Handheld controller with finger grip detection

Information

  • Patent Grant
  • 10130875
  • Patent Number
    10,130,875
  • Date Filed
    Thursday, November 12, 2015
    8 years ago
  • Date Issued
    Tuesday, November 20, 2018
    5 years ago
Abstract
A handheld controller including a main body having a thumb surface and a thumbstick extending from the thumb surface. A trigger button is positioned on the main body and a handle extends from the main body on a side opposite the trigger button, wherein the handle has a palm side and a finger side. A third-finger button is positioned on the finger side of the handle and includes a magnet mounted thereon. A sensor operative to detect the magnet is positioned inside the handle adjacent the magnet.
Description
TECHNICAL FIELD

This patent application is directed to handheld controllers and, more specifically, to virtual reality handheld controllers.


BACKGROUND

In a virtual reality system, a user wears a head-mounted display that presents a selected virtual reality (VR) environment in front of the user's eyes. In some VR systems, a user can manipulate items in the virtual environment with handheld controllers. The controllers include tracking patterns comprised of a pattern of lights, for example. The system monitors the movement of the tracking patterns with a tracking camera and reproduces the user's hand movements in the virtual environment. However, buttons traditionally used on game controllers, for example, do not typically detect detailed hand movements. For example, individual finger movements and gestures, as well as opened or closed hand movements, are not captured with traditional button configurations.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the handheld controller with finger grip detection introduced herein may be better understood by referring to the following Detailed Description in conjunction with the accompanying drawings, in which like reference numerals indicate identical or functionally similar elements:



FIG. 1 is an isometric view of a pair of handheld controllers each including finger grip detection according to a representative embodiment.



FIG. 2 is an isometric view of a user's right hand grasping the right-hand controller of FIG. 1.



FIG. 3 is an isometric view of the right-hand controller shown in FIGS. 1 and 2 as viewed from the handle.



FIG. 4 is a side view and elevation with various components hidden to show a finger button mounting arrangement.



FIG. 5 is a front isometric view of the handheld controller with various components hidden to show a finger button mounting arrangement.



FIG. 6 is an isometric view of the handheld controller of FIG. 5 as viewed from above with various components hidden to show the finger button position sensor.



FIG. 7 is a front view in elevation of a handheld controller including grip detection according to another representative embodiment.





The headings provided herein are for convenience only and do not necessarily affect the scope or meaning of the claimed embodiments. Further, the drawings have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be expanded or reduced to help improve the understanding of the embodiments. Moreover, while the disclosed technology is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the embodiments described. On the contrary, the embodiments are intended to cover all modifications, equivalents, and alternatives falling within the scope of the embodiments as defined by the appended claims.


DETAILED DESCRIPTION

Overview


A handheld controller with finger grip detection is disclosed. In an embodiment, the handheld controller includes a main body having a thumb surface and a thumbstick extending from the thumb surface. A trigger button is positioned on the main body and a handle extends from the main body on a side opposite the trigger button, wherein the handle has a palm side and a finger side. A third-finger button is positioned on the finger side of the handle and includes a magnet mounted thereon. A sensor operative to detect the magnet is positioned inside the handle adjacent the magnet.


General Description


Various examples of the devices introduced above will now be described in further detail. The following description provides specific details for a thorough understanding and enabling description of these examples. One skilled in the relevant art will understand, however, that the techniques discussed herein may be practiced without many of these details. Likewise, one skilled in the relevant art will also understand that the technology can include many other features not described in detail herein. Additionally, some well-known structures or functions may not be shown or described in detail below so as to avoid unnecessarily obscuring the relevant description.


The terminology used below is to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of some specific examples of the embodiments. Indeed, some terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this section.



FIG. 1 illustrates a pair of handheld controllers 100 according to a representative embodiment. The pair of handheld controllers 100 includes a right-hand controller 102 and a left-hand controller 104. The primary structure of the right-hand controller 102 and the left-hand controller 104 when held adjacent to each other in a similar orientation, as illustrated, are substantially symmetric with respect to each other. Both the controllers 102/104 are described herein with respect to the right-hand controller 102, as both controllers include the same or similar features, albeit in mirror image. The right-hand controller 102 includes a main body 106 and a handle portion 108 extending from the main body 106. In some embodiments, a surrounding ring portion 110 extends from the main body 106. The controllers 102/104 can be part of a VR system 10, such as the Rift™ available from Oculus™.


As shown in FIG. 2, the right-hand controller 102 includes a thumbstick 112, a trigger button 114 and a third-finger button 116. The main body 106 includes a thumb surface 118 from which the thumbstick 112 extends. The main body 106 may also include one or more buttons 120 and 122 positioned on the thumb surface 118. In some embodiments, the thumb surface 118 is a substantially planar surface. The handle portion 108 extends from the main body 106 on a side generally opposite the trigger button 114. The main body 106 and the handle portion 108 are ergonomically contoured such that a user's hand 5 can comfortably grasp the handheld controller 102 as illustrated. When the controller 102 is grasped, the user's thumb 7 (i.e., the first finger) is comfortably positionable above the main body 106 with the thumb 7 engaging on the thumbstick 112. The user's second or index finger 9 is positioned on the trigger button 114. The user's third or middle finger 11 operates the third-finger button 116. The third-finger button 116 is operative to detect whether the user is grasping the handle portion 108 with his or her third-finger 11. In some embodiments, the third-finger button 116 can detect various degrees of deflection corresponding to the force or pressure of a user's grip on the handle portion 108.


In some embodiments, the third-finger button 116 is active depending on the context of an associated virtual environment or game. In other embodiments, the third-finger button 116 is activated mechanically or by another sensor. One embodiment could include a palm sensor (e.g., analogous to a pistol grip safety or grip switch), such that when the palm sensor detects the user's hand, and the third-finger button 116 is released, an output signal indicates an “open-hand gesture.”


When the third-finger button 116 is depressed, the system registers that the user's hand is closed or grasped around the handle portion 108. When the third-finger button 116 is not depressed, the system can indicate an open hand gesture. The presence of a gesture can be a signal to the VR system 10 to initiate a command or to include the gesture in a corresponding apparition or avatar. The third-finger button 116 allows a user to maintain a grip on the handle portion 108 while still being able to provide hand grip inputs to the VR system. In another embodiment, the third button on the handle is positioned for engagement by the user's ring or fourth finger or the pinkie or fifth finger, or a combination of the third, fourth and/or fifth fingers. In some embodiments, the thumbstick 112, the trigger button 114, the thumb surface 118, and the buttons 120 and 122 can be configured to detect other hand and finger gestures as explained in U.S. patent application Ser. No. 14/939,470, titled “METHOD AND APPARATUS FOR DETECTING HAND GESTURES WITH A HANDHELD CONTROLLER,” filed Nov. 12, 2015, which is hereby incorporated by reference in its entirety.


With reference to FIG. 3, the handle portion 108 includes a palm side 124, which confronts the palm of the user's hand 5, and a finger side 126 opposite the palm side 124 and generally confronts the fingers, such as the third-finger 11, of the user's hand 5. Accordingly, the third-finger button 116 is disposed on the finger side 126 of the handle portion 108. As shown in FIG. 4, the third-finger button 116 includes an arm 128 rotatably coupled to the main body 106 via a pivot shaft 130 extending along an axis A. With further reference to FIG. 5, the pivot shaft 130 is mounted at an angle with respect to the main body 106 in clevis arms 132 and 134 extending from the main body 106. In some embodiments, a torsion spring 136 is positioned about the pivot shaft 130 to return the arm 128 to the extended position and to provide tactile feedback to the user's third-finger 11 (see FIG. 2) in the form of a resistive force.


As shown in FIG. 6, the third-finger button 116 includes a detection feature, such as a magnet or other detectable member. In the illustrated embodiment, a magnet 140 is mounted on arm 128. A sensor 142 is positioned inside the handle adjacent the magnet 140. In some embodiments, the sensor 142 is a Hall effect sensor. A Hall effect sensor is a transducer that varies its output voltage in response to a magnetic field. Thus, as the magnet 140 moves closer to the sensor 142, the output voltage varies. Accordingly, the third-finger button 116 is an analog button in that it can detect various degrees of deflection corresponding to the force of a user's grip on the handle portion 108 and output a signal corresponding to movement of the third-finger button 116. In some embodiments, the magnet 140 and the Hall effect sensor 142 may be replaced by an on/off switch such as a miniature snap-action switch, for example. In some embodiments, movement of the third-finger button 116 can be detected with an inductive proximity sensor or other suitable type of proximity sensor. In some embodiments, the detection feature for use with a proximity sensor can be a location (e.g., target location) on the third-finger button 116.



FIG. 7 illustrates a handheld controller 202 according to a representative embodiment. The handheld controller 202 comprises a main body 206, a trigger button 210 positioned on the main body 206, and a handle portion 208 extending from the main body 206 on the side opposite the trigger button 210. The handle portion 208 has a palm side 224 and a finger side 226. A first pressure sensitive sheet or pad 214 is positioned on the palm side 224 of the handle portion 208 and a second pressure sensitive sheet or pad 216 is positioned on the finger side 226. The pressure sensitive pads 214/216 are operative to detect compression of the pads caused by a user's fingers and/or palm, thereby registering the presence and/or strength of a user's grip around the handle portion 208. In some embodiments, the handle portion 208 only includes one or other of the first and second pressure sensitive pads 214/216.


Remarks


The above description and drawings are illustrative and are not to be construed as limiting. Numerous specific details are described to provide a thorough understanding of the disclosure. However, in some instances, well-known details are not described in order to avoid obscuring the description. Further, various modifications may be made without deviating from the scope of the embodiments. Accordingly, the embodiments are not limited except as by the appended claims.


Reference in this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not for other embodiments.


The terms used in this specification generally have their ordinary meanings in the art, within the context of the disclosure, and in the specific context where each term is used. It will be appreciated that the same thing can be said in more than one way. Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein, and any special significance is not to be placed upon whether or not a term is elaborated or discussed herein. Synonyms for some terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification, including examples of any term discussed herein, is illustrative only and is not intended to further limit the scope and meaning of the disclosure or of any exemplified term. Likewise, the disclosure is not limited to various embodiments given in this specification. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the case of conflict, the present document, including definitions, will control.

Claims
  • 1. A handheld controller, comprising: a main body;a handle extending from the main body, wherein the handle: is contoured to be grasped by a user's hand;has a palm side positioned to confront the palm of the user's hand when the handle is grasped; andhas a finger side positioned to confront a finger of the user's hand when the handle is grasped;a trigger button positioned on the main body or handle;a position tracker adapted to track movements of the user's hand in a virtual environment; anda third-finger button, positioned on the finger side of the handle, adapted to track movements of the finger of the user's hand in the virtual environment.
  • 2. The handheld controller of claim 1, wherein the handle is positioned on the main body on a side opposite the trigger button.
  • 3. The handheld controller of claim 1, wherein the main body includes a thumb surface and further comprising a thumbstick extending from the thumb surface.
  • 4. The handheld controller of claim 3, wherein the thumb surface is substantially planar.
  • 5. The handheld controller of claim 3, further comprising one or more buttons positioned on the thumb surface.
  • 6. The handheld controller of claim 1, further comprising a surrounding ring portion extending from the main body.
  • 7. The handheld controller of claim 1, further comprising a detection member connected to the third-finger button and configured to detect movement of third-finger button to generate a hand-gesture signal.
  • 8. The handheld controller of claim 1, further comprising a magnet mounted on the third-finger button and a sensor operative to detect the magnet positioned inside the handle adjacent the magnet.
  • 9. The handheld controller of claim 1, wherein the third-finger button is pivotably coupled to the controller.
  • 10. A handheld controller, comprising: a main body having a thumb surface;a thumbstick extending from the thumb surface;a surrounding ring portion extending from the main body;a handle extending from the main body, wherein the handle: is contoured to be grasped by a user's hand;has a palm side positioned to confront the palm of the user's hand when the handle is grasped; andhas a finger side positioned to confront a finger of the user's hand when the handle is grasped;a trigger button positioned on the main body or handle;a position tracker adapted to track movements of the user's hand in a virtual environment;a third-finger button, positioned on the finger side of the handle, adapted to track movements of the finger of the user's hand in the virtual environment;a detection feature positioned on the third-finger button; anda sensor operative to detect the detection feature positioned inside the handle adjacent the detection feature and output a signal corresponding to movement of the third-finger button.
  • 11. The handheld controller of claim 10, wherein the detection feature is a magnet.
  • 12. The handheld controller of claim 10, wherein the handle is positioned on the main body on a side opposite the trigger button.
  • 13. The handheld controller of claim 10, wherein the third-finger button is pivotably coupled to the controller.
  • 14. The handheld controller of claim 10, wherein the thumb surface is substantially planar.
  • 15. The handheld controller of claim 14, further comprising one or more buttons positioned on the thumb surface.
  • 16. A handheld controller, comprising: a main body;a handle extending from the main body, wherein the handle: is contoured to be grasped by a user's hand;has a palm side positioned to confront the palm of the user's hand when the handle is grasped; andhas a finger side positioned to confront a finger of the user's hand when the handle is grasped;a trigger button positioned on the main body or handle;a position tracker adapted to track movements of the user's hand in a virtual environment; anda pressure sensitive pad, positioned on the finger side of the handle, adapted to track movements of the finger of the user's hand in the virtual environment.
  • 17. The handheld controller of claim 16, wherein the main body includes a thumb surface and further comprising a thumbstick extending from the thumb surface.
  • 18. The handheld controller of claim 17, wherein the thumb surface is substantially planar.
  • 19. The handheld controller of claim 17, further comprising one or more buttons positioned on the thumb surface.
  • 20. The handheld controller of claim 16, further comprising a surrounding ring portion extending from the main body.
US Referenced Citations (122)
Number Name Date Kind
4518164 Hayford, Jr. et al. May 1985 A
4552360 Schenck et al. Nov 1985 A
5087825 Ingraham et al. Feb 1992 A
5181009 Perona Jan 1993 A
5207426 Inoue et al. May 1993 A
D341094 Austin Nov 1993 S
5265009 Colavita et al. Nov 1993 A
D350351 Nakamura Sep 1994 S
5421590 Robbins et al. Jun 1995 A
D363320 Barthelemy et al. Oct 1995 S
5479163 Samulewicz Dec 1995 A
D369754 Donaldson May 1996 S
5551701 Bouton Sep 1996 A
5616078 Oh et al. Apr 1997 A
5645277 Cheng Jul 1997 A
5796354 Cartabiano et al. Aug 1998 A
5982355 Jaeger et al. Nov 1999 A
D418174 Jankowski Dec 1999 S
D418879 Hornsby et al. Jan 2000 S
6173203 Barkley et al. Jan 2001 B1
6192253 Charlier et al. Feb 2001 B1
6430110 Baroche et al. Aug 2002 B2
D472972 Anderson et al. Apr 2003 S
6544124 Woodward et al. Apr 2003 B2
6572108 Bristow Jun 2003 B1
6590835 Farine et al. Jul 2003 B2
6652383 Sonoda et al. Nov 2003 B1
6970157 Siddeeq et al. Nov 2005 B2
7004469 von Goeben et al. Feb 2006 B2
7106197 Gaiotto et al. Sep 2006 B2
7331793 Hernandez et al. Feb 2008 B2
7345670 Armstrong et al. Mar 2008 B2
D586823 Anderson et al. Feb 2009 S
D616417 Liao et al. May 2010 S
8064972 Russo et al. Nov 2011 B2
D656996 Mikhailov et al. Apr 2012 S
8188842 Otsuka et al. May 2012 B2
8267786 Ikeda Sep 2012 B2
8439753 Nagata et al. May 2013 B2
8795078 Musick, Jr. et al. Aug 2014 B1
8882596 Takahashi et al. Nov 2014 B2
8994643 Goodwin et al. Mar 2015 B2
D729803 Avery et al. May 2015 S
9141087 Brown et al. Sep 2015 B2
9386662 Krueger et al. Jul 2016 B1
9421472 Buller et al. Aug 2016 B2
D772986 Bristol et al. Nov 2016 S
D780807 Bristol et al. Mar 2017 S
9678566 Webb et al. Jun 2017 B2
D795959 Hubler et al. Aug 2017 S
D800841 Hubler et al. Oct 2017 S
9804693 Long Oct 2017 B2
D802055 Chen et al. Nov 2017 S
9839840 Long et al. Dec 2017 B2
20010015718 Hinckley et al. Aug 2001 A1
20010045938 Willner et al. Nov 2001 A1
20020072415 Kikukawa et al. Jun 2002 A1
20030100367 Cooke et al. May 2003 A1
20040222963 Guo et al. Nov 2004 A1
20040222970 Martinez et al. Nov 2004 A1
20050248544 Adam et al. Nov 2005 A1
20050255915 Riggs et al. Nov 2005 A1
20060287089 Addington et al. Dec 2006 A1
20070049374 Ikeda et al. Mar 2007 A1
20070066394 Ikeda et al. Mar 2007 A1
20070084293 Kaiserman et al. Apr 2007 A1
20070293318 Tetterington et al. Dec 2007 A1
20080261693 Zalewski et al. Oct 2008 A1
20080261695 Coe et al. Oct 2008 A1
20090005164 Chang et al. Jan 2009 A1
20090143110 Armstrong et al. Jun 2009 A1
20090149256 Lui et al. Jun 2009 A1
20090290345 Shaner et al. Nov 2009 A1
20090295721 Yamamoto et al. Dec 2009 A1
20090298590 Marks et al. Dec 2009 A1
20100009760 Shimamura et al. Jan 2010 A1
20100085321 Pundsack et al. Apr 2010 A1
20100118195 Eom et al. May 2010 A1
20100144436 Marks et al. Jun 2010 A1
20100184513 Mukasa et al. Jul 2010 A1
20110294579 Marks et al. Dec 2011 A1
20120088582 Wu et al. Apr 2012 A1
20120202597 Yee et al. Aug 2012 A1
20120261551 Rogers et al. Oct 2012 A1
20130095925 Xu Apr 2013 A1
20130162450 Leong et al. Jun 2013 A1
20130324254 Huang et al. Dec 2013 A1
20140015813 Numaguchi et al. Jan 2014 A1
20140141891 Georgy et al. May 2014 A1
20140203953 Moser et al. Jul 2014 A1
20140228124 Plagge et al. Aug 2014 A1
20140273546 Harmon et al. Sep 2014 A1
20140361977 Mao et al. Dec 2014 A1
20140362110 Stafford Dec 2014 A1
20140364212 Osman et al. Dec 2014 A1
20140378227 Lee Dec 2014 A1
20150077398 Yairi et al. Mar 2015 A1
20150094142 Stafford Apr 2015 A1
20150155445 Crowder et al. Jun 2015 A1
20150234477 Watson et al. Aug 2015 A1
20150253574 Thurber Sep 2015 A1
20150258431 Strafford et al. Sep 2015 A1
20150258432 Tokubo et al. Sep 2015 A1
20150268920 Schapiro Sep 2015 A1
20150370320 Connor et al. Dec 2015 A1
20160351362 Gassoway et al. Dec 2016 A1
20160357249 Webb et al. Dec 2016 A1
20160357261 Webb et al. Dec 2016 A1
20160361637 Bristol et al. Dec 2016 A1
20160361638 Rogoza et al. Dec 2016 A1
20160363996 Rogoza et al. Dec 2016 A1
20160364910 Katz et al. Dec 2016 A1
20170128828 Long May 2017 A1
20170131767 Long May 2017 A1
20170139481 Long et al. May 2017 A1
20170168303 Petrov et al. Jun 2017 A1
20170177102 Long Jun 2017 A1
20170189798 Rogoza et al. Jul 2017 A1
20170189799 Anderson et al. Jul 2017 A1
20170189802 Rogoza et al. Jul 2017 A1
20170192495 Drinkwater et al. Jul 2017 A1
20170192506 Andersen et al. Jul 2017 A1
Non-Patent Literature Citations (51)
Entry
Sixense Releases 3D Printable Componets to Create Add-ons for STEM Motion Controller—https://www.roadtovr.com/sixense-releases-3d-printable-components-create-add-ons-stem-motion-controller/—Oct. 8, 2014.
Canadian Examiner's Report in Patent Application No. 163,150, dated Dec. 15, 2015, 5 pages.
Canadian Examiner's Report in Patent Application No. 163,150, dated Apr. 8, 2016, 7 pages.
Canadian Examiner's Report in Patent Application No. 167,457, dated Apr. 8, 2016, 1 page.
Canadian Examiner's Report in Patent Application No. 167,458, dated Apr. 8, 2016, 1 page.
Canadian Examiner's Report in Patent Application No. 167,456, dated Apr. 8, 2016, 1 page.
First Examination Report in Indian Patent Application No. 278272, dated Mar. 18, 2016, 2 pages.
First Examination Report in Indian Patent Application No. 278275, dated Mar. 28, 2016, 2 pages.
First Examination Report in Indian Patent Application No. 278274, dated Mar. 14, 2016, 2 pages.
First Examination Report in Indian Patent Application No. 278273, dated Mar. 18, 2016, 2 pages.
Office Action in Korean Patent Application No. 30-2015-0063452, dated Aug. 9, 2016, 3 pages.
U.S. Appl. No. 29/529,915 by Chen, Y., et al., filed Jun. 11, 2015.
U.S. Appl. No. 29/571,025 by Chen, Y., et al., filed Jul. 13, 2016.
U.S. Appl. No. 29/571,027 by Chen, Y., et al., filed Jul. 13, 2016.
U.S. Appl. No. 29/571,030 by Chen, Y., et al., filed Jul. 13, 2016.
U.S. Appl. No. 14/991,875 by Drinkwater, J., et al., filed Jan. 8, 2016.
U.S. Appl. No. 15/172,099 by Rogoza, B., et al., filed Jun. 2, 2016.
U.S. Appl. No. 15/173,474 by Rogoza, B., et al., filed Jun. 3, 2016.
U.S. Appl. No. 15/173,558 by Andersen, B., et al., filed Jun. 3, 2016.
U.S. Appl. No. 15/177,121 by Anderson, B., et al., filed Jun. 2, 2016.
U.S. Appl. No. 29/579,091 by Chen, Y., et al., filed Sep. 27, 2016.
Notice of Allowance dated Jun. 29, 2016, for U.S. Appl. No. 29/529,915 by Chen, Y., et al., filed Jun. 11, 2015.
Restriction Requirement dated Apr. 8, 2016, for U.S. Appl. No. 29/529,915 by Chen, Y., et al., filed Jun. 11, 2015.
Notice of Allowance dated Sep. 27, 2016, for U.S. Appl. No. 29/529,915 by Chen, Y., et al., filed Jun. 11, 2015.
Non-Final Office Action dated Mar. 23, 2017 for U.S. Appl. No. 14/934,073 by Long, C., et al., filed Nov. 5, 2015.
Non-Final Office Action dated Mar. 30, 2017 for U.S. Appl. No. 14/939,470 by Long, C., et al., filed Nov. 12, 2015.
Non-Final Office Action dated Apr. 7, 2017 for U.S. Appl. No. 14/975,049 by Long, C., et al., filed Dec. 18, 2015.
Ex Parte Quayle Action dated May 5, 2017 for U.S. Appl. No. 29/571,027 by Chen, Y., et al., filed Jul. 13, 2016.
Ex Parte Quayle Action dated May 5, 2017 for U.S. Appl. No. 29/571,030 by Chen, Y., et al., filed Jul. 13, 2016.
Ex Parte Quayle Action dated May 8, 2017 for U.S. Appl. No. 29/571,025 by Chen, Y., et al., filed Jul. 13, 2016.
Notice of Allowance dated Jun. 15, 2017 of U.S. Appl. No. 29/571,030 by Chen, Y., et al., filed Jul. 13, 2016.
Notice of Allowance dated Jun. 21, 2017 for U.S. Appl. No. 29/571,025 by Chen, Y., et al., filed Jul. 13, 2016.
Notice of Allowance dated Jun. 22, 2017 for U.S. Appl. No. 29/571,027 by Chen, Y., et al., filed Jul. 13, 2016.
U.S. Appl. No. 14/934,073 by Long, C., et al., filed Nov. 5, 2015.
U.S. Appl. No. 14/934,090 by Long, C., et al., filed Nov. 5, 2015.
U.S. Appl. No. 14/939,470 by Long, C., et al., filed Nov. 12, 2015.
U.S. Appl. No. 14/975,049 by Long, C., et al., filed Dec. 18, 2015.
Supplemental Notice of Allowability dated Jul. 10, 2017 of U.S. Appl. No. 29/571,030 by Chen, Y., et al., filed Jul. 13, 2016.
Supplemental Notice of Allowability dated Jul. 6, 2017 for U.S. Appl. No. 29/571,025 by Chen, Y., et al., filed Jul. 13, 2016.
Advisory Action dated Dec. 27, 2017 for U.S. Appl. No. 14/939,470 by Long, C., et al., filed Nov. 12, 2015.
Notice of Allowance dated Dec. 22, 2017 for U.S. Appl. No. 14/991,875 by Drinkwater, J., et al., filed Jan. 8, 2016.
Final Office Action dated Nov. 2, 2017 for U.S. Appl. No. 14/934,073 by Long, C., et al., filed Nov. 5, 2015.
Notice of Allowance dated Oct. 20, 2017 for U.S. Appl. No. 14/934,090 by Long, C., et al., filed Nov. 5, 2015.
Restriction Requirement dated Oct. 12, 2017 for U.S. Appl. No. 29/579,091 by Chen, Y., et al., filed Sep. 27, 2016.
Supplemental Notice of Allowability dated Sep. 29, 2017 for U.S. Appl. No. 29/571,027 by Chen, Y., et al., filed Jul. 13, 2016.
Tested, “Hands-On with Sixense STEM VR Motion-Tracking System” accessed and printed from URL <https://www.youtube.com/watch?v=C8z-On6FBTM>, 5 pages, Jan. 29, 2014.
Non-Final Office Action dated Nov. 1, 2017 for U.S. Appl. No. 15/173,558 by Andersen, B., et al., filed Jun. 3, 2016.
Final Office Action dated Aug. 18, 2017 for U.S. Appl. No. 14/939,470 by Long, C., et al., filed Nov. 12, 2015.
Non-Final Office Action dated Aug. 24, 2017 for U.S. Appl. No. 14/991,875 by Drinkwater, J., et al., filed Jan. 8, 2016.
Notice of Allowance dated Sep. 15, 2017 for U.S. Appl. No. 14/975,049 by Long, C. et al., filed Dec. 15, 2015.
U.S. Appl. No. 29/611,924 by Chen, Y., et al., filed Jul. 26, 2017.
Related Publications (1)
Number Date Country
20170136351 A1 May 2017 US