The present invention relates to handheld devices equipped with a microphone.
Many electronic consumer devices, such as flat televisions, set-top boxes, Blu-ray players or home theatre systems, are operated using a handheld remote control. In recent years voice control has been introduced in such devices, usually as an additional way of controlling the device. In such cases commonly the remote control has a microphone built in for receiving the commands spoken by the user, which are interpreted using well-known speech recognition technology.
The distance between the microphone and the user's mouth may vary quite a lot, from a few centimetres when held close to the mouth to more than half a meter when held at arm's length. This greatly affects the sound level received by the microphone, and the gain of the microphone amplifier needs to be adjusted accordingly. Unfortunately, automatic gain control cannot always be applied. For example, when a command consists of just a short word, adjusting the gain halfway the word will interfere with the speech recognition and hamper the correct recognition of the command.
A similar problem occurs in other handheld devices, such as for example smart phones, where speech is received for control as well as for communication purposes.
US 2013/0202130 A1 describes a hand held device equipped with a sensor system for measuring the distance to the user's head by using infrared, acoustic or photographic sensors. The measured distance is used to adjust the microphone amplifier gain.
US 2011/0158425 A1 describes a cellular phone that adjusts the directivity of its two microphones based on acquired sound source direction information if the acquired sound source direction information is determined to be correct and based on a determined tilt angle and a previously learned mapping from tilt angle to sound source direction information otherwise. US 2011/0158425 A1 further describes the cellular phone including a microphone gain controller for adjusting the gain of amplification of a sound signal input from the microphones based on the sound source direction information.
These solutions are not always practical in consumer electronics devices such as remote controls or other hand held devices, and they are also expensive.
It is an object of the invention to offer an improved alternative solution for adjusting the microphone gain in a hand held device.
This is achieved, according to a first aspect of the invention, by a handheld device comprising a microphone for converting speech into an audio signal, an audio signal amplifier for amplifying the audio signal, means for adjusting the gain of the audio signal amplifier, and means for determining an orientation of the device with respect to a horizontal plane, characterized in that the device is configured to adjust the gain of the audio signal amplifier in a dependence on the determined orientation of the device, the device being configured to adjust the gain of the audio amplifier to a first value when the device is oriented essentially horizontal and to a second value when the device is oriented essentially vertical, the first value being higher than the second value. The invention is, inter alia, based on the insight that for handheld devices the orientation of the device is a good indicator for the distance between the device and the user's mouth. This enables the correct setting of the microphone gain without actually measuring this distance, which can be realized in a technically simple manner.
Detecting whether a device is oriented essentially horizontal or vertical is known from US2011/0191108, which describes activating a voice search by tilting the remote into an upright position like a hand held microphone.
In an embodiment of the invention, the device is configured to adjust the gain of the audio signal amplifier such that the gain increases with an increasing angle of device with respect to the horizontal plane. In a further embodiment the highest gain value corresponds to an essentially vertical orientation of the device. And in a further embodiment the lowest gain value corresponds to an essentially horizontal orientation of the device. These are all based on the insight that a vertical orientation corresponds in practice to the closest distance between the device and the user's mount, whereas a horizontal orientation corresponds to the largest distance in practical use.
In a further embodiment of the invention, the device comprises means for determining the strength of the audio signal, and is configured to determine the dependence based on the determined orientation and a determined signal strength. In a further embodiment the dependence is determined by comparing tilt values with audio signal strength during use of the device. These embodiments have the advantage that the device can ‘learn’ the relation between orientation and distance in practice, adapted to a particular user.
Further embodiments of the device according to the invention and the advantages thereof will be apparent from and elucidated further with reference to the accompanying drawings, in which
The following description focusses mainly on embodiments of the invention applied in remote control of a consumer electronics device with voice control functionality, by way of example. However, it must be appreciated that the invention is not limited to such remote controls only, but may be applied in other handheld consumer devices that receive sound input, such as tablets or mobile phones. Also the invention is not limited to the functionality of voice control, the sound input may also be used for other purposes, such as communication.
The difference in distance between the two situations means that the sound intensity received by the microphone 12 may differ two orders of magnitude due to the quadratic decay of sound intensity with distance. To handle both situations correctly some form of gain control will be needed to prevent clipping or too low levels in the audio signal. Automatic gain control cannot always be applied, however. In case speech is received for voice control, changing the gain during a command spoken by the user my interfere with the correct recognition of the command. Also, means for automatic gain control may not be present in the remote control device.
If the distance d between mouth and microphone 12 could be measured, the result could be used to set a proper gain depending on the distance. This will work well in practice, but the means needed to perform the measurement are not commonly present in handheld devices, and too expensive to add just for this function.
The inventors have realised that it is possible to distinguish between the situations of
Increasingly, modern remote controls may also include pointing technology, by which the user can control, for example, a pointer or indicator on a television screen by moving the remote control. This functionality is commonly enabled by accelerometers, gyroscopic or other sensors in the remote control, which have become quite common with the advent of microelectromechanical systems (MEMS) technology.
The inventors have realised that the sensors used for the pointing functionality can be used to determine the tilt of the remote control. Such sensors commonly can detect the direction of gravity, so they can be used to determine the tilt of the remote control. Even if types of sensors are used that can only detect relative tilt, the absolute tilt may still be determined after some form of calibration. In case of a remote control this can be done while the remote control is in a known position which is associated with a predetermined orientation, for example lying on a table where it spends most of its time and wherein the device has a horizontal orientation. If the remote control has some form of charging station, which is common for devices with pointing functionality, the orientation of the device when it is placed in the charging device will be known and fixed, and can be used to calibrate the absolute tilt.
In a first basic approach, the tilt of the remote control device is measured using the sensors, and the gain for the microphone amplifier is determined based on the tilt value. There may be a simple linear or other predetermined relation between tilt value and gain value, or a lookup table (LUT) may be used in which the appropriate gain value for certain tilt values is fixed, and intermediate values may be derived with interpolation.
Alternatively, the device may self-learn the relation between required gain value and tilt value during use. By relating tilt values with audio signal strength a relationship between appropriate gain value and tilt can be established, which is in that case implicitly adjusted to the user with regard to for example loudness of voice, ways of holding the remote control, or length of arms. This self-learning may continuously occur during regular usage of the remote control, or there may be a calibration procedure in which the user is asked to give a number of commands holding the remote control in various ways.
Although several embodiments of the present invention have been illustrated in the accompanying drawings and described in the above detailed description, it will be understood that the invention is not limited to the embodiments disclosed, but is capable of numerous modifications without departing from the scope of the invention as set out in the following claims.
Number | Date | Country | Kind |
---|---|---|---|
14153734.0 | Feb 2014 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/052058 | 2/2/2015 | WO | 00 |