is a schematic block diagram of a bridge device useable in the system of FIG. 1 in accordance with an example of the disclosure;



FIG. 7 is a schematic block diagram of a bridge device useable in the system of FIG. 1 in accordance with an example of the disclosure;



FIG. 8 is a schematic block diagram of a bridge device useable in the system of FIG. 1 in accordance with an example of the disclosure;



FIG. 9 is a schematic view of a bridge device deployed relative to a patient's chest and touching the patient's skin;



FIG. 10 is a schematic view of a bridge device deployed in a patient's hands;



FIG. 11 is a schematic block diagram of an illustrative IMD in accordance with an example of the disclosure; and



FIG. 12 is a schematic block diagram of another illustrative medical device in accordance with an example of the disclosure.





While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the disclosure to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DESCRIPTION

For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.


All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may include numbers that are rounded to the nearest significant figure.


The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include one or more particular features, structures, and/or characteristics. However, such recitations do not necessarily mean that all embodiments include the particular features, structures, and/or characteristics. Additionally, when particular features, structures, and/or characteristics are described in connection with one embodiment, it should be understood that such features, structures, and/or characteristics may also be used connection with other embodiments whether or not explicitly described unless clearly stated to the contrary.


The following description should be read with reference to the drawings in which similar structures in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure. While the present disclosure is applicable to any suitable implantable medical device (IMD), the description below often uses leadless cardiac pacemakers (LCP) and implantable cardioverter-defibrillator (ICD) and/or pacemakers as particular examples.



FIG. 1 is a schematic block diagram of a system that includes an implantable medical device (IMD) 12, an external device 14 and a handheld bridge device 16 to facilitate communication between the IMD 12 and the external device 14 in accordance with an example of the disclosure. In some cases, the IMD 12 may sense and/or pace a heart H. In some cases, the IMD 12 may be configured to shock the heart H. In some cases, the IMD 12 may be a diagnostic sensor that is configured to capture and provide diagnostic data, sometimes to the external device 14 via the bridge device 16.


In the example shown, the implantable medical device (IMD) 12 may be deployed near or even within the heart H. The implanted location of the IMD 12 may be considered as being an implant site. As illustrated, the IMD 12 is shown implanted in the right ventricle LV. This is merely illustrative, as the IMD 12 may be implanted within any other chamber of the heart H, or may be implanted within the patient but external to the heart H.


In some cases, there may be a desire to communicate with the IMD 12. For example, there may be a desire to transfer sensor data and other cardiac-related information that may be sensed by the IMD 12 to an external device 14. In some cases, due to its proximity to the heart H, the IMD 12 may be in a position to obtain more accurate cardiac electrical signals than can be obtained from skin electrodes or the like. In some instances, there may be a desire to upload at least some of this information so that it can be more easily viewed and/or analyzed. In some cases, there may be a desire to transmit cardiac data from the IMD 12 so that a remote physician or monitoring service can see how the patient is doing, which may allow routine periodic reviews as well as reviews during particular situations in which the patient is not feeling well. In some cases, it may be desirable to send commands and/or requests to the IMD 12 from an external device 14. In some cases, the IMD 12 may be a Leadless Cardiac Pacemaker (LCP) that is configured to communicate with other devices using conducted communication.


The external device 14 may be any device external to the patient that is configured to receive, send and/or analyze information. In some cases, the external device 14 may be configured to display cardiac data received from the IMD 12 via the handheld bridge device 16. In some instances, the external device 14 may be used to transmit parameters and other configuration data to the IMD 12 via handheld bridge device 16 in order to control or optimize operation of the IMD 12. In some cases, the external device 14 may be a programmer. In some cases, the external device 14 may be a portable device such as a tablet or smartphone that can receive cardiac data and/or other information from the IMD 12 via handheld bridge device 16, and can then display the cardiac data and/or other information and/or communicate the cardiac data and/or other information elsewhere via a cellular network, WiFi, Bluetooth and the like. In some cases, the external device 14 may be a gateway or the like (e.g. router and/or access point) that can receive the cardiac data and/or other information from the IMD 12 via the handheld bridge device 16 and transmit the data and/or other information to a remote server or the like, such as a remote server that is accessible by a physician.


In some instances, the communication protocols used by the IMD 12 and the external device 14 may be different, and may not be compatible with each other. For example, in some cases, the IMD 12 may be configured to communicate via conducted communication while the external device 14 may use a wireless communication protocol. In conducted communication, electrical signals are transmitted or carried from the transmitter to the receiver via body tissue. While this enables communication between implanted devices, receiving conducted communication from outside the body typically requires physical contact with the patient's skin in order to pick up the electrical impulses carried by the body tissue. As illustrated, the system 10 may include a bridge device 16. As will be discussed, the bridge device 16 may be handheld and may include electrical contacts that can be presses against the patient's skin, and when so provided, communicate with the IMD 12 via conducted communication. The bridge device may also be configured to communicate with the external device 14 via a wireless or wired communication protocol (e.g. RF communication, IR communication, inductive communication).


It will be appreciated that communication between the external device 14 and the bridge device 16 may be unidirectional or bidirectional, and communication between the bridge device 16 and the IMD 12 may be unidirectional or bidirectional. In some cases, the IMD 12 may be configured to periodically transmit particular data, and if the bridge device 16 is in skin contact, the bridge device 16 may receive the transmitted data. In some instances, the IMD 12 may only transmit particular data after receiving a request for the data from the bridge device 16. In some cases, the request may originate in the external device 14 and may be transmitted via conducted communication to the IMD 12 via the bridge device 16. In some cases, the bridge device 16 may include one or more sensors, such as an ECG sensor, an accelerometer, a resistance sensor, a gyroscope, and/or any other suitable sensor or sensor combination, and may provide the sensed data to the external device 14 and/or IMD 12.



FIG. 2 is a schematic block diagram of an illustrative bridge device 18 that may be considered as being a manifestation of the bridge device 16 (FIG. 1). The bridge device 18 may be considered as providing a communication bridge between a leadless cardiac pacemaker (an example of the IMD 12) and a smartphone (an example of the external device 14). In some cases, the bridge device 18 may be handheld and may include a housing 20 and a plurality of electrodes 22a, 22b, 22c, 22d that are exposed outside of the housing 20. In some cases, at least two of the plurality of electrodes 22a, 22b, 22c, 22d are positioned so that they can be concurrently placed in contact with a patient's skin. While a total of four electrodes 22a, 22b, 22c, 22d are illustrated in FIG. 2, it will be appreciated that in some cases, there may be only two electrodes, or three electrodes. In some cases, there may be five or more electrodes on the housing 20.


In some cases, having multiple electrodes enables additional communication vectors for communicating with the IMD 12. In some instances, having multiple electrodes enables Kelvin sensing in which a first pair of electrodes is used to provide a current and a second pair of electrodes is used to sense a resulting voltage. The illustrative bridge device 18 also includes a power source 24 that is disposed within the housing 20. The power source 24 may be a rechargeable battery or a non-rechargeable battery, for example, or a capacitor. A controller 26 is also disposed within the housing 20 and is operably powered by the power source 24. In some cases, the controller 26 may be configured to sequentially test various communication vectors using various pairs of the electrodes 22a, 22b, 22c, 22d, and may select a particular communication vector that, for example provides the highest signal-to-noise ratio (SNR) for subsequent use.


In the example shown, a conducted communications module 28 is disposed within the housing 20 and is operably coupled to the controller 26 and to at least two of the plurality of electrodes 22a, 22b, 22c, 22d. In some cases, the conducted communications module 28 is configured to allow the controller 26 to communicate with a leadless cardiac pacemaker (such as the IMD 12 of FIG. 1) via at least two of the plurality of electrodes 22a, 22b, 22c, 22d using conducted communication. In the example shown, an RF communications module 30 is also disposed within the housing 20 and is operably coupled to the controller 26. In some cases, the RF communications module 30 is configured to allow the controller 26 to communicate with a smartphone (as an example of the external device 14) external to the patient using RF communication (e.g. WiFi, Bluetooth, etc.).


In some cases, the bridge device 18 may also include a memory 32 that is operably coupled to the controller 26 such that information received from the leadless cardiac pacemaker by conducted communication via the at least two of the plurality of electrodes 22a, 22b, 22c, 22d can be saved to the memory 32 prior to subsequent communication of the information to the smartphone via the RF communications module 30. In some cases, the bridge device 18 may also include one or more sensors 34 operatively coupled to the controller 26 for sensing one or more sensed parameters. The controller 26 may be configured to communicate the one or more sensed parameters to the smartphone via the RF communications module 30.


In some instances, the one or more sensors 34 (only one is illustrated) may include one or more of an accelerometer, a gyroscope, an impendence sensor, an electrogram sensor, a force sensor, an audio sensor, a user actuatable button or switch, and/or any other suitable sensor or sensor combination. In some cases, the one or more sensors 34 may enable the bridge device 18 to sense an electrocardiogram of the patient's heart independently of any electrocardiogram that may be sensed by the IMD 12 and communicated to the bridge device 18 via conducted communication from the IMD 12. In another example, the one or more sensors 34 may enable the bridge device 18 to sense respiration or other information. The one or more sensors 34 may collect and provide additional cardiac and/or other physiologic data beyond that sensed by and received from the IMD 12.


In some cases, the bridge device 18 may include a user interface 36 that is operably coupled to the controller 26 such that the controller 26 is able to communicate with the patient via the user interface 36. In some cases, the bridge device 18 may provide a visual or auditory reminder that it is time to place the bridge device 18 in position relative to the patient's skin (e.g. on the patient's chest) so that the bridge device 18 may communicate with the IMD 12 (FIG. 1). In some cases, the bridge device 18 may provide feedback to the user as to whether they have properly placed the bridge device 18. For example, the bridge device 18 may provide a first communication, sort of a “getting warmer” if the bridge device 18 is being moved closer to an optimal position, and a second communication, sort of a “getting colder” if the bridge device 18 is being moved away from an optimal or even satisfactory position. The optimal or even satisfactory position may be based at least part on, for example, an acceptable SNR for conducted communication with the IMD 12, and/or an acceptable SNR from the one or more sensors 34 when sensing desired physiologic parameter. These are just examples. The first and second communications may be different lights or colors, or different sounds, or even different vibrations. In some cases, the user interface 36 may provide an indication of remaining battery life. Accordingly, in some cases, the user interface 36 may include one or more of a vibrator, a speaker, a Light Emitting Diode (LED), and/or an LCD display, for example.


In some cases, the controller 40 may communicate information to the external device 14, and the external device 14 may use that information to provide instructions to the user via a user interface of the external device 14. For example, the external device 14 may provide a notification to the user via the user interface of the external device 14 that it is time to place the bridge device 38 in position relative to the patient's skin so that the bridge device 18 may communicate with the IMD 12 (FIG. 1). In some cases, the external device 14 may provide feedback to the user as to whether they have properly placed the bridge device 38 on the patient's skin. These are just examples.


In some cases, the external device 14 may be a smartphone and/or tablet computer running an application program. The application program may provide instruction to a user, provide trend analysis, allow a user to selectively control the IMD 12 and/or bridge device 18, provide reminders to a user, store historical data for later download and/or analysis, and/or perform other tasks. With respect to instructions, the application program may provide the user with instructions on how and/or when to apply the bridge device 18 to the patient's skin, and when and/or how to start a new session. The application program may aid in pairing the smartphone and/or tablet computer with the bridge device 18 (e.g. Bluetooth, Wifi). The application program may provide notifications to the user, such as when communication with the bridge device 18 has been lost, when the battery charge of the bridge device 18 is low, etc. With respect to trend analysis, the application program may keep track of trends in certain predetermined parameters. For example, the application program may keep track of and sometimes display a trend in heart rate, a trend in the percent of heart beats that are paced versus intrinsic beats, and/or a trend in other suitable parameter(s). These are just examples. With respect to selectively controlling the IMD 12 and/or bridge device 18, the application program may allow certain functions and/or parameters of the IMD 12 and/or bridge device 18 to be changed by the patient, and/or certain functions and/or parameters of the IMD 12 and/or bridge device 18 to be changed by a physician. For example, the application program may provide access control via user provided credentials. The user provided credentials may include passwords, finger print scans, retina scans, etc. In some cases, different users may have different permissions. For example, the patient may have very limited rights to perform certain functions and/or change certain parameters of the IMD 12 and/or bridge device 18. A physician may have additional rights to perform more functions and/or change more parameters of the IMD 12 and/or bridge device 18. A manufacturer of the IMD 12 and/or bridge may have even more rights to perform certain functions and/or change parameters of the IMD 12 and/or bridge device 18. With respect to reminders, the application program may notify the patient that it is time to start a new session, time to take certain medications, and/or provide other reminders to the patient as desired. These are just examples.



FIG. 3 is a schematic block diagram of a bridge device 38 that may, for example, be considered as being a manifestation of the bridge device 16 (FIG. 1). The bridge device 38 may be configured to provide a communication bridge between an implantable medical device (such as but not limited to the IMD 12) and a remote device external to the patient (such as but not limited to the external device 14). In some cases, the bridge device 38 may include a housing 20 and a plurality of electrodes 22a, 22b, 22c, 22d that are exposed outside of the housing 20. In some cases, at least two of the plurality of electrodes 22a, 22b, 22c, 22d are positioned so that they can be concurrently placed in contact with a patient's skin. While a total of four electrodes 22a, 22b, 22c, 22d are illustrated, it will be appreciated that in some cases, there may be only two electrodes, or three electrodes. In some cases, there may be five or more electrodes on the housing 20. The illustrative bridge device 38 also includes the power source 24 that is disposed within the housing 20. The power source 24 may be a rechargeable battery or a non-rechargeable battery, for example, or a capacitor. A controller 40 is disposed within the housing 20 and is operably powered at least in part by the power source 24.


The bridge device 38 includes a first communications module 42 that is disposed within the housing 20 and is operably coupled with the controller 40 as well as being coupled to at least two of the plurality of electrodes 22a, 22b, 22c, 22d. In some cases, the first communications module 42 may be configured to allow the controller 40 to communicate with an implantable medical device (such as the IMD 12) via at least two of the plurality of electrodes 22a, 22b, 22c, 22d using conducted communication.


The illustrative bridge device 38 also includes a second communications module 44 that is disposed within the housing 20 and is operably coupled to the controller 40. The second communications module 44 may be configured to allow the controller 40 to communicate with a remote device external to the patient (such as the external device 14). In some cases, the implantable medical device with which the first communications module 42 communicates may be a leadless cardiac pacemaker and the external device with which the second communications module 44 communicates with may be a smartphone or tablet computer.


In some cases, the second communications module 44 may be configured to allow the controller 40 to communicate with the remote device external to the patient using wireless communication. In some instances, the wireless communication may include Radio Frequency (RF) communication. Illustrative but non-limiting examples of wireless communication useable by the second communications module 44 include one or more of Bluetooth communication, WiFi communication, inductive communication, infrared (IR) communication and optical communication. These are just examples. In some cases, the second communications module 44 may be configured to allow the controller 40 to communicate with the remote device external to the patient using wired communication.


In some cases, as discussed relative to the bridge device 18 of FIG. 2, the bridge device 38 may include one or more sensors 34 operatively coupled to the controller 40 for sensing one or more sensed parameters. In some instances, the one or more sensors 34 (only one is illustrated) may include one or more of an accelerometer, a gyroscope, an impendence sensor, an electrogram sensor, a force sensor, an audio sensor, a user actuatable button or switch, and/or any other suitable sensor or sensor combination. In some cases, the one or more sensors 34 may provide additional cardiac and/or other physiologic data beyond that sensed by and received from the IMD 12. The data from the one or more sensors 34 may include one or more sensed parameters that may be communicated to the remote device external to the patient via the second communications module 44, and/or may be communicated to the IMD 12 via the first communications module 42.


In some cases, the bridge device 38 may include a user interface 36 that is operably coupled to the controller 40 such that the controller 40 is able to communicate with the patient via the user interface 36. In some cases, the bridge device 38 may provide a visual or auditory reminder that it is time to place the bridge device 38 in position relative to the patient's skin so that the bridge device 38 may communicate with the IMD 12 (FIG. 1). In some cases, the bridge device 38 may provide feedback to the user as to whether they have properly placed the bridge device 38 on the patient's skin. In some cases, the user interface 36 may include one or more of a vibrator, a speaker, a Light Emitting Diode (LED), and/or a display, for example.


In some cases, the controller 40 may communicate information to the external device 14, and the external device 14 may use that information to provide instructions to the user via a user interface of the external device 14. For example, the external device 14 may provide a notification to the user via the user interface of the external device 14 that it is time to place the bridge device 38 in position relative to the patient's skin so that the bridge device 18 may communicate with the IMD 12 (FIG. 1). In some cases, the external device 14 may provide feedback to the user as to whether they have properly placed the bridge device 38 on the patient's skin. These are just examples.



FIG. 4 is a schematic block diagram of an external bridge device 48 that may, for example, be considered as being a manifestation of the bridge device 16 (FIG. 1). The external bridge device 48 may be configured to provide a communication bridge between an implantable medical device (such as but not limited to the IMD 12) and a remote device external to the patient (such as but not limited to the external device 14). In some cases, the external bridge device 48 may include a substrate 50 and a plurality of electrodes 22a, 22b, 22c, 22d that are disposed on the substrate 50. In some cases, at least two of the plurality of electrodes 22a, 22b, 22c, 22d are positioned so that they can be concurrently placed in contact with a patient's skin. While a total of four electrodes 22a, 22b, 22c, 22d are illustrated, it will be appreciated that in some cases, there may be only two electrodes, or three electrodes. In some cases, there may be five or more electrodes on the substrate 50.


The illustrative external bridge device 48 includes a controller 52 that is operably coupled to the two or more electrodes 22a, 22b, 22c, 22d and that is configured to receive conducted communication from a medical device implantable within a patient via two of the two or more electrodes 22a, 22b, 22c, 22d. A transceiver 54 is operably coupled to the controller 52. In some cases, the controller 52 is configured to receive information from the implantable medical device via conducted communication and to transmit the information to the remote device exterior to the patient via the transceiver 54. In some case, the external bridge device 48 may include one or more sensors 34 that are operably coupled to the controller 52 for sensing one or more sensed parameters. In some instances, the controller 52 may be configured to communicate the one or more sensed parameters to the remote device via the transceiver 54.



FIGS. 5 through 8 provide illustrative but non-limiting examples of electrode arrangements for the bridge device 16. These electrode arrangements may, for example, be utilized with any of bridge device 18 (FIG. 2), the bridge device 38 (FIG. 3) or the external bridge device 48 (FIG. 4). It will be appreciated that features or portions of the electrode configurations shown in FIGS. 5 through 8 may be mixed and matched, as desired. In some cases, at least some features of the bridge device may be built into a smartphone case that may be secured to a smartphone. In some cases, the bridge device may be configured to be adhesively secured to the back of a smartphone case, with at least some of the electrodes exposed so the electrodes can be brought into engagement with the patient's skin.



FIG. 5 is a perspective view of an illustrative bridge device 56 having a housing 58. While the housing 58 is illustrated as being rectilinear, and having an overall size perhaps the size of an average smartphone and thus can be easily hand held, this is merely illustrative. In some cases, the housing 58 may be circular or ovoid, and may be of any suitable dimensions. The housing 58 defines a first surface 58a and an opposing second surface 58b, with a peripheral side wall 58c extending between the first surface 58a and the second surface 58b.


A total of four electrodes 60a, 60b, 60c, 60d are shown disposed on the first surface 58a of the housing 58. In some cases, having a plurality of electrodes 60a, 60b, 60c, 60d enable the use of various communication vectors, each using a different pair of the electrodes 60a, 60b, 60c, 60d. In some instances, as noted above, having at least four electrodes 60a, 60b, 60c, 60d enables the use of Kelvin sensing. While four electrodes 60a, 60b, 60c, 60d are shown, the bridge device 56 may include any number of electrodes 60a, 60b, 60c, 60d. In some cases, as shown, the electrodes 60a, 60b, 60c, 60d are rectilinear in shape, but this is not required, as other shapes are contemplated.



FIG. 6 is a perspective view of another illustrative bridge device 66 having a housing 68. While the housing 68 is illustrated as being rectilinear, and having an overall size perhaps the size of an average smartphone, this is merely illustrative. In some cases, the housing 68 may be circular or ovoid, and may be of any suitable dimensions. The housing 68 defines a substantially first surface 68a and an opposing second surface 68b, with a peripheral side wall 68c extending between the first surface 68a and the second surface 68b. The illustrative bridge device 66 includes a total of four electrodes, with two electrodes 60a, 60b disposed on the first surface 68a and two electrodes 60c, 60d (seen in phantom) disposed on the second opposing surface 68b. In some cases, having electrodes on both sides of the housing 68 may allow either side of the bridge device 56 to be placed against the patient's chest. The controller inside the bridge device 56 may be configured to automatically detect which side of the bridge device 56 is placed against the skin and operate accordingly. In some cases, the electrodes on one side (say the electrodes 60a, 60b) may be held against the patient's chest to support conducted communication with an IMD 12, and the electrodes on the other side (say the electrodes 60c, 60d) may make contact with the patient's fingers, which may provide another communication and/or sense vector.



FIG. 7 is a perspective view of another illustrative bridge device 76 having a housing 78. While the housing 78 is illustrated as being rectilinear, and having an overall size perhaps the size of an average smartphone, this is merely illustrative. In some cases, the housing 78 may be circular or ovoid, and may be of any suitable dimensions. The housing 78 defines a first surface 78a and an opposing second surface 78b, with a peripheral side wall 78c extending between the first surface 78a and the second surface 78b. A total of four electrodes 60a, 60b, 60c, 60d are shown disposed on the first surface 78a. In some cases, having a plurality of electrodes 60a, 60b, 60c, 60d on the first surface 78a may provide a variety of communication vectors for communication with an IMD 12. In some cases, as illustrated, the electrodes 60a, 60b, 60c, 60d may be laid out in a kite-shape, as shown by dashed kite shape 80. In some instances, having the electrodes 60a, 60b, 60c, 60d in this “kite” configuration may provide a useful variety of communication vectors.



FIG. 8 is a perspective view of another illustrative bridge device 86 having a housing 88. While the housing 88 is illustrated as being rectilinear, and having an overall size perhaps the size of an average smartphone, this is merely illustrative. In some cases, the housing 88 may be circular or ovoid, and may be of any suitable dimensions. The housing 88 defines a first surface 88a and an opposing second surface 88b, with a peripheral side wall 88c extending between the first surface 88a and the second surface 88b. In this example, a total of four electrodes 60a, 60b, 60c, 60d are disposed on the peripheral side wall 88c. Other electrodes may be positioned on the first surface 88a and/or opposing second surface 88b, if desired. In some cases, having a plurality of electrodes 60a, 60b, 60c, 60d may provide a variety of communication and/or sense vectors. In some cases, having the electrodes 60a, 60b, 60c, 60d on the peripheral side wall 88c may facilitate contact between the electrodes 60a, 60b, 60c, 60d and the skin on the fingers/hands of the person holding the bridge device 86.



FIGS. 9 and 10 provide schematic illustrations of an example of how the remote devices described herein may be deployed. FIG. 9 shows a patient P having a bridge device 90 held against the skin of the patient P. In some cases, the bridge device 90 may be positioned on the patient, near their heart H, held in place by gravity if the patient P is prone and/or held in place by the patient's hand. In some cases, the bridge device 90 may be strapped in place. In some instances, the bridge device 90 may include an adhesive layer which holds the bridge device 90 in place, with electrodes 90a, 90b, 90c, 90d in skin contact. Including an adhesive layer or a strap may enable the patient P to be sitting or standing while the bridge device 90 is in position. In some cases, rather than being held in position on the chest of the patient P, the bridge device 90 may instead be disposed within a lanyard that the patient can wear around their neck, with the bridge device 90 hanging proximate their chest. In some cases, the bridge device 90 may be built into a wrist band, intended to be worn around the patient's wrist with the electrodes 90a, 90b, 90c, 90d in skin contact.



FIG. 10 shows a patient holding a bridge device 92 in their hands. As illustrated, this shows a view from a position looking towards the front of the patient. As can be seen, the bridge device 92 may include a four electrodes 94a, 94b, 94c, 94d that are disposed along a periphery 96 of the bridge device 92. In the example shown, several fingers of the patient's right hand RH make contact with the electrodes 94a, 94b while several fingers of the patient's left hand LH make contact with the electrodes 94c, 94d. In some cases, the back side of the bridge device 92 (not visible in FIG. 10) may include additional electrodes that can be brought into engagement with the patient's skin. These additional electrodes may be provide communication electrodes and/or additional communication vectors for communication with the IMD 12. The four electrodes 94a, 94b, 94c, 94d that are disposed along the periphery 96 may provide communication vectors for communication with the IMD 12 and/or sense electrodes/vectors for sensing one or more physiologic parameters of the patient (e.g. surface EKG).



FIG. 11 depicts an illustrative leadless cardiac pacemaker (LCP) that may be implanted into a patient and may operate to deliver appropriate therapy to the heart, such as to deliver anti-tachycardia pacing (ATP) therapy, cardiac resynchronization therapy (CRT), bradycardia therapy, and/or the like. As can be seen in FIG. 11, the LCP 100 may be a compact device with all components housed within the or directly on a housing 120. In some cases, the LCP 100 may be considered as being an example of the IMD 12 (FIG. 1). In the example shown in FIG. 11, the LCP 100 may include a communication module 102, a pulse generator module 104, an electrical sensing module 106, a mechanical sensing module 108, a processing module 110, a battery 112, and an electrode arrangement 114. The LCP 100 may also include a receive coil for receiving inductive power, and a recharge circuit for recharging the battery 112 (or capacitor) using the received inductive power. It is contemplated that the LCP 100 may include more or fewer modules, depending on the application.


The communication module 102 may be configured to communicate with devices such as sensors, other medical devices such as an SICD, another LCP, and/or the like, that are located externally to the LCP 100. Such devices may be located either external or internal to the patient's body. Irrespective of the location, external devices (i.e. external to the LCP 100 but not necessarily external to the patient's body) can communicate with the LCP 100 via communication module 102 to accomplish one or more desired functions. For example, the LCP 100 may communicate information, such as sensed electrical signals, data, instructions, messages, R-wave detection markers, etc., to an external medical device (e.g. SICD, programmer and/or bridge device 16) through the communication module 102. The external medical device may use the communicated signals, data, instructions, messages, R-wave detection markers, etc., to perform various functions, such as determining occurrences of arrhythmias, delivering electrical stimulation therapy, storing received data, and/or performing any other suitable function. The LCP 100 may additionally receive information such as signals, data, instructions and/or messages from the external medical device and/or the bridge device 16 through the communication module 102, and the LCP 100 may use the received signals, data, instructions and/or messages to perform various functions, such as determining occurrences of arrhythmias, delivering electrical stimulation therapy, storing received data, and/or performing any other suitable function. The communication module 102 may be configured to use one or more methods for communicating with external devices. For example, the communication module 102 may communicate via radiofrequency (RF) signals, inductive coupling, optical signals, acoustic signals, conducted communication signals, and/or any other signals suitable for communication.


In the example shown in FIG. 11, the pulse generator module 104 may be electrically connected to the electrode arrangement 114. In some examples, the LCP 100 may additionally include electrodes 114′. In such examples, the pulse generator 104 may also be electrically connected to the electrodes 114′. The pulse generator module 104 may be configured to generate electrical stimulation signals. For example, the pulse generator module 104 may generate and deliver electrical stimulation signals by using energy stored in the battery 112 within the LCP 100 and deliver the generated electrical stimulation signals via the electrodes 114 and/or 114′. Alternatively, or additionally, the pulse generator 104 may include one or more capacitors, and the pulse generator 104 may charge the one or more capacitors by drawing energy from the battery 112. The pulse generator 104 may then use the energy of the one or more capacitors to deliver the generated electrical stimulation signals via the electrodes 114 and/or 114′. In at least some examples, the pulse generator 104 of the LCP 100 may include switching circuitry to selectively connect one or more of the electrodes 114 and/or 114′ to the pulse generator 104 in order to select which of the electrodes 114/114′ (and/or other electrodes) the pulse generator 104 delivers the electrical stimulation therapy. The pulse generator module 104 may generate and deliver electrical stimulation signals with particular features or in particular sequences in order to provide one or multiple of a number of different stimulation therapies. For example, the pulse generator module 104 may be configured to generate electrical stimulation signals to provide electrical stimulation therapy to combat bradycardia, tachycardia, cardiac synchronization, bradycardia arrhythmias, tachycardia arrhythmias, fibrillation arrhythmias, cardiac synchronization arrhythmias and/or to produce any other suitable electrical stimulation therapy. Some more common electrical stimulation therapies include anti-tachycardia pacing (ATP) therapy, cardiac resynchronization therapy (CRT), and cardioversion/defibrillation therapy. In some cases, the pulse generator 104 may provide a controllable pulse energy. In some cases, the pulse generator 104 may allow the controller to control the pulse voltage, pulse width, pulse shape or morphology, and/or any other suitable pulse characteristic.


In some examples, the LCP 100 may include an electrical sensing module 106, and in some cases, a mechanical sensing module 108. The electrical sensing module 106 may be configured to sense the cardiac electrical activity of the heart. For example, the electrical sensing module 106 may be connected to the electrodes 114/114′, and the electrical sensing module 106 may be configured to receive cardiac electrical signals conducted through the electrodes 114/114′. The cardiac electrical signals may represent local information from the chamber in which the LCP 100 is implanted. For instance, if the LCP 100 is implanted within a ventricle of the heart (e.g. RV, LV), cardiac electrical signals sensed by the LCP 100 through the electrodes 114/114′ may represent ventricular cardiac electrical signals. In some cases, the LCP 100 may be configured to detect cardiac electrical signals from other chambers (e.g. far field), such as the P-wave from the atrium.


The mechanical sensing module 108 may include one or more sensors, such as an accelerometer, a pressure sensor, a heart sound sensor, a blood-oxygen sensor, a chemical sensor, a temperature sensor, a flow sensor and/or any other suitable sensors that are configured to measure one or more mechanical/chemical parameters of the patient. Both the electrical sensing module 106 and the mechanical sensing module 108 may be connected to a processing module 110, which may provide signals representative of the sensed mechanical parameters. Although described with respect to FIG. 11 as separate sensing modules, in some cases, the electrical sensing module 106 and the mechanical sensing module 108 may be combined into a single sensing module, as desired.


The electrodes 114/114′ can be secured relative to the housing 120 but exposed to the tissue and/or blood surrounding the LCP 100. In some cases, the electrodes 114 may be generally disposed on either end of the LCP 100 and may be in electrical communication with one or more of the modules 102, 104, 106, 108, and 110. The electrodes 114/114′ may be supported by the housing 120, although in some examples, the electrodes 114/114′ may be connected to the housing 120 through short connecting wires such that the electrodes 114/114′ are not directly secured relative to the housing 120. In examples where the LCP 100 includes one or more electrodes 114′, the electrodes 114′ may in some cases be disposed on the sides of the LCP 100, which may increase the number of electrodes by which the LCP 100 may sense cardiac electrical activity, deliver electrical stimulation and/or communicate with an external medical device. The electrodes 114/114′ can be made up of one or more biocompatible conductive materials such as various metals or alloys that are known to be safe for implantation within a human body. In some instances, the electrodes 114/114′ connected to the LCP 100 may have an insulative portion that electrically isolates the electrodes 114/114′ from adjacent electrodes, the housing 120, and/or other parts of the LCP 100. In some cases, one or more of the electrodes 114/114′ may be provided on a tail (not shown) that extends away from the housing 120.


The processing module 110 can be configured to control the operation of the LCP 100. For example, the processing module 110 may be configured to receive electrical signals from the electrical sensing module 106 and/or the mechanical sensing module 108. Based on the received signals, the processing module 110 may determine, for example, abnormalities in the operation of the heart H. Based on any determined abnormalities, the processing module 110 may control the pulse generator module 104 to generate and deliver electrical stimulation in accordance with one or more therapies to treat the determined abnormalities. The processing module 110 may further receive information from the communication module 102. In some examples, the processing module 110 may use such received information to help determine whether an abnormality is occurring, determine a type of abnormality, and/or to take particular action in response to the information. The processing module 110 may additionally control the communication module 102 to send/receive information to/from other devices.


In some examples, the processing module 110 may include a pre-programmed chip, such as a very-large-scale integration (VLSI) chip and/or an application specific integrated circuit (ASIC). In such embodiments, the chip may be pre-programmed with control logic in order to control the operation of the LCP 100. By using a pre-programmed chip, the processing module 110 may use less power than other programmable circuits (e.g. general purpose programmable microprocessors) while still being able to maintain basic functionality, thereby potentially increasing the battery life of the LCP 100. In other examples, the processing module 110 may include a programmable microprocessor. Such a programmable microprocessor may allow a user to modify the control logic of the LCP 100 even after implantation, thereby allowing for greater flexibility of the LCP 100 than when using a pre-programmed ASIC. In some examples, the processing module 110 may further include a memory, and the processing module 110 may store information on and read information from the memory. In other examples, the LCP 100 may include a separate memory (not shown) that is in communication with the processing module 110, such that the processing module 110 may read and write information to and from the separate memory.


The battery 112 may provide power to the LCP 100 for its operations. In some examples, the battery 112 may be a non-rechargeable lithium-based battery. In other examples, a non-rechargeable battery may be made from other suitable materials, as desired. Because the LCP 100 is an implantable device, access to the LCP 100 may be limited after implantation. Accordingly, it is desirable to have sufficient battery capacity to deliver therapy over a period of treatment such as days, weeks, months, years or even decades. In some instances, the battery 112 may a rechargeable battery, which may help increase the useable lifespan of the LCP 100. A recharge circuit may receive power from a receiving coil of the LCP 100, and use the received power to recharge the rechargeable battery. In still other examples, the battery 112 may be some other type of power source, as desired.


To implant the LCP 100 inside a patient's body, an operator (e.g., a physician, clinician, etc.), may fix the LCP 100 to the cardiac tissue of the patient's heart. To facilitate fixation, the LCP 100 may include one or more anchors 116. The anchor 116 may include any one of a number of fixation or anchoring mechanisms. For example, the anchor 116 may include one or more pins, staples, threads, screws, helix, tines, and/or the like. In some examples, although not shown, the anchor 116 may include threads on its external surface that may run along at least a partial length of the anchor 116. The threads may provide friction between the cardiac tissue and the anchor to help fix the anchor 116 within the cardiac tissue. In other examples, the anchor 116 may include other structures such as barbs, spikes, or the like to facilitate engagement with the surrounding cardiac tissue.



FIG. 12 depicts an example of another medical device (MD) 200, which may be used alone or in conjunction with the LCP 100 (FIG. 11), and may be used to detect and/or treat cardiac abnormalities. In some cases, the MD 200 may represent an implantable cardioverter defibrillator (ICD), a subcutaneous implantable cardioverter defibrillator (SICD) or a Leadless Cardiac Pacemaker (LCP) 100. In the example shown, the MD 200 may include a communication module 202, a pulse generator module 204, an electrical sensing module 206, a mechanical sensing module 208, a processing module 210, and a battery 218. Each of these modules may be similar to the modules 102, 104, 106, 108, and 110 of LCP 100. Additionally, the battery 218 may be similar to the battery 112 of the LCP 100. In some examples, however, the MD 200 may have a larger volume within the housing 220. In such examples, the MD 200 may include a larger battery and/or a larger processing module 210 capable of handling more complex operations than the processing module 110 of the LCP 100.


While it is contemplated that the MD 200 may be another leadless device such as shown in FIG. 11, in some instances the MD 200 may include leads such as leads 212. The leads 212 may include electrical wires that conduct electrical signals between the electrodes 214 and one or more modules located within the housing 220. In some cases, the leads 212 may be connected to and extend away from the housing 220 of the MD 200. In some examples, the leads 212 are implanted on, within, or adjacent to a heart of a patient. The leads 212 may contain one or more electrodes 214 positioned at various locations on the leads 212, and in some cases at various distances from the housing 220. Some leads 212 may only include a single electrode 214, while other leads 212 may include multiple electrodes 214. Generally, the electrodes 214 are positioned on the leads 212 such that when the leads 212 are implanted within the patient, one or more of the electrodes 214 are positioned to perform a desired function. In some cases, the one or more of the electrodes 214 may be in contact with the patient's cardiac tissue. In some cases, the one or more of the electrodes 214 may be positioned subcutaneously and outside of the patient's heart. In some cases, the electrodes 214 may conduct intrinsically generated electrical signals to the leads 212, e.g. signals representative of intrinsic cardiac electrical activity. The leads 212 may, in turn, conduct the received electrical signals to one or more of the modules 202, 204, 206, and 208 of the MD 200. In some cases, the MD 200 may generate electrical stimulation signals, and the leads 212 may conduct the generated electrical stimulation signals to the electrodes 214. The electrodes 214 may then conduct the electrical signals and delivery the signals to the patient's heart (either directly or indirectly). In some cases, a transmit coil may be supported by the lead, such at a location along the length of the lead that is near the receive coil of a remote implantable medical device.


The mechanical sensing module 208, as with the mechanical sensing module 108, may contain or be electrically connected to one or more sensors, such as accelerometers, acoustic sensors, blood pressure sensors, heart sound sensors, blood-oxygen sensors, and/or other sensors which are configured to measure one or more mechanical/chemical parameters of the heart and/or patient. In some examples, one or more of the sensors may be located on the leads 212, but this is not required. In some examples, one or more of the sensors may be located in the housing 220.


While not required, in some examples, the MD 200 may be an implantable medical device. In such examples, the housing 220 of the MD 200 may be implanted in, for example, a transthoracic region of the patient. The housing 220 may generally include any of a number of known materials that are safe for implantation in a human body and may, when implanted, hermetically seal the various components of the MD 200 from fluids and tissues of the patient's body.


In some cases, the MD 200 may be an implantable cardiac pacemaker (ICP). In this example, the MD 200 may have one or more leads, for example the leads 212, which are implanted on or within the patient's heart. The one or more leads 212 may include one or more electrodes 214 that are in contact with cardiac tissue and/or blood of the patient's heart. The MD 200 may be configured to sense intrinsically generated cardiac electrical signals and determine, for example, one or more cardiac arrhythmias based on analysis of the sensed signals. The MD 200 may be configured to deliver CRT, ATP therapy, bradycardia therapy, and/or other therapy types via the leads 212 implanted within the heart. In some examples, the MD 200 may additionally be configured provide defibrillation therapy.


In some instances, the MD 200 may be an implantable cardioverter-defibrillator (ICD) with the ability to pace. In such examples, the MD 200 may include one or more leads implanted within a patient's heart. The MD 200 may also be configured to sense cardiac electrical signals, determine occurrences of tachyarrhythmias based on the sensed signals, and may be configured to deliver defibrillation therapy in response to determining an occurrence of a tachyarrhythmia. In other examples, the MD 200 may be a subcutaneous implantable cardioverter-defibrillator (S-ICD) with the ability to pace. In examples where the MD 200 is an S-ICD, one of the leads 212 may be a subcutaneously implanted lead. In some instances, the lead(s) may have one or more electrodes that are placed subcutaneously and outside of the chest cavity. In other examples, the lead(s) may have one or more electrodes that are placed inside of the chest cavity, such as just interior of the sternum but outside of the heart H.


In some cases, the MD 200 may not include the pulse generator module 204, and may simply be an implantable diagnostic sensor medical device that is configured to capture and provide diagnostic data, sometimes to the external device 14 via the bridge device 16.


It should be understood that this disclosure is, in many respects, only illustrative. Changes may be made in details, particularly in matters of shape, size, and arrangement of steps without exceeding the scope of the disclosure. This may include, to the extent that it is appropriate, the use of any of the features of one example embodiment being used in other embodiments.

Claims
  • 1. A bridge device for providing a communication bridge between an implantable medical device configured to sense cardiac electrical activity of a patient's heart and a remote device external to the patient, the bridge device comprising: a housing;a plurality of electrodes secured to the housing and exposed outside of the housing such that at least two of the plurality of electrodes can be concurrently placed in contact with a patient's skin;the housing has a first side and an opposing second side, wherein the first side has at least two of the plurality of electrodes and the second side has at least one of the plurality of electrodes;a power source disposed within the housing;a controller disposed within the housing and operably powered at least in part by the power source;first communications electronics disposed within the housing and operably coupled to the controller and to the at least two of the plurality of electrodes that can be concurrently placed in contact with the patient's skin, the first communications electronics configured to allow the controller to communicate with an implantable medical device via at least two of the plurality of electrodes that can be concurrently placed in contact with the patient's skin using conducted communication; andsecond communications electronics disposed within the housing and operably coupled to the controller, the second communications electronics configured to allow the controller to communicate with a remote device external to the patient.
  • 2. The bridge device of claim 1, wherein the implantable medical device is a leadless cardiac pacemaker and the remote device is a smartphone.
  • 3. The bridge device of claim 1, wherein the second communications electronics is configured to allow the controller to communicate with the remote device external to the patient using wireless communication.
  • 4. The bridge device of claim 3, wherein the wireless communication comprises Radio Frequency (RF) communication.
  • 5. The bridge device of claim 3, wherein the wireless communication comprises one or more of bluetooth communication, WiFi communication, inductive communication, infrared (IR) communication and optical communication.
  • 6. The bridge device of claim 1, wherein the second communications electronics is configured to allow the controller to communicate with the remote device external to the patient using wired communication.
  • 7. The bridge device of claim 1, further comprising one or more sensors operatively coupled to the controller for sensing one or more sensed parameters, wherein the controller is configured to communicate the one or more sensed parameters to the remote device external to the patient via the second communications electronics.
  • 8. The bridge device of claim 7, wherein the one or more sensors comprise one or more of an accelerometer, a gyroscope, an impendence sensor, an electrogram sensor, a force sensor, and an audio sensor.
  • 9. The bridge device of claim 7, wherein the one or more sensors comprise one or more of an accelerometer, a gyroscope and an impendence sensor.
  • 10. The bridge device of claim 1, further comprising a user interface operably coupled to the controller, wherein the controller is configured to communicate with the patient via the user interface, wherein the user interface comprises one or more of a vibrator, a speaker and a Light Emitting Diode (LED).
  • 11. A system for providing a communication bridge between a leadless cardiac pacemaker and a smartphone, the system comprising: a leadless cardiac pacemaker;a smartphone;a bridge device comprising: a housing;a plurality of electrodes secured to the housing and exposed outside of the housing such that at least two of the plurality of electrodes can be concurrently placed in contact with a patient's skin;a power source disposed within the housing;a controller disposed within the housing and operably powered by the power source;conducted communications electronics disposed within the housing and operably coupled to the controller and to the at least two of the plurality of electrodes that can be concurrently placed in contact with the patient's skin, the conducted communications electronics configured to allow the controller to communicate with the leadless cardiac pacemaker via at least two of the plurality of electrodes that can be concurrently placed in contact with the patient's skin using conducted communication; andRF communications electronics disposed within the housing and operably coupled to the controller, the RF communications electronics configured to allow the controller to communicate with the smartphone external to the patient using RF communication;a memory operably coupled to the controller such that information received from the leadless cardiac pacemaker by conducted communication via the at least two of the plurality of electrodes is saved to the memory prior to subsequent communication of the information to the smartphone via the RF communications electronics;one or more sensors operatively coupled to the controller for sensing one or more sensed parameters, wherein the controller is configured to communicate the one or more sensed parameters to the smartphone via the RF communications electronics, wherein the one or more sensors comprise one or more of an accelerometer, a gyroscope, an impendence sensor, an electrogram sensor, and a force sensor; andwherein the housing has a first side and an opposing second side, wherein the first side has at least two of the plurality of electrodes and the second side has at least one of the plurality of electrodes.
  • 12. The system of claim 11, further comprising a user interface operably coupled to the controller, wherein the controller is configured to communicate with the patient via the user interface, wherein the user interface comprises one or more of a vibrator, a speaker and a Light Emitting Diode (LED).
  • 13. The system of claim 11, wherein the bridge device is free from a therapy delivery circuit.
  • 14. The system of claim 11, wherein the one or more sensors comprise an impendence sensor.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/613,588 filed on Jan. 4, 2018, the disclosure of which is incorporated herein by reference.

US Referenced Citations (1248)
Number Name Date Kind
3835864 Rasor et al. Sep 1974 A
3943936 Rasor et al. Mar 1976 A
4142530 Wittkampf Mar 1979 A
4151513 Menken et al. Apr 1979 A
4157720 Greatbatch Jun 1979 A
RE30366 Rasor et al. Aug 1980 E
4243045 Maas Jan 1981 A
4250884 Hartlaub et al. Feb 1981 A
4256115 Bilitch Mar 1981 A
4263919 Levin Apr 1981 A
4310000 Lindemans Jan 1982 A
4312354 Walters Jan 1982 A
4323081 Wiebusch Apr 1982 A
4357946 Dutcher et al. Nov 1982 A
4365639 Goldreyer Dec 1982 A
4440173 Hudziak et al. Apr 1984 A
4476868 Thompson Oct 1984 A
4522208 Buffet Jun 1985 A
4537200 Widrow Aug 1985 A
4556063 Thompson et al. Dec 1985 A
4562841 Brockway et al. Jan 1986 A
4593702 Kepski et al. Jun 1986 A
4593955 Leiber Jun 1986 A
4630611 King Dec 1986 A
4635639 Hakala et al. Jan 1987 A
4674508 DeCote Jun 1987 A
4712554 Garson Dec 1987 A
4729376 DeCote Mar 1988 A
4754753 King Jul 1988 A
4759366 Callaghan Jul 1988 A
4776338 Lekholm et al. Oct 1988 A
4787389 Tarjan Nov 1988 A
4793353 Borkan Dec 1988 A
4819662 Heil et al. Apr 1989 A
4858610 Callaghan et al. Aug 1989 A
4886064 Strandberg Dec 1989 A
4887609 Cole Dec 1989 A
4928688 Mower May 1990 A
4967746 Vandegriff Nov 1990 A
4987897 Funke Jan 1991 A
4989602 Sholder et al. Feb 1991 A
5012806 De Bellis May 1991 A
5036849 Hauck et al. Aug 1991 A
5040534 Mann et al. Aug 1991 A
5058581 Silvian Oct 1991 A
5078134 Heilman et al. Jan 1992 A
5109845 Yuuchi et al. May 1992 A
5113859 Funke May 1992 A
5113869 Nappholz et al. May 1992 A
5117824 Keimel et al. Jun 1992 A
5127401 Grevious et al. Jul 1992 A
5133353 Hauser Jul 1992 A
5144950 Stoop et al. Sep 1992 A
5170784 Ramon et al. Dec 1992 A
5179945 Van Hofwegen et al. Jan 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5241961 Henry Sep 1993 A
5243977 Trabucco et al. Sep 1993 A
5259387 DePinto Nov 1993 A
5269326 Verrier Dec 1993 A
5284136 Hauck et al. Feb 1994 A
5300107 Stokes et al. Apr 1994 A
5301677 Hsung Apr 1994 A
5305760 McKown et al. Apr 1994 A
5312439 Loeb May 1994 A
5313953 Yomtov et al. May 1994 A
5314459 Swanson et al. May 1994 A
5318597 Hauck et al. Jun 1994 A
5324316 Schulman et al. Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5334222 Salo et al. Aug 1994 A
5342408 deCoriolis et al. Aug 1994 A
5370667 Alt Dec 1994 A
5372606 Lang et al. Dec 1994 A
5376106 Stahmann et al. Dec 1994 A
5383915 Adams Jan 1995 A
5388578 Yomtov et al. Feb 1995 A
5404877 Nolan et al. Apr 1995 A
5405367 Schulman et al. Apr 1995 A
5411031 Yomtov May 1995 A
5411525 Swanson et al. May 1995 A
5411535 Fujii et al. May 1995 A
5456691 Snell Oct 1995 A
5458622 Alt Oct 1995 A
5466246 Silvian Nov 1995 A
5468254 Hahn et al. Nov 1995 A
5472453 Alt Dec 1995 A
5522866 Fernald Jun 1996 A
5540727 Tockman et al. Jul 1996 A
5545186 Olson et al. Aug 1996 A
5545202 Dahl et al. Aug 1996 A
5571146 Jones et al. Nov 1996 A
5591214 Lu Jan 1997 A
5620466 Haefner et al. Apr 1997 A
5634938 Swanson et al. Jun 1997 A
5649968 Alt et al. Jul 1997 A
5662688 Haefner et al. Sep 1997 A
5674259 Gray Oct 1997 A
5683426 Greenhut et al. Nov 1997 A
5683432 Goedeke et al. Nov 1997 A
5706823 Wodlinger Jan 1998 A
5709215 Perttu et al. Jan 1998 A
5720770 Nappholz et al. Feb 1998 A
5728154 Crossett et al. Mar 1998 A
5741314 Daly et al. Apr 1998 A
5741315 Lee et al. Apr 1998 A
5752976 Duffin et al. May 1998 A
5752977 Grevious et al. May 1998 A
5755736 Gillberg et al. May 1998 A
5759199 Snell et al. Jun 1998 A
5774501 Halpern et al. Jun 1998 A
5792195 Carlson et al. Aug 1998 A
5792202 Rueter Aug 1998 A
5792203 Schroeppel Aug 1998 A
5792205 Alt et al. Aug 1998 A
5792208 Gray Aug 1998 A
5814089 Stokes et al. Sep 1998 A
5827216 Igo et al. Oct 1998 A
5836985 Rostami et al. Nov 1998 A
5836987 Baumann et al. Nov 1998 A
5842977 Lesho et al. Dec 1998 A
5855593 Olson et al. Jan 1999 A
5873894 Vandegriff et al. Feb 1999 A
5891184 Lee et al. Apr 1999 A
5897586 Molina Apr 1999 A
5899876 Flower May 1999 A
5899928 Sholder et al. May 1999 A
5919214 Ciciarelli et al. Jul 1999 A
5935078 Feierbach Aug 1999 A
5941906 Barreras, Sr. et al. Aug 1999 A
5944744 Paul et al. Aug 1999 A
5954757 Gray Sep 1999 A
5978713 Prutchi et al. Nov 1999 A
5991660 Goyal Nov 1999 A
5991661 Park et al. Nov 1999 A
5999848 Gord et al. Dec 1999 A
5999857 Weijand et al. Dec 1999 A
6016445 Baura Jan 2000 A
6026320 Carlson et al. Feb 2000 A
6029085 Olson et al. Feb 2000 A
6041250 DePinto Mar 2000 A
6044298 Salo et al. Mar 2000 A
6044300 Gray Mar 2000 A
6055454 Heemels Apr 2000 A
6073050 Griffith Jun 2000 A
6076016 Feierbach Jun 2000 A
6077236 Cunningham Jun 2000 A
6080187 Alt et al. Jun 2000 A
6083248 Thompson Jul 2000 A
6106551 Crossett et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6128526 Stadler et al. Oct 2000 A
6141581 Olson et al. Oct 2000 A
6141588 Cox et al. Oct 2000 A
6141592 Pauly Oct 2000 A
6144879 Gray Nov 2000 A
6162195 Igo et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6201993 Kruse et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6211799 Post et al. Apr 2001 B1
6221011 Bardy Apr 2001 B1
6240316 Richmond et al. May 2001 B1
6240317 Villaseca et al. May 2001 B1
6256534 Dahl Jul 2001 B1
6259947 Olson et al. Jul 2001 B1
6266558 Gozani et al. Jul 2001 B1
6266567 Ishikawa et al. Jul 2001 B1
6270457 Bardy Aug 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6273856 Sun et al. Aug 2001 B1
6277072 Bardy Aug 2001 B1
6280380 Bardy Aug 2001 B1
6285907 Kramer et al. Sep 2001 B1
6292698 Duffin et al. Sep 2001 B1
6295473 Rosar Sep 2001 B1
6297943 Carson Oct 2001 B1
6298271 Weijand Oct 2001 B1
6307751 Bodony et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6336903 Bardy Jan 2002 B1
6345202 Richmond et al. Feb 2002 B2
6351667 Godie Feb 2002 B1
6351669 Hartley et al. Feb 2002 B1
6353759 Hartley et al. Mar 2002 B1
6358203 Bardy Mar 2002 B2
6361780 Ley et al. Mar 2002 B1
6368284 Bardy Apr 2002 B1
6371922 Baumann et al. Apr 2002 B1
6398728 Bardy Jun 2002 B1
6400982 Sweeney et al. Jun 2002 B2
6400990 Silvian Jun 2002 B1
6408208 Sun Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6411848 Kramer et al. Jun 2002 B2
6424865 Ding Jul 2002 B1
6434429 Kraus et al. Aug 2002 B1
6438410 Hsu et al. Aug 2002 B2
6438417 Rockwell et al. Aug 2002 B1
6438421 Stahmann et al. Aug 2002 B1
6440066 Bardy Aug 2002 B1
6441747 Khair et al. Aug 2002 B1
6442426 Kroll Aug 2002 B1
6442432 Lee Aug 2002 B2
6443891 Grevious Sep 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6453200 Koslar Sep 2002 B1
6459929 Hopper et al. Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin et al. Oct 2002 B1
6480745 Nelson et al. Nov 2002 B2
6487443 Olson et al. Nov 2002 B2
6490487 Kraus et al. Dec 2002 B1
6498951 Larson et al. Dec 2002 B1
6507755 Gozani et al. Jan 2003 B1
6507759 Prutchi et al. Jan 2003 B1
6512940 Brabec et al. Jan 2003 B1
6522915 Ceballos et al. Feb 2003 B1
6526311 Begemann Feb 2003 B2
6539253 Thompson et al. Mar 2003 B2
6542775 Ding et al. Apr 2003 B2
6553258 Stahmann et al. Apr 2003 B2
6561975 Pool et al. May 2003 B1
6564807 Schulman et al. May 2003 B1
6574506 Kramer et al. Jun 2003 B2
6584351 Ekwall Jun 2003 B1
6584352 Combs et al. Jun 2003 B2
6597948 Rockwell et al. Jul 2003 B1
6597951 Kramer et al. Jul 2003 B2
6622046 Fraley et al. Sep 2003 B2
6628985 Sweeney et al. Sep 2003 B2
6647292 Bardy et al. Nov 2003 B1
6666844 Igo et al. Dec 2003 B1
6689117 Sweeney et al. Feb 2004 B2
6690959 Thompson Feb 2004 B2
6694189 Begemann Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6718212 Parry et al. Apr 2004 B2
6721597 Bardy et al. Apr 2004 B1
6738670 Almendinger et al. May 2004 B1
6746797 Benson et al. Jun 2004 B2
6749566 Russ Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6763269 Cox Jul 2004 B2
6778860 Ostroff et al. Aug 2004 B2
6788971 Sloman et al. Sep 2004 B1
6788974 Bardy et al. Sep 2004 B2
6804558 Haller et al. Oct 2004 B2
6807442 Myklebust et al. Oct 2004 B1
6847844 Sun et al. Jan 2005 B2
6871095 Stahmann et al. Mar 2005 B2
6878112 Linberg et al. Apr 2005 B2
6885889 Chinchoy Apr 2005 B2
6892094 Ousdigian et al. May 2005 B2
6897788 Khair et al. May 2005 B2
6904315 Panken et al. Jun 2005 B2
6922592 Thompson et al. Jul 2005 B2
6931282 Esler Aug 2005 B2
6934585 Schloss et al. Aug 2005 B1
6936007 Quy Aug 2005 B2
6957107 Rogers et al. Oct 2005 B2
6978176 Lattouf Dec 2005 B2
6985773 Von Arx et al. Jan 2006 B2
6990375 Kloss et al. Jan 2006 B2
7001366 Ballard Feb 2006 B2
7003350 Denker et al. Feb 2006 B2
7006864 Echt et al. Feb 2006 B2
7013178 Reinke et al. Mar 2006 B2
7027871 Burnes et al. Apr 2006 B2
7050849 Echt et al. May 2006 B2
7060031 Webb et al. Jun 2006 B2
7063693 Guenst Jun 2006 B2
7082336 Ransbury et al. Jul 2006 B2
7085606 Flach et al. Aug 2006 B2
7092758 Sun et al. Aug 2006 B2
7110824 Amundson et al. Sep 2006 B2
7120504 Osypka Oct 2006 B2
7130681 Gebhardt et al. Oct 2006 B2
7139613 Reinke et al. Nov 2006 B2
7142912 Wagner et al. Nov 2006 B2
7146225 Guenst et al. Dec 2006 B2
7146226 Lau et al. Dec 2006 B2
7149581 Goedeke Dec 2006 B2
7149588 Lau et al. Dec 2006 B2
7158839 Lau Jan 2007 B2
7162307 Patrias Jan 2007 B2
7164952 Lau et al. Jan 2007 B2
7177700 Cox Feb 2007 B1
7181505 Haller et al. Feb 2007 B2
7184830 Echt et al. Feb 2007 B2
7186214 Ness Mar 2007 B2
7191015 Lamson et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7200439 Zdeblick et al. Apr 2007 B2
7206423 Feng et al. Apr 2007 B1
7209785 Kim et al. Apr 2007 B2
7209790 Thompson et al. Apr 2007 B2
7211884 Davis et al. May 2007 B1
7212871 Morgan May 2007 B1
7226440 Gelfand et al. Jun 2007 B2
7228183 Sun et al. Jun 2007 B2
7236821 Cates et al. Jun 2007 B2
7236829 Farazi et al. Jun 2007 B1
7254448 Almendinger et al. Aug 2007 B2
7260436 Kilgore et al. Aug 2007 B2
7270669 Sra Sep 2007 B1
7272448 Morgan et al. Sep 2007 B1
7277755 Falkenberg et al. Oct 2007 B1
7280872 Mosesov et al. Oct 2007 B1
7288096 Chin Oct 2007 B2
7289847 Gill et al. Oct 2007 B1
7289852 Helfinstine et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7289855 Nghiem et al. Oct 2007 B2
7302294 Kamath et al. Nov 2007 B2
7305266 Kroll Dec 2007 B1
7310556 Bulkes Dec 2007 B2
7313529 Thompson Dec 2007 B2
7319905 Morgan et al. Jan 2008 B1
7321798 Muhlenberg et al. Jan 2008 B2
7333853 Mazar et al. Feb 2008 B2
7336994 Hettrick et al. Feb 2008 B2
7347819 Lebel et al. Mar 2008 B2
7366572 Heruth et al. Apr 2008 B2
7373207 Lattouf May 2008 B2
7384403 Sherman Jun 2008 B2
7386342 Falkenberg et al. Jun 2008 B1
7392090 Sweeney et al. Jun 2008 B2
7406105 DelMain et al. Jul 2008 B2
7406349 Seeberger et al. Jul 2008 B2
7410497 Hastings et al. Aug 2008 B2
7425200 Brockway et al. Sep 2008 B2
7433739 Salys et al. Oct 2008 B1
7496409 Greenhut et al. Feb 2009 B2
7496410 Heil Feb 2009 B2
7502652 Gaunt et al. Mar 2009 B2
7512448 Malick et al. Mar 2009 B2
7515969 Tockman et al. Apr 2009 B2
7526342 Chin et al. Apr 2009 B2
7529589 Williams et al. May 2009 B2
7532933 Hastings et al. May 2009 B2
7536222 Bardy et al. May 2009 B2
7536224 Ritscher et al. May 2009 B2
7539541 Quiles et al. May 2009 B2
7544197 Kelsch et al. Jun 2009 B2
7558631 Cowan et al. Jul 2009 B2
7565195 Kroll et al. Jul 2009 B1
7584002 Burnes et al. Sep 2009 B2
7590455 Heruth et al. Sep 2009 B2
7606621 Brisken et al. Oct 2009 B2
7610088 Chinchoy Oct 2009 B2
7610092 Cowan et al. Oct 2009 B2
7610099 Almendinger et al. Oct 2009 B2
7610104 Kaplan et al. Oct 2009 B2
7616991 Mann et al. Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7617007 Williams et al. Nov 2009 B2
7630767 Poore et al. Dec 2009 B1
7634313 Kroll et al. Dec 2009 B1
7637867 Zdeblick Dec 2009 B2
7640060 Zdeblick Dec 2009 B2
7647109 Hastings et al. Jan 2010 B2
7650186 Hastings et al. Jan 2010 B2
7657311 Bardy et al. Feb 2010 B2
7668596 Von Arx et al. Feb 2010 B2
7682316 Anderson et al. Mar 2010 B2
7691047 Ferrari Apr 2010 B2
7702392 Echt et al. Apr 2010 B2
7713194 Zdeblick May 2010 B2
7713195 Zdeblick May 2010 B2
7729783 Michels et al. Jun 2010 B2
7734333 Ghanem et al. Jun 2010 B2
7734343 Ransbury et al. Jun 2010 B2
7738958 Zdeblick et al. Jun 2010 B2
7738964 Von Arx et al. Jun 2010 B2
7742812 Ghanem et al. Jun 2010 B2
7742816 Masoud et al. Jun 2010 B2
7742822 Masoud et al. Jun 2010 B2
7743151 Vallapureddy et al. Jun 2010 B2
7747335 Williams Jun 2010 B2
7751881 Cowan et al. Jul 2010 B2
7758521 Morris et al. Jul 2010 B2
7761150 Ghanem et al. Jul 2010 B2
7761164 Verhoef et al. Jul 2010 B2
7765001 Echt et al. Jul 2010 B2
7769452 Ghanem et al. Aug 2010 B2
7783362 Whitehurst et al. Aug 2010 B2
7792588 Harding Sep 2010 B2
7797059 Bornzin et al. Sep 2010 B1
7801596 Fischell et al. Sep 2010 B2
7809438 Echt et al. Oct 2010 B2
7840281 Kveen et al. Nov 2010 B2
7844331 Li et al. Nov 2010 B2
7844348 Swoyer et al. Nov 2010 B2
7846088 Ness Dec 2010 B2
7848815 Brisken et al. Dec 2010 B2
7848823 Drasler et al. Dec 2010 B2
7860455 Fukumoto et al. Dec 2010 B2
7871433 Lattouf Jan 2011 B2
7877136 Moffitt et al. Jan 2011 B1
7877142 Moaddeb et al. Jan 2011 B2
7881786 Jackson Feb 2011 B2
7881798 Miesel et al. Feb 2011 B2
7881810 Chitre et al. Feb 2011 B1
7890173 Brisken et al. Feb 2011 B2
7890181 Denzene et al. Feb 2011 B2
7890192 Kelsch et al. Feb 2011 B1
7894885 Bartal et al. Feb 2011 B2
7894894 Stadler et al. Feb 2011 B2
7894907 Cowan et al. Feb 2011 B2
7894910 Cowan et al. Feb 2011 B2
7894915 Chitre et al. Feb 2011 B1
7899537 Kroll et al. Mar 2011 B1
7899541 Cowan et al. Mar 2011 B2
7899542 Cowan et al. Mar 2011 B2
7899554 Williams et al. Mar 2011 B2
7901360 Yang et al. Mar 2011 B1
7904170 Harding Mar 2011 B2
7907993 Ghanem et al. Mar 2011 B2
7920928 Yang et al. Apr 2011 B1
7925343 Min et al. Apr 2011 B1
7930022 Zhang et al. Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7937135 Ghanem et al. May 2011 B2
7937148 Jacobson May 2011 B2
7937161 Hastings et al. May 2011 B2
7941214 Kleckner et al. May 2011 B2
7945333 Jacobson May 2011 B2
7946997 Hübinette May 2011 B2
7949404 Hill May 2011 B2
7949405 Feher May 2011 B2
7953486 Daum et al. May 2011 B2
7953493 Fowler et al. May 2011 B2
7962202 Bhunia Jun 2011 B2
7974702 Fain et al. Jul 2011 B1
7979136 Young et al. Jul 2011 B2
7983753 Severin Jul 2011 B2
7991467 Markowitz et al. Aug 2011 B2
7991471 Ghanem et al. Aug 2011 B2
7996087 Cowan et al. Aug 2011 B2
8000791 Sunagawa et al. Aug 2011 B2
8000807 Morris et al. Aug 2011 B2
8001975 DiSilvestro et al. Aug 2011 B2
8002700 Ferek-Petric et al. Aug 2011 B2
8010209 Jacobson Aug 2011 B2
8019419 Panescu et al. Sep 2011 B1
8019434 Quiles et al. Sep 2011 B2
8027727 Freeberg Sep 2011 B2
8027729 Sunagawa et al. Sep 2011 B2
8032219 Neumann et al. Oct 2011 B2
8036743 Savage et al. Oct 2011 B2
8046079 Bange Oct 2011 B2
8046080 Von Arx et al. Oct 2011 B2
8050297 DelMain et al. Nov 2011 B2
8050759 Stegemann et al. Nov 2011 B2
8050774 Kveen et al. Nov 2011 B2
8055345 Li et al. Nov 2011 B2
8055350 Roberts Nov 2011 B2
8060212 Rios et al. Nov 2011 B1
8065018 Haubrich et al. Nov 2011 B2
8073542 Doerr Dec 2011 B2
8078278 Penner Dec 2011 B2
8078283 Cowan et al. Dec 2011 B2
8095123 Gray Jan 2012 B2
8102789 Rosar et al. Jan 2012 B2
8103359 Reddy Jan 2012 B2
8103361 Moser Jan 2012 B2
8112148 Giftakis et al. Feb 2012 B2
8114021 Robertson et al. Feb 2012 B2
8121680 Falkenberg et al. Feb 2012 B2
8123684 Zdeblick Feb 2012 B2
8126545 Flach et al. Feb 2012 B2
8131334 Lu et al. Mar 2012 B2
8140161 Willerton et al. Mar 2012 B2
8150521 Crowley et al. Apr 2012 B2
8160672 Kim et al. Apr 2012 B2
8160702 Mann et al. Apr 2012 B2
8160704 Freeberg Apr 2012 B2
8165694 Carbanaru et al. Apr 2012 B2
8175715 Cox May 2012 B1
8180451 Hickman et al. May 2012 B2
8185213 Kveen et al. May 2012 B2
8187161 Li et al. May 2012 B2
8195293 Limousin et al. Jun 2012 B2
8204595 Pianca et al. Jun 2012 B2
8204605 Hastings et al. Jun 2012 B2
8209014 Doerr Jun 2012 B2
8214043 Matos Jul 2012 B2
8224244 Kim et al. Jul 2012 B2
8229556 Li Jul 2012 B2
8233985 Bulkes et al. Jul 2012 B2
8262578 Bharmi et al. Sep 2012 B1
8265556 Tekin et al. Sep 2012 B2
8265748 Liu et al. Sep 2012 B2
8265757 Mass et al. Sep 2012 B2
8280521 Haubrich et al. Oct 2012 B2
8285387 Utsi et al. Oct 2012 B2
8290598 Boon et al. Oct 2012 B2
8290600 Hastings et al. Oct 2012 B2
8295939 Jacobson Oct 2012 B2
8301232 Albert et al. Oct 2012 B2
8301254 Mosesov et al. Oct 2012 B2
8315701 Cowan et al. Nov 2012 B2
8315708 Berthelsdorf et al. Nov 2012 B2
8321021 Kisker et al. Nov 2012 B2
8321036 Brockway et al. Nov 2012 B2
8332036 Hastings et al. Dec 2012 B2
8335563 Stessman Dec 2012 B2
8335568 Heruth et al. Dec 2012 B2
8340750 Prakash et al. Dec 2012 B2
8340780 Hastings et al. Dec 2012 B2
8352025 Jacobson Jan 2013 B2
8352028 Wenger Jan 2013 B2
8352038 Mao et al. Jan 2013 B2
8359098 Lund et al. Jan 2013 B2
8364261 Stubbs et al. Jan 2013 B2
8364276 Willis Jan 2013 B2
8369959 Meskens Feb 2013 B2
8369962 Abrahamson Feb 2013 B2
8380320 Spital Feb 2013 B2
8386051 Rys Feb 2013 B2
8391981 Mosesov Mar 2013 B2
8391990 Smith et al. Mar 2013 B2
8401659 Von Arx et al. Mar 2013 B2
8406874 Liu et al. Mar 2013 B2
8406879 Shuros et al. Mar 2013 B2
8406886 Gaunt et al. Mar 2013 B2
8412352 Griswold et al. Apr 2013 B2
8417340 Goossen Apr 2013 B2
8417341 Freeberg Apr 2013 B2
8423149 Hennig Apr 2013 B2
8428722 Verhoef et al. Apr 2013 B2
8433402 Ruben et al. Apr 2013 B2
8433409 Johnson et al. Apr 2013 B2
8433420 Bange et al. Apr 2013 B2
8447412 Dal Molin et al. May 2013 B2
8452413 Young et al. May 2013 B2
8457740 Osche Jun 2013 B2
8457742 Jacobson Jun 2013 B2
8457744 Janzig et al. Jun 2013 B2
8457761 Wariar Jun 2013 B2
8478407 Demmer et al. Jul 2013 B2
8478408 Hastings et al. Jul 2013 B2
8478431 Griswold et al. Jul 2013 B2
8494632 Sun et al. Jul 2013 B2
8504156 Bonner et al. Aug 2013 B2
8509882 Albert et al. Aug 2013 B2
8509910 Sowder et al. Aug 2013 B2
8515559 Roberts et al. Aug 2013 B2
8525340 Eckhardt et al. Sep 2013 B2
8527068 Ostroff Sep 2013 B2
8532790 Griswold Sep 2013 B2
8538526 Stahmann et al. Sep 2013 B2
8541131 Lund et al. Sep 2013 B2
8543205 Ostroff Sep 2013 B2
8547248 Zdeblick et al. Oct 2013 B2
8548605 Ollivier Oct 2013 B2
8554333 Wu et al. Oct 2013 B2
8565882 Matos Oct 2013 B2
8565897 Regnier et al. Oct 2013 B2
8571678 Wang Oct 2013 B2
8577327 Makdissi et al. Nov 2013 B2
8588926 Moore et al. Nov 2013 B2
8612002 Faltys et al. Dec 2013 B2
8615310 Khairkhahan et al. Dec 2013 B2
8626280 Allavatam et al. Jan 2014 B2
8626294 Sheldon et al. Jan 2014 B2
8634908 Cowan Jan 2014 B2
8634912 Bornzin et al. Jan 2014 B2
8634919 Hou et al. Jan 2014 B1
8639335 Peichel et al. Jan 2014 B2
8644934 Hastings et al. Feb 2014 B2
8649859 Smith et al. Feb 2014 B2
8670842 Bornzin et al. Mar 2014 B1
8676319 Knoll Mar 2014 B2
8676335 Katoozi et al. Mar 2014 B2
8700137 Albert Apr 2014 B2
8700173 Edlund Apr 2014 B2
8700181 Bornzin et al. Apr 2014 B2
8705599 dal Molin et al. Apr 2014 B2
8718766 Wahlberg May 2014 B2
8718773 Willis et al. May 2014 B2
8725260 Shuros et al. May 2014 B2
8738133 Shuros et al. May 2014 B2
8738147 Hastings et al. May 2014 B2
8744555 Allavatam et al. Jun 2014 B2
8744572 Greenhut et al. Jun 2014 B1
8747314 Stahmann et al. Jun 2014 B2
8755884 Demmer et al. Jun 2014 B2
8758365 Bonner et al. Jun 2014 B2
8768483 Schmitt et al. Jul 2014 B2
8774572 Hamamoto Jul 2014 B2
8781605 Bornzin et al. Jul 2014 B2
8788035 Jacobson Jul 2014 B2
8788053 Jacobson Jul 2014 B2
8798740 Samade et al. Aug 2014 B2
8798745 Jacobson Aug 2014 B2
8798762 Fain et al. Aug 2014 B2
8798770 Reddy Aug 2014 B2
8805505 Roberts Aug 2014 B1
8805528 Corndorf Aug 2014 B2
8812109 Blomqvist et al. Aug 2014 B2
8818504 Bodner et al. Aug 2014 B2
8827913 Havel et al. Sep 2014 B2
8831747 Min et al. Sep 2014 B1
8855789 Jacobson Oct 2014 B2
8868186 Kroll Oct 2014 B2
8886339 Faltys et al. Nov 2014 B2
8903473 Rogers et al. Dec 2014 B2
8903500 Smith et al. Dec 2014 B2
8903513 Ollivier Dec 2014 B2
8909336 Navarro-Paredes et al. Dec 2014 B2
8914131 Bornzin et al. Dec 2014 B2
8923795 Makdissi et al. Dec 2014 B2
8923963 Bonner et al. Dec 2014 B2
8938300 Rosero Jan 2015 B2
8942806 Sheldon et al. Jan 2015 B2
8958892 Khairkhahan et al. Feb 2015 B2
8977358 Ewert et al. Mar 2015 B2
8989873 Locsin Mar 2015 B2
8996109 Karst et al. Mar 2015 B2
9002467 Smith et al. Apr 2015 B2
9008776 Cowan et al. Apr 2015 B2
9008777 Dianaty et al. Apr 2015 B2
9014818 Deterre et al. Apr 2015 B2
9017341 Bornzin et al. Apr 2015 B2
9020611 Khairkhahan et al. Apr 2015 B2
9026202 Albert May 2015 B2
9037262 Regnier et al. May 2015 B2
9042984 Demmer et al. May 2015 B2
9072911 Hastings et al. Jul 2015 B2
9072913 Jacobson Jul 2015 B2
9155882 Grubac et al. Oct 2015 B2
9168372 Fain Oct 2015 B2
9168380 Greenhut et al. Oct 2015 B1
9168383 Jacobson et al. Oct 2015 B2
9180285 Moore et al. Nov 2015 B2
9192774 Jacobson Nov 2015 B2
9205225 Khairkhahan et al. Dec 2015 B2
9216285 Boling et al. Dec 2015 B1
9216293 Berthiaume et al. Dec 2015 B2
9216298 Jacobson Dec 2015 B2
9220430 Albert Dec 2015 B2
9227077 Jacobson Jan 2016 B2
9238145 Wenzel et al. Jan 2016 B2
9242102 Khairkhahan et al. Jan 2016 B2
9242113 Smith et al. Jan 2016 B2
9247911 Galloway et al. Feb 2016 B2
9248300 Rys et al. Feb 2016 B2
9254092 Albert et al. Feb 2016 B2
9254095 Galloway et al. Feb 2016 B2
9265436 Min et al. Feb 2016 B2
9265962 Dianaty et al. Feb 2016 B2
9272155 Ostroff Mar 2016 B2
9278218 Karst et al. Mar 2016 B2
9278229 Reinke et al. Mar 2016 B1
9283381 Grubac et al. Mar 2016 B2
9283382 Berthiaume et al. Mar 2016 B2
9289612 Sambelashvili et al. Mar 2016 B1
9302108 Khalil et al. Apr 2016 B2
9302115 Molin et al. Apr 2016 B2
9333364 Echt et al. May 2016 B2
9358387 Suwito et al. Jun 2016 B2
9358400 Jacobson Jun 2016 B2
9364675 Deterre et al. Jun 2016 B2
9370663 Moulder Jun 2016 B2
9375580 Bonner et al. Jun 2016 B2
9375581 Baru et al. Jun 2016 B2
9381365 Kibler et al. Jul 2016 B2
9393424 Demmer et al. Jul 2016 B2
9393436 Doerr Jul 2016 B2
9399139 Demmer et al. Jul 2016 B2
9399140 Cho et al. Jul 2016 B2
9409033 Jacobson Aug 2016 B2
9420956 Gopalakrishnan et al. Aug 2016 B2
9427594 Bornzin et al. Aug 2016 B1
9433368 Stahmann et al. Sep 2016 B2
9433780 Régnier et al. Sep 2016 B2
9433796 Tahmasian Sep 2016 B2
9457193 Klimovitch et al. Oct 2016 B2
9492668 Sheldon et al. Nov 2016 B2
9492669 Demmer et al. Nov 2016 B2
9492674 Schmidt et al. Nov 2016 B2
9492677 Greenhut et al. Nov 2016 B2
9511233 Sambelashvili Dec 2016 B2
9511236 Varady et al. Dec 2016 B2
9511237 Deterre et al. Dec 2016 B2
9522276 Shen et al. Dec 2016 B2
9522280 Fishler et al. Dec 2016 B2
9526522 Wood et al. Dec 2016 B2
9526891 Eggen et al. Dec 2016 B2
9526909 Stahmann et al. Dec 2016 B2
9533162 Ter-Petrosyan et al. Jan 2017 B2
9533163 Klimovitch et al. Jan 2017 B2
9561382 Persson et al. Feb 2017 B2
9566012 Greenhut et al. Feb 2017 B2
9579062 Albert Feb 2017 B2
9636511 Carney et al. May 2017 B2
9649042 Albert et al. May 2017 B2
9669223 Auricchio et al. Jun 2017 B2
9687654 Sheldon et al. Jun 2017 B2
9687655 Pertijs et al. Jun 2017 B2
9687659 Von Arx et al. Jun 2017 B2
9694186 Carney et al. Jul 2017 B2
9707402 Aghassian Jul 2017 B2
9782594 Stahmann et al. Oct 2017 B2
9782601 Ludwig Oct 2017 B2
9789317 Greenhut et al. Oct 2017 B2
9789319 Sambelashvili Oct 2017 B2
9808617 Ostroff et al. Nov 2017 B2
9808628 Sheldon et al. Nov 2017 B2
9808631 Maile et al. Nov 2017 B2
9808632 Reinke et al. Nov 2017 B2
9808633 Bonner et al. Nov 2017 B2
9808637 Sharma et al. Nov 2017 B2
9855414 Marshall et al. Jan 2018 B2
9855430 Ghosh et al. Jan 2018 B2
9855435 Sahabi et al. Jan 2018 B2
9861815 Tran et al. Jan 2018 B2
10080887 Schmidt et al. Sep 2018 B2
10080888 Kelly et al. Sep 2018 B2
10080900 Ghosh et al. Sep 2018 B2
10080903 Willis et al. Sep 2018 B2
10086206 Sambelashvili Oct 2018 B2
10118026 Grubac et al. Nov 2018 B2
10124163 Ollivier et al. Nov 2018 B2
10124175 Berthiaume et al. Nov 2018 B2
10130821 Grubac et al. Nov 2018 B2
10137305 Kane et al. Nov 2018 B2
10143847 Edmonson Dec 2018 B1
10201710 Jackson et al. Feb 2019 B2
10207115 Echt et al. Feb 2019 B2
10207116 Sheldon et al. Feb 2019 B2
10226197 Reinke et al. Mar 2019 B2
10226639 Zhang Mar 2019 B2
10232182 Hareland et al. Mar 2019 B2
10265503 Schmidt et al. Apr 2019 B2
10265534 Greenhut et al. Apr 2019 B2
10271752 Regnier et al. Apr 2019 B2
10278601 Greenhut et al. May 2019 B2
10279165 Seifert et al. May 2019 B2
10286221 Sawchuk May 2019 B2
10307598 Ciciarelli et al. Jun 2019 B2
10328274 Zhang et al. Jun 2019 B2
10342981 Ghosh et al. Jul 2019 B2
20020013613 Haller et al. Jan 2002 A1
20020032470 Linberg Mar 2002 A1
20020035376 Bardy et al. Mar 2002 A1
20020035377 Bardy et al. Mar 2002 A1
20020035378 Bardy et al. Mar 2002 A1
20020035380 Rissmann et al. Mar 2002 A1
20020035381 Bardy et al. Mar 2002 A1
20020042629 Bardy et al. Apr 2002 A1
20020042630 Bardy et al. Apr 2002 A1
20020042634 Bardy et al. Apr 2002 A1
20020049475 Bardy et al. Apr 2002 A1
20020052636 Bardy et al. May 2002 A1
20020068958 Bardy et al. Jun 2002 A1
20020072773 Bardy et al. Jun 2002 A1
20020082665 Haller et al. Jun 2002 A1
20020091414 Bardy et al. Jul 2002 A1
20020095196 Linberg Jul 2002 A1
20020099423 Berg et al. Jul 2002 A1
20020103510 Bardy et al. Aug 2002 A1
20020107545 Rissmann et al. Aug 2002 A1
20020107546 Ostroff et al. Aug 2002 A1
20020107547 Edinger et al. Aug 2002 A1
20020107548 Bardy et al. Aug 2002 A1
20020107549 Bardy et al. Aug 2002 A1
20020107559 Sanders et al. Aug 2002 A1
20020120299 Ostroff et al. Aug 2002 A1
20020173830 Starkweather et al. Nov 2002 A1
20020193846 Pool et al. Dec 2002 A1
20030009203 Lebel et al. Jan 2003 A1
20030028082 Thompson Feb 2003 A1
20030040779 Engmark et al. Feb 2003 A1
20030041866 Linberg et al. Mar 2003 A1
20030045805 Sheldon et al. Mar 2003 A1
20030088278 Bardy et al. May 2003 A1
20030097153 Bardy et al. May 2003 A1
20030105497 Zhu et al. Jun 2003 A1
20030114908 Flach Jun 2003 A1
20030136418 Behm Jul 2003 A1
20030144701 Mehra et al. Jul 2003 A1
20030187460 Chin et al. Oct 2003 A1
20030187461 Chin Oct 2003 A1
20040024435 Leckrone et al. Feb 2004 A1
20040068302 Rodgers et al. Apr 2004 A1
20040087938 Leckrone et al. May 2004 A1
20040088035 Guenst et al. May 2004 A1
20040102830 Williams May 2004 A1
20040127959 Amundson et al. Jul 2004 A1
20040133242 Chapman et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040147973 Hauser Jul 2004 A1
20040167558 Igo et al. Aug 2004 A1
20040167587 Thompson Aug 2004 A1
20040172071 Bardy et al. Sep 2004 A1
20040172077 Chinchoy Sep 2004 A1
20040172104 Berg et al. Sep 2004 A1
20040176817 Wahlstrand et al. Sep 2004 A1
20040176818 Wahlstrand et al. Sep 2004 A1
20040176830 Fang Sep 2004 A1
20040186529 Bardy et al. Sep 2004 A1
20040204673 Flaherty Oct 2004 A1
20040210292 Bardy et al. Oct 2004 A1
20040210293 Bardy et al. Oct 2004 A1
20040210294 Bardy et al. Oct 2004 A1
20040215308 Bardy et al. Oct 2004 A1
20040220624 Ritscher et al. Nov 2004 A1
20040220626 Wagner Nov 2004 A1
20040220639 Mulligan et al. Nov 2004 A1
20040230283 Prinzen et al. Nov 2004 A1
20040249431 Ransbury et al. Dec 2004 A1
20040260348 Bakken et al. Dec 2004 A1
20040267303 Guenst Dec 2004 A1
20050061320 Lee et al. Mar 2005 A1
20050070962 Echt et al. Mar 2005 A1
20050102003 Grabek et al. May 2005 A1
20050149138 Min et al. Jul 2005 A1
20050165466 Morris et al. Jul 2005 A1
20050182465 Ness Aug 2005 A1
20050203410 Jenkins Sep 2005 A1
20050283208 Von Arx et al. Dec 2005 A1
20050288743 Ahn et al. Dec 2005 A1
20060042830 Maghribi et al. Mar 2006 A1
20060052829 Sun et al. Mar 2006 A1
20060052830 Spinelli et al. Mar 2006 A1
20060064135 Brockway Mar 2006 A1
20060064149 Belacazar et al. Mar 2006 A1
20060085039 Hastings et al. Apr 2006 A1
20060085041 Hastings et al. Apr 2006 A1
20060085042 Hastings et al. Apr 2006 A1
20060095078 Tronnes May 2006 A1
20060106442 Richardson et al. May 2006 A1
20060116746 Chin Jun 2006 A1
20060135999 Bodner et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060161061 Echt et al. Jul 2006 A1
20060200002 Guenst Sep 2006 A1
20060206151 Lu Sep 2006 A1
20060212079 Routh et al. Sep 2006 A1
20060241701 Markowitz et al. Oct 2006 A1
20060241705 Neumann et al. Oct 2006 A1
20060247672 Vidlund et al. Nov 2006 A1
20060259088 Pastore et al. Nov 2006 A1
20060265018 Smith et al. Nov 2006 A1
20070004979 Wojciechowicz et al. Jan 2007 A1
20070016098 Kim et al. Jan 2007 A1
20070027508 Cowan Feb 2007 A1
20070078490 Cowan et al. Apr 2007 A1
20070088394 Jacobson Apr 2007 A1
20070088396 Jacobson Apr 2007 A1
20070088397 Jacobson Apr 2007 A1
20070088398 Jacobson Apr 2007 A1
20070088405 Jacobson Apr 2007 A1
20070135882 Drasler et al. Jun 2007 A1
20070135883 Drasler et al. Jun 2007 A1
20070150037 Hastings et al. Jun 2007 A1
20070150038 Hastings et al. Jun 2007 A1
20070156190 Cinbis Jul 2007 A1
20070219525 Gelfand et al. Sep 2007 A1
20070219590 Hastings et al. Sep 2007 A1
20070225545 Ferrari Sep 2007 A1
20070233206 Frikart et al. Oct 2007 A1
20070239244 Morgan et al. Oct 2007 A1
20070255376 Michels et al. Nov 2007 A1
20070276444 Gelbart et al. Nov 2007 A1
20070293900 Sheldon et al. Dec 2007 A1
20070293904 Gelbart et al. Dec 2007 A1
20080004663 Jorgenson Jan 2008 A1
20080021505 Hastings et al. Jan 2008 A1
20080021519 De Geest et al. Jan 2008 A1
20080021532 Kveen et al. Jan 2008 A1
20080065183 Whitehurst et al. Mar 2008 A1
20080065185 Worley Mar 2008 A1
20080071318 Brooke et al. Mar 2008 A1
20080109054 Hastings et al. May 2008 A1
20080119911 Rosero May 2008 A1
20080130670 Kim et al. Jun 2008 A1
20080154139 Shuros et al. Jun 2008 A1
20080154322 Jackson et al. Jun 2008 A1
20080228234 Stancer Sep 2008 A1
20080234771 Chinchoy et al. Sep 2008 A1
20080243217 Wildon Oct 2008 A1
20080269814 Rosero Oct 2008 A1
20080269825 Chinchoy et al. Oct 2008 A1
20080275518 Ghanem et al. Nov 2008 A1
20080275519 Ghanem et al. Nov 2008 A1
20080288039 Reddy Nov 2008 A1
20080294208 Willis et al. Nov 2008 A1
20080294210 Rosero Nov 2008 A1
20080294229 Friedman et al. Nov 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20090018599 Hastings et al. Jan 2009 A1
20090024180 Kisker et al. Jan 2009 A1
20090036941 Corbucci Feb 2009 A1
20090048646 Katoozi et al. Feb 2009 A1
20090062895 Stahmann et al. Mar 2009 A1
20090082827 Kveen et al. Mar 2009 A1
20090082828 Ostroff Mar 2009 A1
20090088813 Brockway et al. Apr 2009 A1
20090131907 Chin et al. May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090143835 Pastore et al. Jun 2009 A1
20090171408 Solem Jul 2009 A1
20090171414 Kelly et al. Jul 2009 A1
20090204163 Shuros et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210024 M. Aug 2009 A1
20090216292 Pless et al. Aug 2009 A1
20090234407 Hastings et al. Sep 2009 A1
20090234411 Sambelashvili et al. Sep 2009 A1
20090266573 Engmark et al. Oct 2009 A1
20090275998 Burnes et al. Nov 2009 A1
20090275999 Burnes et al. Nov 2009 A1
20090299447 Jensen et al. Dec 2009 A1
20100013668 Kantervik Jan 2010 A1
20100016911 Willis et al. Jan 2010 A1
20100023085 Wu et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100030327 Chatel Feb 2010 A1
20100042108 Hibino Feb 2010 A1
20100056871 Govari et al. Mar 2010 A1
20100063375 Kassab et al. Mar 2010 A1
20100063562 Cowan et al. Mar 2010 A1
20100069983 Peacock, III et al. Mar 2010 A1
20100094367 Sen Apr 2010 A1
20100114209 Krause et al. May 2010 A1
20100114214 Morelli et al. May 2010 A1
20100125281 Jacobson et al. May 2010 A1
20100168761 Kassab et al. Jul 2010 A1
20100168819 Freeberg Jul 2010 A1
20100198288 Ostroff Aug 2010 A1
20100198304 Wang Aug 2010 A1
20100217367 Belson Aug 2010 A1
20100228308 Cowan et al. Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100234924 Willis Sep 2010 A1
20100241185 Mahapatra et al. Sep 2010 A1
20100249729 Morris et al. Sep 2010 A1
20100286744 Echt et al. Nov 2010 A1
20100298841 Prinzen et al. Nov 2010 A1
20100312309 Harding Dec 2010 A1
20110022113 Zdeblick et al. Jan 2011 A1
20110071586 Jacobson Mar 2011 A1
20110077708 Ostroff Mar 2011 A1
20110112600 Cowan et al. May 2011 A1
20110118588 Komblau et al. May 2011 A1
20110118810 Cowan et al. May 2011 A1
20110137187 Yang et al. Jun 2011 A1
20110144720 Cowan et al. Jun 2011 A1
20110152970 Jollota et al. Jun 2011 A1
20110160558 Rassatt et al. Jun 2011 A1
20110160565 Stubbs et al. Jun 2011 A1
20110160801 Markowitz et al. Jun 2011 A1
20110160806 Lyden et al. Jun 2011 A1
20110166620 Cowan et al. Jul 2011 A1
20110166621 Cowan et al. Jul 2011 A1
20110184491 Kivi Jul 2011 A1
20110190835 Brockway et al. Aug 2011 A1
20110208260 Jacobson Aug 2011 A1
20110218587 Jacobson Sep 2011 A1
20110230734 Fain et al. Sep 2011 A1
20110237967 Moore et al. Sep 2011 A1
20110245890 Brisben et al. Oct 2011 A1
20110251660 Griswold Oct 2011 A1
20110251662 Griswold et al. Oct 2011 A1
20110270099 Ruben et al. Nov 2011 A1
20110270339 Murray, III et al. Nov 2011 A1
20110270340 Pellegrini et al. Nov 2011 A1
20110270341 Ruben et al. Nov 2011 A1
20110276102 Cohen Nov 2011 A1
20110282423 Jacobson Nov 2011 A1
20110301435 Albert et al. Dec 2011 A1
20110301439 Albert et al. Dec 2011 A1
20120004527 Thompson et al. Jan 2012 A1
20120029323 Zhao Feb 2012 A1
20120041508 Rousso et al. Feb 2012 A1
20120059433 Cowan et al. Mar 2012 A1
20120059436 Fontaine et al. Mar 2012 A1
20120065500 Rogers et al. Mar 2012 A1
20120078322 Dal Molin et al. Mar 2012 A1
20120089198 Ostroff Apr 2012 A1
20120093245 Makdissi et al. Apr 2012 A1
20120095521 Hintz Apr 2012 A1
20120095539 Khairkhahan et al. Apr 2012 A1
20120100887 Tekin et al. Apr 2012 A1
20120101540 O'Brien et al. Apr 2012 A1
20120101553 Reddy Apr 2012 A1
20120109148 Bonner et al. May 2012 A1
20120109149 Bonner et al. May 2012 A1
20120109236 Jacobson et al. May 2012 A1
20120109259 Bond et al. May 2012 A1
20120116489 Khairkhahan et al. May 2012 A1
20120150251 Giftakis et al. Jun 2012 A1
20120158111 Khairkhahan et al. Jun 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120172689 Albert et al. Jul 2012 A1
20120172690 Anderson et al. Jul 2012 A1
20120172891 Lee Jul 2012 A1
20120172892 Grubac et al. Jul 2012 A1
20120172942 Berg Jul 2012 A1
20120197350 Roberts et al. Aug 2012 A1
20120197373 Khairkhahan et al. Aug 2012 A1
20120215285 Tahmasian Aug 2012 A1
20120232565 Kveen et al. Sep 2012 A1
20120245665 Friedman et al. Sep 2012 A1
20120277600 Greenhut Nov 2012 A1
20120277606 Ellingson et al. Nov 2012 A1
20120283795 Stancer et al. Nov 2012 A1
20120283807 Deterre et al. Nov 2012 A1
20120289776 Keast et al. Nov 2012 A1
20120289815 Keast et al. Nov 2012 A1
20120290021 Saurkar et al. Nov 2012 A1
20120290025 Keimel Nov 2012 A1
20120296381 Matos Nov 2012 A1
20120303082 Dong et al. Nov 2012 A1
20120316613 Keefe et al. Dec 2012 A1
20130012151 Hankins Jan 2013 A1
20130023975 Locsin Jan 2013 A1
20130035748 Bonner et al. Feb 2013 A1
20130041422 Jacobson Feb 2013 A1
20130053908 Smith et al. Feb 2013 A1
20130053915 Holmstrom et al. Feb 2013 A1
20130053921 Bonner et al. Feb 2013 A1
20130060298 Splett et al. Mar 2013 A1
20130066169 Rys et al. Mar 2013 A1
20130072770 Rao et al. Mar 2013 A1
20130079798 Tran et al. Mar 2013 A1
20130079861 Reinert et al. Mar 2013 A1
20130085350 Schugt et al. Apr 2013 A1
20130085403 Gunderson et al. Apr 2013 A1
20130085550 Polefko Apr 2013 A1
20130096649 Martin et al. Apr 2013 A1
20130103047 Steingisser et al. Apr 2013 A1
20130103109 Jacobson Apr 2013 A1
20130110008 Bourget et al. May 2013 A1
20130110127 Bornzin et al. May 2013 A1
20130110192 Tran et al. May 2013 A1
20130110219 Bornzin et al. May 2013 A1
20130116529 Min et al. May 2013 A1
20130116738 Samade et al. May 2013 A1
20130116740 Bornzin et al. May 2013 A1
20130116741 Bornzin et al. May 2013 A1
20130123872 Bornzin et al. May 2013 A1
20130123875 Varady et al. May 2013 A1
20130131591 Berthiaume et al. May 2013 A1
20130131693 Berthiaume et al. May 2013 A1
20130138006 Bornzin et al. May 2013 A1
20130150695 Biela et al. Jun 2013 A1
20130150911 Perschbacher et al. Jun 2013 A1
20130150912 Perschbacher et al. Jun 2013 A1
20130184776 Shuros et al. Jul 2013 A1
20130192611 Taepke, II et al. Aug 2013 A1
20130196703 Masoud et al. Aug 2013 A1
20130197320 Albert et al. Aug 2013 A1
20130197609 Moore et al. Aug 2013 A1
20130231710 Jacobson Sep 2013 A1
20130238072 Deterre et al. Sep 2013 A1
20130238073 Makdissi et al. Sep 2013 A1
20130241745 Colvin, Jr. et al. Sep 2013 A1
20130253309 Allan et al. Sep 2013 A1
20130253342 Griswold et al. Sep 2013 A1
20130253343 Waldhauser et al. Sep 2013 A1
20130253344 Griswold et al. Sep 2013 A1
20130253345 Griswold et al. Sep 2013 A1
20130253346 Griswold et al. Sep 2013 A1
20130253347 Griswold et al. Sep 2013 A1
20130261497 Pertijs et al. Oct 2013 A1
20130265144 Banna et al. Oct 2013 A1
20130268042 Hastings et al. Oct 2013 A1
20130274828 Willis Oct 2013 A1
20130274847 Ostroff Oct 2013 A1
20130282070 Cowan et al. Oct 2013 A1
20130282073 Cowan et al. Oct 2013 A1
20130296727 Sullivan et al. Nov 2013 A1
20130303872 Taff et al. Nov 2013 A1
20130324825 Ostroff et al. Dec 2013 A1
20130325081 Karst et al. Dec 2013 A1
20130331663 Albert et al. Dec 2013 A1
20130345770 Dianaty et al. Dec 2013 A1
20140012344 Hastings et al. Jan 2014 A1
20140018876 Ostroff Jan 2014 A1
20140018877 Demmer et al. Jan 2014 A1
20140031836 Ollivier Jan 2014 A1
20140039570 Carroll et al. Feb 2014 A1
20140039591 Drasler et al. Feb 2014 A1
20140043146 Makdissi et al. Feb 2014 A1
20140046395 Regnier et al. Feb 2014 A1
20140046420 Moore et al. Feb 2014 A1
20140050321 Albert et al. Feb 2014 A1
20140058240 Mothilal et al. Feb 2014 A1
20140058494 Ostroff et al. Feb 2014 A1
20140066798 Albert Mar 2014 A1
20140074114 Khairkhahan et al. Mar 2014 A1
20140074186 Faltys et al. Mar 2014 A1
20140094891 Pare et al. Apr 2014 A1
20140100624 Ellingson Apr 2014 A1
20140100627 Min Apr 2014 A1
20140107723 Hou et al. Apr 2014 A1
20140121719 Bonner et al. May 2014 A1
20140121720 Bonner et al. May 2014 A1
20140121722 Sheldon et al. May 2014 A1
20140128758 Galloway et al. May 2014 A1
20140128935 Kumar et al. May 2014 A1
20140135865 Hastings et al. May 2014 A1
20140142648 Smith et al. May 2014 A1
20140148675 Nordstrom et al. May 2014 A1
20140148815 Wenzel et al. May 2014 A1
20140155950 Hastings et al. Jun 2014 A1
20140169162 Romano et al. Jun 2014 A1
20140172060 Bornzin et al. Jun 2014 A1
20140180306 Grubac et al. Jun 2014 A1
20140180366 Edlund Jun 2014 A1
20140194760 Albert Jul 2014 A1
20140206976 Thompson Jul 2014 A1
20140207149 Hastings et al. Jul 2014 A1
20140207210 Willis et al. Jul 2014 A1
20140214104 Greenhut et al. Jul 2014 A1
20140221859 Albert Aug 2014 A1
20140222015 Keast et al. Aug 2014 A1
20140222098 Baru et al. Aug 2014 A1
20140222109 Moulder Aug 2014 A1
20140228665 Albert Aug 2014 A1
20140228913 Molin et al. Aug 2014 A1
20140236172 Hastings et al. Aug 2014 A1
20140243848 Auricchio et al. Aug 2014 A1
20140255298 Cole et al. Sep 2014 A1
20140257324 Fain Sep 2014 A1
20140257422 Herken Sep 2014 A1
20140257444 Cole et al. Sep 2014 A1
20140275928 Acquista et al. Sep 2014 A1
20140276162 Albert et al. Sep 2014 A1
20140276929 Foster et al. Sep 2014 A1
20140303704 Suwito et al. Oct 2014 A1
20140309706 Jacobson Oct 2014 A1
20140343348 Kaplan et al. Nov 2014 A1
20140371817 Mashiach et al. Dec 2014 A1
20140371818 Bond et al. Dec 2014 A1
20140379041 Foster Dec 2014 A1
20150018660 Thomson et al. Jan 2015 A1
20150018702 Galloway et al. Jan 2015 A1
20150025612 Haasl et al. Jan 2015 A1
20150039041 Smith et al. Feb 2015 A1
20150045868 Bonner et al. Feb 2015 A1
20150051609 Schmidt et al. Feb 2015 A1
20150051610 Schmidt et al. Feb 2015 A1
20150051611 Schmidt et al. Feb 2015 A1
20150051612 Schmidt et al. Feb 2015 A1
20150051613 Schmidt et al. Feb 2015 A1
20150051614 Schmidt et al. Feb 2015 A1
20150051615 Schmidt et al. Feb 2015 A1
20150051616 Haasl et al. Feb 2015 A1
20150051682 Schmidt et al. Feb 2015 A1
20150057520 Foster et al. Feb 2015 A1
20150057558 Stahmann et al. Feb 2015 A1
20150057721 Stahmann et al. Feb 2015 A1
20150073285 Albert et al. Mar 2015 A1
20150087952 Albert et al. Mar 2015 A1
20150088155 Stahmann et al. Mar 2015 A1
20150105836 Bonner et al. Apr 2015 A1
20150126854 Keast et al. May 2015 A1
20150157861 Aghassian Jun 2015 A1
20150157866 Demmer et al. Jun 2015 A1
20150164349 Gopalakrishnan et al. Jun 2015 A1
20150173655 Demmer et al. Jun 2015 A1
20150190638 Smith et al. Jul 2015 A1
20150196756 Stahmann et al. Jul 2015 A1
20150196757 Stahmann et al. Jul 2015 A1
20150196758 Stahmann et al. Jul 2015 A1
20150196769 Stahmann Jul 2015 A1
20150217119 Nikolski et al. Aug 2015 A1
20150221898 Chi et al. Aug 2015 A1
20150224315 Stahmann Aug 2015 A1
20150224320 Stahmann Aug 2015 A1
20150230699 Berul et al. Aug 2015 A1
20150238769 Demmer et al. Aug 2015 A1
20150258345 Smith et al. Sep 2015 A1
20150265164 Gopalakrishnan et al. Sep 2015 A1
20150290468 Zhang Oct 2015 A1
20150297905 Greenhut et al. Oct 2015 A1
20150297907 Zhang Oct 2015 A1
20150305637 Greenhut et al. Oct 2015 A1
20150305638 Zhang Oct 2015 A1
20150305639 Greenhut et al. Oct 2015 A1
20150305640 Reinke et al. Oct 2015 A1
20150305641 Stadler et al. Oct 2015 A1
20150305642 Reinke et al. Oct 2015 A1
20150306374 Seifert et al. Oct 2015 A1
20150306375 Marshall et al. Oct 2015 A1
20150306401 Demmer et al. Oct 2015 A1
20150306406 Crutchfield et al. Oct 2015 A1
20150306407 Crutchfield et al. Oct 2015 A1
20150306408 Greenhut et al. Oct 2015 A1
20150320328 Albert Nov 2015 A1
20150321016 O'Brien et al. Nov 2015 A1
20150328459 Chin et al. Nov 2015 A1
20150335884 Khairkhahan et al. Nov 2015 A1
20160015322 Anderson et al. Jan 2016 A1
20160023000 Cho et al. Jan 2016 A1
20160030757 Jacobson Feb 2016 A1
20160033177 Barot et al. Feb 2016 A1
20160121127 Klimovitch et al. May 2016 A1
20160121128 Fishler et al. May 2016 A1
20160121129 Persson et al. May 2016 A1
20160213919 Suwito et al. Jul 2016 A1
20160213937 Reinke et al. Jul 2016 A1
20160213939 Carney et al. Jul 2016 A1
20160228026 Jackson Aug 2016 A1
20160235319 Albert Aug 2016 A1
20160242665 Galloway et al. Aug 2016 A1
20160242697 Albert Aug 2016 A1
20160249823 Galloway et al. Sep 2016 A1
20160271406 Maile Sep 2016 A1
20160277097 Ludwig et al. Sep 2016 A1
20160310048 Pang et al. Oct 2016 A1
20160317825 Jacobson Nov 2016 A1
20160331247 Albert Nov 2016 A1
20160331980 Strommer et al. Nov 2016 A1
20160367823 Cowan et al. Dec 2016 A1
20160367827 Tahmasian Dec 2016 A1
20170014629 Ghosh et al. Jan 2017 A1
20170035315 Jackson Feb 2017 A1
20170043173 Sharma et al. Feb 2017 A1
20170043174 Greenhut et al. Feb 2017 A1
20170095670 Ghaffar et al. Apr 2017 A1
20170189681 Anderson Jul 2017 A1
20170215755 Albert et al. Aug 2017 A1
20170215756 Galloway et al. Aug 2017 A1
20170238814 Gopalakrishnan et al. Aug 2017 A1
20170265806 Albert Sep 2017 A1
20170281261 Shuros et al. Oct 2017 A1
20170281952 Shuros et al. Oct 2017 A1
20170281953 Min et al. Oct 2017 A1
20170281955 Maile et al. Oct 2017 A1
20170312531 Sawchuk Nov 2017 A1
20180256902 Toy et al. Sep 2018 A1
20180256909 Smith et al. Sep 2018 A1
20180264262 Haasl et al. Sep 2018 A1
20180264270 Koop et al. Sep 2018 A1
20180264272 Haasl et al. Sep 2018 A1
20180264273 Haasl et al. Sep 2018 A1
20180264274 Haasl et al. Sep 2018 A1
20180339160 Carroll Nov 2018 A1
Foreign Referenced Citations (47)
Number Date Country
2008279789 Oct 2011 AU
2008329620 May 2014 AU
2014203793 Jul 2014 AU
1003904 Jan 1977 CA
202933393 May 2013 CN
0362611 Apr 1990 EP
503823 Sep 1992 EP
1702648 Sep 2006 EP
1962953 Apr 2011 EP
1904166 Jun 2011 EP
2471452 Jul 2012 EP
2433675 Jan 2013 EP
2441491 Jan 2013 EP
2452721 Nov 2013 EP
2662113 Nov 2013 EP
1948296 Jan 2014 EP
2760541 May 2016 EP
2833966 May 2016 EP
2000051373 Feb 2000 JP
2002502640 Jan 2002 JP
2004512105 Apr 2004 JP
2005508208 Mar 2005 JP
2005245215 Sep 2005 JP
2008540040 Nov 2008 JP
5199867 Feb 2013 JP
9500202 Jan 1995 WO
9636134 Nov 1996 WO
9724981 Jul 1997 WO
9826840 Jun 1998 WO
9939767 Aug 1999 WO
0234330 May 2002 WO
02098282 Dec 2002 WO
2005000206 Jan 2005 WO
2005042089 May 2005 WO
2006065394 Jun 2006 WO
2006086435 Aug 2006 WO
2006113659 Oct 2006 WO
2006124833 Nov 2006 WO
2007073435 Jun 2007 WO
2007075974 Jul 2007 WO
2007150003 Dec 2007 WO
2009006531 Jan 2009 WO
2012054102 Apr 2012 WO
2013080038 Jun 2013 WO
2013098644 Jul 2013 WO
2013184787 Dec 2013 WO
2014120769 Aug 2014 WO
Non-Patent Literature Citations (7)
Entry
US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn)
“Instructions for Use System 1, Leadless Cardiac Pacemaker (LCP) and Delivery Catheter,” Nanostim Leadless Pacemakers, pp. 1-28, 2013.
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003.
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineering,vol. 60(8): 2067-2079, 2013.
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970.
Wegmüller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007.
Senseonics, “Improving Connectivity Between a Medical Mobile App and an Implantable Sensor”, Sagentia.com, 2 pages, Acessed Oct. 18, 2017.
Related Publications (1)
Number Date Country
20190201701 A1 Jul 2019 US
Provisional Applications (1)
Number Date Country
62613588 Jan 2018 US