Handheld dimensioner with data-quality indication

Information

  • Patent Grant
  • 10060729
  • Patent Number
    10,060,729
  • Date Filed
    Tuesday, October 21, 2014
    10 years ago
  • Date Issued
    Tuesday, August 28, 2018
    6 years ago
Abstract
A handheld dimensioner with a user interface configured to present a quality indicator is disclosed. The handheld dimensioner is configured to capture three-dimensional (3D) data and assess the three-dimensional-data's quality. Based on this quality, a quality indicator may be generated and presented to a user via the user interface. This process may be repeated while the user repositions the handheld dimensioner. In this way, the user may use the quality indicators generated at different positions to find an optimal position for a particular dimension measurement.
Description
FIELD OF THE INVENTION

The present invention relates to dimensioning systems, and in particular, to a handheld dimensioner with a user interface that indicates the quality of the dimensioning data captured by the dimensioner.


BACKGROUND

Most transport vehicles have both volume and weight capacity limits. An inefficient use of space results if the transport vehicle becomes full before its weight capacity is reached. By dimensioning packages, shipping companies can fill space optimally and compute shipping charges accurately.


Hands-free measurements of an object's dimensions (e.g., volume) may be carried out using a dimensioning system (i.e., dimensioner). These systems can accurately gather volume information, without causing disruptions in workflow. Handheld dimensioners require no dedicated setup to measure an object's dimensions. These devices are small (e.g., fit into a user's hand) and convenient. Since the dimensioner is mobile, it may be positioned in a wide variety of environments. These environments may vary considerably due to lighting, object location, and/or object coloring. Some environments are not suitable for dimensioning; however, this is not always obvious to a user. Dimensioning data captured in adverse environments may lead to unfavorable results.


A need, therefore, exists for a handheld dimensioner with a user interface configured to indicate the quality of the dimensioning data so a user can respond as necessary.


SUMMARY

In one aspect, the present invention embraces a method for indicating a quality of three-dimensional data captured by a handheld dimensioner. The method includes capturing three-dimensional data of a field-of-view with a sensor. The three-dimensional data is then transmitted to a processor where its quality is assessed. Based on this assessment, a quality indicator, corresponding to the quality, is generated using the processor. The quality indicator is then signaled to a user via a user interface.


In an exemplary embodiment, the method described repeats as the user repositions the handheld dimensioner. The user may use the quality indicators for various positions to find an optimal position for a particular measurement.


In another exemplary embodiment, the user interface includes a display for signaling the quality indicator. Here the quality indicator could include a visual image of the field-of-view with a graphical overlay corresponding to the quality. Alternatively, the quality indicator could include a gauge graphic displaying the quality as one of a range of possible qualities. Still another quality indicator could include a graphic in which the graphic's color corresponded to the quality.


In another exemplary embodiment, the user interface includes a light for signaling the quality indicator. Here, the quality indicator could include pulsating illumination where the pulsating-illumination's pulse rate could correspond to the quality.


In another exemplary embodiment, the user interface includes a speaker for signaling the quality indicator. Here the quality indicator could include a sound, wherein the sound's volume and/or frequency could correspond to the quality.


In yet another exemplary embodiment, the user interface includes a haptic device for signaling the quality indicator. Here the quality indicator could include a vibration, wherein the vibration's amplitude and/or rate could correspond to the quality.


In another aspect, the present invention embraces a handheld dimensioner configured to indicate the quality of three-dimensional data used for dimensioning. The handheld dimensioner includes a dimensioning subsystem for capturing visual images and three-dimensional data of a field-of-view. The dimensioner also includes a user-interface subsystem configured to present a quality indicator to a user. In addition, the dimensioner includes a control subsystem communicatively coupled to the dimensioning subsystem and the user-interface subsystem. The control subsystem includes at least one processor. The control subsystem also includes at least one non-transitory storage medium for storing processor-executable instructions. These processor-executable instructions configure the processor to receive three-dimensional data from the dimensioning subsystem, assess the three-dimensional-data's quality, generate the quality indicator corresponding to the quality, and transmit the quality indicator to the user-interface.


In an exemplary embodiment, the handheld dimensioner's user-interface subsystem includes a display for presenting the quality indicator to the user. Here, the quality indicator could include (i) a visual image of the field-of-view with a graphical overlay that corresponds to the quality, (ii) a graphical scale displaying the quality as one of a range of qualities on the graphical scale, and/or (iii) at least one prompt for provoking an action by a user.


In another exemplary embodiment, the handheld-dimensioner's user interface includes a light for presenting illumination corresponding to the quality indicator.


In another exemplary embodiment, the handheld-dimensioner's user interface includes a speaker, for presenting sounds corresponding to the quality indicator.


In yet another exemplary embodiment the handheld-dimensioner's user interface includes a haptic device for presenting vibrations corresponding to the quality indicator.


The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the invention, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts images with quality indicators demonstrating the use of quality indicators.



FIG. 2 graphically depicts a flowchart illustrating an exemplary method for indicating the quality of three-dimensional data captured by a handheld dimensioner.



FIG. 3 schematically depicts a block diagram of an exemplary handheld dimensioner.





DETAILED DESCRIPTION

The present invention embraces a handheld dimensioning system (i.e., dimensioner) that provides indicators regarding the quality of the three-dimensional data used for dimensioning. This qualitative feedback helps a user operate the handheld dimensioner reliably.


Handheld dimensioning is a challenging problem. The measurement environment is uncontrolled. As a result, the dimensioner must either accommodate a huge range of measurement conditions, or more practically, provide feedback to help a user understand the limits imposed by the measurement conditions. The measurement conditions include diverse lighting conditions, diverse measurement geometries (e.g., spatial relationships and orientations), and/or diverse object colors.


Handheld dimensioner users typically have a low tolerance for excessive measurement times and/or alignment complexities. A handheld dimensioner must employ a flexible sensing-technology to achieve reliable measurements in various conditions.


A variety of sensing technologies have been employed for dimensioning (e.g., time-of-flight sensing or stereoscopic imaging) to capture range data (i.e., three-dimensional data). While any may be used, one sensing technology well suited for handheld dimensioners uses structured light. Structured-light dimensioners sense depth by projecting a known light pattern (e.g., dots, grids, bars, stripes, checkerboard, etc.) onto a scene (i.e., field-of-view). A pattern image is captured by an image sensor laterally offset from the projector. Distortions in the reflected light pattern caused by objects in the field-of-view are analyzed to derive depth information (i.e., three-dimensional data).


High quality three-dimensional data is necessary for accurate dimensioning. A variety of measurement conditions cause three-dimensional data quality to suffer. One such condition is lighting. Suitable lighting is necessary to produce light-pattern images suitable for structured-light dimensioning. Too little light may lead to noisy images, while excessive light may lead to saturated images. In either case, the light pattern cannot be resolved suitably for dimensioning calculations. The lighting must also be uniform. Images with dark areas and saturated areas may have poor quality, since the dynamic range of the image sensor is often too small to capture both ideally.


Certain measurement geometries (i.e., the relative positions of the dimensioner and the measured object) can also affect the quality of the three-dimensional data. For example, when using a structured light dimensioner, an object's surface must reflect some portion of the projected light pattern in order to convey depth information properly. Typically, three sides of an object should be visible for a volume to be measured. Sometimes, however, one or more surfaces are not visible. In these cases, the dimensioner could be repositioned to improve the quality of the three-dimensional data.


An indication of the three-dimensional data quality may allow for the positioning of the dimensioner (or measured object) and/or the adjustment of lighting to maximize the quality of the three-dimensional data. In this way, a quality indicator may enhance the usability of a handheld dimensioner.


Screen captures from an exemplary handheld dimensioner's user interface are shown in FIG. 1. The results of two measurements are shown. The measurements are from a first position 1 and a second position 2. Presented for each measurement are visible images and quality indicators. The visible images show the dimensioner's field-of-view. In the field-of-view is an object for measurement. The quality indicators correspond to the quality of the three-dimensional data captured for each measurement.


The first-position screen-capture 1 shows a visible image of the object as measured from a first position. One first-position quality-indicator shown is a graphical scale 3. The graphical scale 3 displays the three-dimensional quality (i.e., quality) as one of a range of possible qualities. Here, the graphical-scale's low-scale reading indicates that poor three-dimensional data quality was captured for this measurement.


The low quality of the first-position three-dimensional data is further indicated by a graphical overlay of a wire-frame rendering 4 of the object. The wire-frame rendering represents the dimensioner's sense of the object's edges. Here, the wire-frame rendering does not match the edges of the object; implying that any dimensioning resulting from this measurement could be inaccurate.


There are several possible reasons for the low three-dimensional-data quality at the first position 1. First, the lighting is not uniform and too bright in some areas. The object is positioned in direct sunlight, and as a result, the top surface 5 is fully illuminated while the front surface 6 and the side surface 7 are in shadow. Second, some object surfaces are not easily seen by the dimensioner. When imaged broadside, a surface is in full view, however as the object is rotated away from this orientation the surface seen by the dimensioner diminishes. Here, the object is positioned so that the front surface 6 and top surface 5 are visible but the side surface 7 is less visible.


The screen capture from the first-position measurement 1 also displays an up-arrow 8 and a left-arrow 9. These quality indicators are prompts intended to provoke a user to reposition the dimensioner. By repositioning, the likelihood of capturing high-quality three-dimensional data in a subsequent measurement is improved. In this example, the arrows 8,9 indicate that the user should move the dimensioner up and to the left before taking another dimension measurement.


The visible image of the measurement from the second position 2 is also shown in FIG. 1. Here, the dimensioner has been repositioned and a second measurement has been taken. The second-position quality-indicator 10 indicates high three-dimensional-data quality. The high quality of the data can be attributed to improved illumination conditions and improved visibility of the top surface 5, front surface 6 and side surface 7. The second-position's wireframe-rendering 11 matches the object's edges. The agreement between the wireframe rendering and the object implies an accurate dimension measurement.



FIG. 2 graphically depicts a flowchart illustrating an exemplary method for indicating the quality of three-dimensional data captured by a handheld dimensioner. A handheld dimensioner uses a sensing technology (e.g., structured light, time-of-flight, etc.) to capture three-dimensional data 15 of an object (or objects) in a field-of-view. This three-dimensional data captured may include a depth map.


A depth map is typically a gray scale image of the field-of-view wherein the value of a pixel corresponds to the distance between the dimensioner and the point in the field-of-view represented by the pixel. In some regions of the field of view, however, the sensor may not obtain range information. The quality of the three-dimensional data corresponds to the gaps in the sensed range information. For example, if the number of pixels with no range information (i.e., a null-pixel) is large the depth-map's quality is low. A processor in the handheld dimensioner receives the captured three-dimensional data and assesses its quality 16.


From this quality, the processor may generate a quality indicator 17. For example, the quality indicator may indicate the three-dimensional data completeness. Alternatively, the quality indicator may include information regarding the dimensioners projected results based on the three-dimensional data. Here, the quality indicator could be compared with other sensor outputs, with stored information, or a user's knowledge/expectations to derive a measurement confidence. Still another quality indicator could include prompts to provoke an action. For example, the user might be prompted to move the dimensioner and retake a measurement. Alternatively, the user might be prompted to change a setting and retake a measurement.


After the quality indicator is generated, the processor may transmit the quality indicator information to a user interface where it may be signaled (i.e., presented) to a user 18. The quality indicators may be embodied in different ways. For example, if the user interface includes a display, then the quality indicator may include a visual image of the field-of-view with a graphical overlay corresponding to the quality. Alternatively, the quality indicator may include a graphic for displaying the quality as one of a range of possible qualities. In some cases, the graphic's color may correspond to the quality and in others the shape, size, and/or orientation of the graphic may change to indicate a change in quality.


In another possible embodiment, the user interface includes a light (or lights) for signaling the quality indicator. The lights used are typically light emitting diodes (i.e., LEDs) but could use electrical filaments, plasma, or gas as a means for illumination. The illumination state of the light (or lights) may correspond to the quality. For example, the light brightness could indicate quality. The blinking rate of a light could also indicate quality. For example, if the quality is poor, then the light flashes slowly and as the measurement gets better, the light flashes more rapidly. In some embodiments, the relative state of multiple lights (e.g., a bar-graph light-array) could indicate a quality. Another embodiment could use the color of the illumination to indicate quality.


In another possible embodiment, the user interface includes a speaker for signaling the quality indicator. In this embodiment, the quality indicator may be a sound. The sound's volume, frequency, or modulation could indicate quality.


In another possible embodiment, the user interface could include a haptic device to indicate quality. The haptic device may apply forces, vibrations, and/or motions to a user holding a device to convey the quality. In an exemplary embodiment, a haptic device may include a vibration, and the vibration's amplitude and/or rate (vibration frequency) indicate quality.


Capturing three-dimensional data, assessing its quality to generate a quality indicator and then signaling the quality indicator via a user interface may be repeated 19 to help a user determine an optimized measurement condition. For example, a handheld dimensioner may process three-dimensional data continuously to provide quality feedback to a user in real time. A user may monitor the quality feedback (e.g., a gauge graphic) as the dimensioner is moved into a variety of positions to find a position that gives the highest data quality. Once this position is found then the dimensioner may be positioned in it and triggered to acquire a measurement.



FIG. 3 schematically depicts a block diagram of an exemplary handheld dimensioner. The handheld dimensioner 21 positioned in front of an object 20 may optically measure the object's dimensions (e.g., volume). The dimensioner 21 utilizes a variety of subsystems to measure the object.


A dimensioning subsystem 30 uses at least one image sensor to capture range data of an object or objects within a field-of-view 22. To accomplish this, the dimensioning subsystem 30 uses an imaging lens 31 to focus a real image of the field-of-view 22 onto an image sensor 32 to convert the optical image into an electronic signal. The image sensor 32 may be a charge-coupled device (i.e., CCD) or a sensor using complementary-metal-oxide-semiconductor (i.e., CMOS) technology. The image sensor 32 typically includes a plurality of pixels that sample the real image and convert the real-image intensity into an electronic signal. A digital signal processor (i.e., DSP) 33 is typically included to facilitate the formation of the digital image.


The creation of three-dimensional data (i.e., depth information) is facilitated by a second element in the dimensioning subsystem that either transmits an optical signal (i.e., projector) or images a scene (i.e., sensor). The lens 34 for the projector (or sensor) 55 is typically configured into a stereo arrangement with the imaging lens 31 to allow for the collection of depth information (e.g., using the principle of parallax). The projector (or sensor) 35 is typically communicatively coupled to the DSP 33 which may facilitate its control and communication.


A control subsystem 40 is communicatively coupled to the at least one image sensor (or the image sensor 32 and the projector 35) via the DSP 33. The control subsystem 40 includes one or more processors 41 (e.g., one or more controller, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable gate array (PGA), and/or programmable logic controller (PLC)) to configure the imaging subsystem for the dimensioning data collection and to perform the processing to generate dimensioning measurements and feedback. The processor 41 may be configured by processor-executable instructions (e.g., a software program) stored in at least one non-transitory storage medium (i.e., memory) 42 (e.g., read-only memory (ROM), flash memory, and/or a hard-drive). The processor-executable instructions, when executed by the processor 41 configure the processor to: (i) receive three-dimensional data from the dimensioning subsystem, (ii) assess the three-dimensional-data's quality, (iii) generate a quality indicator corresponding to the quality, (iv) transmit the quality indicator to a user interface, and (v) generate a quality indicator gauge perceivable to the user.


The dimensioning system 21 also includes a user-interface subsystem 50 to display dimension measurements (e.g., linear dimension or volume) and feedback. In some embodiments, the user-interface includes a display, a light, a speaker, and/or a haptic device to convey the quality information.


The dimensioner 21 may also include a communication subsystem 60 for transmitting and receiving information to/from a separate computing device or storage device. This communication subsystem 60 may be wired or wireless and may enable communication via a variety of protocols (e.g., IEEE 802.11, including WI-FI®, BLUETOOTH®, CDMA, TDMA, or GSM).


The subsystems in the dimensioner 21 are electrically connected via a couplers (e.g., wires or fibers) to form an interconnection subsystem 70. The interconnection system 70 may include power buses or lines, data buses, instruction buses, address buses, etc., which allow operation of the subsystems and interaction there between.


* * *

To supplement the present disclosure, this application incorporates entirely by reference the following commonly assigned patents, patent application publications, and patent applications:

  • U.S. Pat. Nos. 6,832,725; 7,128,266; 7,159,783; 7,413,127; 7,726,575; 8,294,969; 8,317,105; 8,322,622; 8,366,005; 8,371,507; 8,376,233; 8,381,979; 8,390,909; 8,408,464; 8,408,468; 8,408,469; 8,424,768; 8,448,863; 8,457,013; 8,459,557; 8,469,272; 8,474,712; 8,479,992; 8,490,877; 8,517,271; 8,523,076; 8,528,818; 8,544,737; 8,548,242; 8,548,420; 8,550,335; 8,550,354; 8,550,357; 8,556,174; 8,556,176; 8,556,177; 8,559,767; 8,599,957; 8,561,895; 8,561,903; 8,561,905; 8,565,107; 8,571,307; 8,579,200; 8,583,924; 8,584,945; 8,587,595; 8,587,697; 8,588,869; 8,590,789; 8,596,539; 8,596,542; 8,596,543; 8,599,271; 8,599,957; 8,600,158; 8,600,167; 8,602,309; 8,608,053; 8,608,071; 8,611,309; 8,615,487; 8,616,454; 8,621,123; 8,622,303; 8,628,013; 8,628,015; 8,628,016; 8,629,926; 8,630,491; 8,635,309; 8,636,200; 8,636,212; 8,636,215; 8,636,224; 8,638,806; 8,640,958; 8,640,960; 8,643,717; 8,646,692; 8,646,694; 8,657,200; 8,659,397; 8,668,149; 8,678,285; 8,678,286; 8,682,077; 8,687,282; 8,692,927; 8,695,880; 8,698,949; 8,717,494; 8,717,494; 8,720,783; 8,723,804; 8,723,904; 8,727,223; D702,237; 8,740,082; 8,740,085; 8,746,563; 8,750,445; 8,752,766; 8,756,059; 8,757,495; 8,760,563; 8,763,909; 8,777,108; 8,777,109; 8,779,898; 8,781,520; 8,783,573; 8,789,757; 8,789,758; 8,789,759; 8,794,520; 8,794,522; 8,794,526; 8,798,367; 8,807,431; 8,807,432; 8,820,630; International Publication No. 2013/163789; International Publication No. 2013/173985; International Publication No. 2014/019130; International Publication No. 2014/110495; U.S. Patent Application Publication No. 2008/0185432; U.S. Patent Application Publication No. 2009/0134221; U.S. Patent Application Publication No. 2010/0177080; U.S. Patent Application Publication No. 2010/0177076; U.S. Patent Application Publication No. 2010/0177707; U.S. Patent Application Publication No. 2010/0177749; U.S. Patent Application Publication No. 2011/0202554; U.S. Patent Application Publication No. 2012/0111946; U.S. Patent Application Publication No. 2012/0138685; U.S. Patent Application Publication No. 2012/0168511; U.S. Patent Application Publication No. 2012/0168512; U.S. Patent Application Publication No. 2012/0193423; U.S. Patent Application Publication No. 2012/0203647; U.S. Patent Application Publication No. 2012/0223141; U.S. Patent Application Publication No. 2012/0228382; U.S. Patent Application Publication No. 2012/0248188; U.S. Patent Application Publication No. 2013/0043312; U.S. Patent Application Publication No. 2013/0056285; U.S. Patent Application Publication No. 2013/0070322; U.S. Patent Application Publication No. 2013/0075168; U.S. Patent Application Publication No. 2013/0082104; U.S. Patent Application Publication No. 2013/0175341; U.S. Patent Application Publication No. 2013/0175343; U.S. Patent Application Publication No. 2013/0200158; U.S. Patent Application Publication No. 2013/0256418; U.S. Patent Application Publication No. 2013/0257744; U.S. Patent Application Publication No. 2013/0257759; U.S. Patent Application Publication No. 2013/0270346; U.S. Patent Application Publication No. 2013/0278425; U.S. Patent Application Publication No. 2013/0287258; U.S. Patent Application Publication No. 2013/0292475; U.S. Patent Application Publication No. 2013/0292477; U.S. Patent Application Publication No. 2013/0293539; U.S. Patent Application Publication No. 2013/0293540; U.S. Patent Application Publication No. 2013/0306728; U.S. Patent Application Publication No. 2013/0306730; U.S. Patent Application Publication No. 2013/0306731; U.S. Patent Application Publication No. 2013/0307964; U.S. Patent Application Publication No. 2013/0308625; U.S. Patent Application Publication No. 2013/0313324; U.S. Patent Application Publication No. 2013/0313325; U.S. Patent Application Publication No. 2013/0341399; U.S. Patent Application Publication No. 2013/0342717; U.S. Patent Application Publication No. 2014/0001267; U.S. Patent Application Publication No. 2014/0002828; U.S. Patent Application Publication No. 2014/0008430; U.S. Patent Application Publication No. 2014/0008439; U.S. Patent Application Publication No. 2014/0025584; U.S. Patent Application Publication No. 2014/0027518; U.S. Patent Application Publication No. 2014/0034734; U.S. Patent Application Publication No. 2014/0036848; U.S. Patent Application Publication No. 2014/0039693; U.S. Patent Application Publication No. 2014/0042814; U.S. Patent Application Publication No. 2014/0049120; U.S. Patent Application Publication No. 2014/0049635; U.S. Patent Application Publication No. 2014/0061305; U.S. Patent Application Publication No. 2014/0061306; U.S. Patent Application Publication No. 2014/0063289; U.S. Patent Application Publication No. 2014/0066136; U.S. Patent Application Publication No. 2014/0067692; U.S. Patent Application Publication No. 2014/0070005; U.S. Patent Application Publication No. 2014/0071840; U.S. Patent Application Publication No. 2014/0074746; U.S. Patent Application Publication No. 2014/0075846; U.S. Patent Application Publication No. 2014/0076974; U.S. Patent Application Publication No. 2014/0078341; U.S. Patent Application Publication No. 2014/0078342; U.S. Patent Application Publication No. 2014/0078345; U.S. Patent Application Publication No. 2014/0084068; U.S. Patent Application Publication No. 2014/0097249; U.S. Patent Application Publication No. 2014/0098792; U.S. Patent Application Publication No. 2014/0100774; U.S. Patent Application Publication No. 2014/0100813; U.S. Patent Application Publication No. 2014/0103115; U.S. Patent Application Publication No. 2014/0104413; U.S. Patent Application Publication No. 2014/0104414; U.S. Patent Application Publication No. 2014/0104416; U.S. Patent Application Publication No. 2014/0104451; U.S. Patent Application Publication No. 2014/0106594; U.S. Patent Application Publication No. 2014/0106725; U.S. Patent Application Publication No. 2014/0108010; U.S. Patent Application Publication No. 2014/0108402; U.S. Patent Application Publication No. 2014/0108682; U.S. Patent Application Publication No. 2014/0110485; U.S. Patent Application Publication No. 2014/0114530; U.S. Patent Application Publication No. 2014/0124577; U.S. Patent Application Publication No. 2014/0124579; U.S. Patent Application Publication No. 2014/0125842; U.S. Patent Application Publication No. 2014/0125853; U.S. Patent Application Publication No. 2014/0125999; U.S. Patent Application Publication No. 2014/0129378; U.S. Patent Application Publication No. 2014/0131438; U.S. Patent Application Publication No. 2014/0131441; U.S. Patent Application Publication No. 2014/0131443; U.S. Patent Application Publication No. 2014/0131444; U.S. Patent Application Publication No. 2014/0131445; U.S. Patent Application Publication No. 2014/0131448; U.S. Patent Application Publication No. 2014/0133379; U.S. Patent Application Publication No. 2014/0136208; U.S. Patent Application Publication No. 2014/0140585; U.S. Patent Application Publication No. 2014/0151453; U.S. Patent Application Publication No. 2014/0152882; U.S. Patent Application Publication No. 2014/0158770; U.S. Patent Application Publication No. 2014/0159869; U.S. Patent Application Publication No. 2014/0160329; U.S. Patent Application Publication No. 2014/0166755; U.S. Patent Application Publication No. 2014/0166757; U.S. Patent Application Publication No. 2014/0166759; U.S. Patent Application Publication No. 2014/0166760; U.S. Patent Application Publication No. 2014/0166761; U.S. Patent Application Publication No. 2014/0168787; U.S. Patent Application Publication No. 2014/0175165; U.S. Patent Application Publication No. 2014/0175169; U.S. Patent Application Publication No. 2014/0175172; U.S. Patent Application Publication No. 2014/0175174; U.S. Patent Application Publication No. 2014/0191644; U.S. Patent Application Publication No. 2014/0191913; U.S. Patent Application Publication No. 2014/0197238; U.S. Patent Application Publication No. 2014/0197239; U.S. Patent Application Publication No. 2014/0197304; U.S. Patent Application Publication No. 2014/0203087; U.S. Patent Application Publication No. 2014/0204268; U.S. Patent Application Publication No. 2014/0214631; U.S. Patent Application Publication No. 2014/0217166; U.S. Patent Application Publication No. 2014/0217180;
  • U.S. patent application Ser. No. 13/367,978 for a Laser Scanning Module Employing An Elastomeric U-Hinge Based Laser Scanning Assembly, filed Feb. 7, 2012 (Feng et al.);
  • U.S. patent application Ser. No. 29/436,337 for an Electronic Device, filed Nov. 5, 2012 (Fitch et al.);
  • U.S. patent application Ser. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson);
  • U.S. patent application Ser. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.);
  • U.S. patent application Ser. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield);
  • U.S. patent application Ser. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin);
  • U.S. patent application Ser. No. 13/902,242 for a System For Providing A Continuous Communication Link With A Symbol Reading Device, filed May 24, 2013 (Smith et al.);
  • U.S. patent application Ser. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.);
  • U.S. patent application Ser. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.);
  • U.S. patent application Ser. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.);
  • U.S. patent application Ser. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.);
  • U.S. patent application Ser. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2013 (Todeschini);
  • U.S. patent application Ser. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols, filed Jun. 28, 2013 (Gelay et al.);
  • U.S. patent application Ser. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.);
  • U.S. patent application Ser. No. 29/459,681 for an Electronic Device Enclosure, filed Jul. 2, 2013 (Chaney et al.);
  • U.S. patent application Ser. No. 13/933,415 for an Electronic Device Case, filed Jul. 2, 2013 (London et al.);
  • U.S. patent application Ser. No. 29/459,785 for a Scanner and Charging Base, filed Jul. 3, 2013 (Fitch et al.);
  • U.S. patent application Ser. No. 29/459,823 for a Scanner, filed Jul. 3, 2013 (Zhou et al.);
  • U.S. patent application Ser. No. 13/947,296 for a System and Method for Selectively Reading Code Symbols, filed Jul. 22, 2013 (Rueblinger et al.);
  • U.S. patent application Ser. No. 13/950,544 for a Code Symbol Reading System Having Adjustable Object Detection, filed Jul. 25, 2013 (Jiang);
  • U.S. patent application Ser. No. 13/961,408 for a Method for Manufacturing Laser Scanners, filed Aug. 7, 2013 (Saber et al.);
  • U.S. patent application Ser. No. 14/018,729 for a Method for Operating a Laser Scanner, filed Sep. 5, 2013 (Feng et al.);
  • U.S. patent application Ser. No. 14/019,616 for a Device Having Light Source to Reduce Surface Pathogens, filed Sep. 6, 2013 (Todeschini);
  • U.S. patent application Ser. No. 14/023,762 for a Handheld Indicia Reader Having Locking Endcap, filed Sep. 11, 2013 (Gannon);
  • U.S. patent application Ser. No. 14/035,474 for Augmented-Reality Signature Capture, filed Sep. 24, 2013 (Todeschini);
  • U.S. patent application Ser. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.);
  • U.S. patent application Ser. No. 14/055,234 for Dimensioning System, filed Oct. 16, 2013 (Fletcher);
  • U.S. patent application Ser. No. 14/053,314 for Indicia Reader, filed Oct. 14, 2013 (Huck);
  • U.S. patent application Ser. No. 14/065,768 for Hybrid System and Method for Reading Indicia, filed Oct. 29, 2013 (Meier et al.);
  • U.S. patent application Ser. No. 14/074,746 for Self-Checkout Shopping System, filed Nov. 8, 2013 (Hejl et al.);
  • U.S. patent application Ser. No. 14/074,787 for Method and System for Configuring Mobile Devices via NFC Technology, filed Nov. 8, 2013 (Smith et al.);
  • U.S. patent application Ser. No. 14/087,190 for Optimal Range Indicators for Bar Code Validation, filed Nov. 22, 2013 (Hejl);
  • U.S. patent application Ser. No. 14/094,087 for Method and System for Communicating Information in an Digital Signal, filed Dec. 2, 2013 (Peake et al.);
  • U.S. patent application Ser. No. 14/101,965 for High Dynamic-Range Indicia Reading System, filed Dec. 10, 2013 (Xian);
  • U.S. patent application Ser. No. 14/150,393 for Incicia-reader Having Unitary Construction Scanner, filed Jan. 8, 2014 (Colavito et al.);
  • U.S. patent application Ser. No. 14/154,207 for Laser Barcode Scanner, filed Jan. 14, 2014 (Hou et al.);
  • U.S. patent application Ser. No. 14/165,980 for System and Method for Measuring Irregular Objects with a Single Camera filed Jan. 28, 2014 (Li et al.);
  • U.S. patent application Ser. No. 14/166,103 for Indicia Reading Terminal Including Optical Filter filed Jan. 28, 2014 (Lu et al.);
  • U.S. patent application Ser. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.);
  • U.S. patent application Ser. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.);
  • U.S. patent application Ser. No. 14/250,923 for Reading Apparatus Having Partial Frame Operating Mode filed Apr. 11, 2014, (Deng et al.);
  • U.S. patent application Ser. No. 14/257,174 for Imaging Terminal Having Data Compression filed Apr. 21, 2014, (Barber et al.);
  • U.S. patent application Ser. No. 14/257,364 for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering);
  • U.S. patent application Ser. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014 (Ackley et al.);
  • U.S. patent application Ser. No. 14/274,858 for Mobile Printer with Optional Battery Accessory filed May 12, 2014 (Marty et al.);
  • U.S. patent application Ser. No. 14/277,337 for MULTIPURPOSE OPTICAL READER, filed May 14, 2014 (Jovanovski et al.);
  • U.S. patent application Ser. No. 14/283,282 for TERMINAL HAVING ILLUMINATION AND FOCUS CONTROL filed May 21, 2014 (Liu et al.);
  • U.S. patent application Ser. No. 14/300,276 for METHOD AND SYSTEM FOR CONSIDERING INFORMATION ABOUT AN EXPECTED RESPONSE WHEN PERFORMING SPEECH RECOGNITION, filed Jun. 10, 2014 (Braho et al.);
  • U.S. patent application Ser. No. 14/305,153 for INDICIA READING SYSTEM EMPLOYING DIGITAL GAIN CONTROL filed Jun. 16, 2014 (Xian et al.);
  • U.S. patent application Ser. No. 14/310,226 for AUTOFOCUSING OPTICAL IMAGING DEVICE filed Jun. 20, 2014 (Koziol et al.);
  • U.S. patent application Ser. No. 14/327,722 for CUSTOMER FACING IMAGING SYSTEMS AND METHODS FOR OBTAINING IMAGES filed Jul. 10, 2014 (Oberpriller et al,);
  • U.S. patent application Ser. No. 14/327,827 for a MOBILE-PHONE ADAPTER FOR ELECTRONIC TRANSACTIONS, filed Jul. 10, 2014 (Hejl);
  • U.S. patent application Ser. No. 14/329,303 for CELL PHONE READING MODE USING IMAGE TIMER filed Jul. 11, 2014 (Coyle);
  • U.S. patent application Ser. No. 14/333,588 for SYMBOL READING SYSTEM WITH INTEGRATED SCALE BASE filed Jul. 17, 2014 (Barten);
  • U.S. patent application Ser. No. 14/334,934 for a SYSTEM AND METHOD FOR INDICIA VERIFICATION, filed Jul. 18, 2014 (Hejl);
  • U.S. patent application Ser. No. 14/336,188 for METHOD OF AND SYSTEM FOR DETECTING OBJECT WEIGHING INTERFERENCES, Filed Jul. 21, 2014 (Amundsen et al.);
  • U.S. patent application Ser. No. 14/339,708 for LASER SCANNING CODE SYMBOL READING SYSTEM, filed Jul. 24, 2014 (Xian et al.);
  • U.S. patent application Ser. No. 14/340,627 for an AXIALLY REINFORCED FLEXIBLE SCAN ELEMENT, filed Jul. 25, 2014 (Reublinger et al.);
  • U.S. patent application Ser. No. 14/340,716 for an OPTICAL IMAGER AND METHOD FOR CORRELATING A MEDICATION PACKAGE WITH A PATIENT, filed Jul. 25, 2014 (Ellis);
  • U.S. patent application Ser. No. 14/342,544 for Imaging Based Barcode Scanner Engine with Multiple Elements Supported on a Common Printed Circuit Board filed Mar. 4, 2014 (Liu et al.);
  • U.S. patent application Ser. No. 14/345,735 for Optical Indicia Reading Terminal with Combined Illumination filed Mar. 19, 2014 (Ouyang);
  • U.S. patent application Ser. No. 14/336,188 for METHOD OF AND SYSTEM FOR DETECTING OBJECT WEIGHING INTERFERENCES, Filed Jul. 21, 2014 (Amundsen et al.);
  • U.S. patent application Ser. No. 14/355,613 for Optical Indicia Reading Terminal with Color Image Sensor filed May 1, 2014 (Lu et al.);
  • U.S. patent application Ser. No. 14/370,237 for WEB-BASED SCAN-TASK ENABLED SYSTEM AND METHOD OF AND APPARATUS FOR DEVELOPING AND DEPLOYING THE SAME ON A CLIENT-SERVER NETWORK filed Jul. 2, 2014 (Chen et al.);
  • U.S. patent application Ser. No. 14/370,267 for INDUSTRIAL DESIGN FOR CONSUMER DEVICE BASED SCANNING AND MOBILITY, filed Jul. 2, 2014 (Ma et al.);
  • U.S. patent application Ser. No. 14/376,472, for an ENCODED INFORMATION READING TERMINAL INCLUDING HTTP SERVER, filed Aug. 4, 2014 (Lu);
  • U.S. patent application Ser. No. 14/379,057 for METHOD OF USING CAMERA SENSOR INTERFACE TO TRANSFER MULTIPLE CHANNELS OF SCAN DATA USING AN IMAGE FORMAT filed Aug. 15, 2014 (Wang et al.);
  • U.S. patent application Ser. No. 14/452,697 for INTERACTIVE INDICIA READER, filed Aug. 6, 2014 (Todeschini);
  • U.S. patent application Ser. No. 14/453,019 for DIMENSIONING SYSTEM WITH GUIDED ALIGNMENT, filed Aug. 6, 2014 (Li et al.);
  • U.S. patent application Ser. No. 14/460,387 for APPARATUS FOR DISPLAYING BAR CODES FROM LIGHT EMITTING DISPLAY SURFACES filed Aug. 15, 2014 (Van Horn et al.);
  • U.S. patent application Ser. No. 14/460,829 for ENCODED INFORMATION READING TERMINAL WITH WIRELESS PATH SELECTON CAPABILITY, filed Aug. 15, 2014 (Wang et al.);
  • U.S. patent application Ser. No. 14/462,801 for MOBILE COMPUTING DEVICE WITH DATA COGNITION SOFTWARE, filed on Aug. 19, 2014 (Todeschini et al.);
  • U.S. patent application Ser. No. 14/446,387 for INDICIA READING TERMINAL PROCESSING PLURALITY OF FRAMES OF IMAGE DATA RESPONSIVELY TO TRIGGER SIGNAL ACTIVATION filed Jul. 30, 2014 (Wang et al.);
  • U.S. patent application Ser. No. 14/446,391 for MULTIFUNCTION POINT OF SALE APPARATUS WITH OPTICAL SIGNATURE CAPTURE filed Jul. 30, 2014 (Good et al.);
  • U.S. patent application Ser. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.);
  • U.S. patent application Ser. No. 29/492,903 for an INDICIA SCANNER, filed Jun. 4, 2014 (Zhou et al.); and
  • U.S. patent application Ser. No. 29/494,725 for an IN-COUNTER BARCODE SCANNER, filed Jun. 24, 2014 (Oberpriller et al.).


* * *

In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. A method for indicating a quality of three-dimensional range data of an object for shipping captured by a handheld dimensioner, the method comprising: capturing, using a sensor, three-dimensional range data from a field of view, the field of view comprising an object for shipping, and the three-dimensional range data corresponding to projected light configured to convey depth information pertaining to the field of view;transmitting the three-dimensional range data to a processor;assessing, using the processor, the quality of the three-dimensional range data for making dimensioning calculations corresponding to the object in the field of view based on the three-dimensional range data;generating, using the processor, a quality indicator corresponding to the quality of the three-dimensional range data; andsignaling the quality indicator on a user interface;wherein the quality indicator comprises guidance for capturing additional three-dimensional range data to improve the accuracy of dimensioning calculations corresponding to the object relative to dimensioning calculations from previously captured three-dimensional range data.
  • 2. The method according to claim 1, wherein the user interface comprises a display for signaling the quality indicator.
  • 3. The method according to claim 2, wherein the quality indicator comprises a visual image of the field-of-view with a graphical overlay, the graphical overlay corresponding to the quality of the three-dimensional range data.
  • 4. The method according to claim 2, wherein the quality indicator comprises a gauge graphic displaying the quality of the three-dimensional range data as one of a range of possible qualities.
  • 5. The method according to claim 2, wherein the quality indicator comprises a graphic, the graphic's color corresponding to the quality of the three-dimensional range data.
  • 6. The method according to claim 1, wherein the user interface comprises a light for signaling the quality indicator.
  • 7. The method according to claim 6, wherein the quality indicator comprises a pulsating illumination of the light the pulsating-illumination's pulse rate corresponding to the quality of the three-dimensional range data.
  • 8. The method according to claim 1, wherein the user interface comprises a speaker for signaling the quality indicator.
  • 9. The method according to claim 8, wherein the quality indicator comprises a sound, the sound's volume and/or frequency corresponding to the quality of the three-dimensional range data.
  • 10. The method according to claim 1, wherein the user interface comprises a haptic device for signaling the quality indicator.
  • 11. The method according to claim 10, wherein the quality indicator comprises a vibration, the vibration's amplitude and/or rate corresponding to the quality of the three-dimensional range data.
  • 12. The method according to claim 1, wherein the capturing, transmitting, assessing, generating, and signaling are repeated.
  • 13. The method according to claim 1, wherein the quality of the three-dimensional data comprises accuracy of dimensioning calculations based on the three-dimensional range data.
  • 14. The method according to claim 1, wherein the quality of the three-dimensional data comprises resolution of a depth map based on the three-dimensional range data.
  • 15. A handheld dimensioner configured to indicate the quality of three-dimensional range data used for dimensioning an object for shipping, the handheld dimensioner comprising: a dimensioning subsystem for capturing visual images and three-dimensional range data of a field of view;a user-interface subsystem configured to present a quality indicator to a user, the quality indicator corresponding to the quality of three-dimensional range data;a control subsystem communicatively coupled to the dimensioning subsystem and the user-interface subsystem, the control subsystem comprising at least one processor and at least one non-transitory storage medium for storing processor-executable instructions, wherein the processor-executable instructions configure the processor to: (i) receive three-dimensional range data from the dimensioning subsystem, the three-dimensional range data corresponding projected light configured to convey depth information pertaining to the field of view, the field of view comprising an object for shipping, (ii) assess a quality of the three-dimensional range data, the quality indicating projected accuracy of dimensioning calculations corresponding to the object in the field of view based on the three-dimensional range data, (iii) generate the quality indicator corresponding to the quality of the three-dimensional range data, and (iv) transmit the quality indicator to the user-interface;wherein the quality indicator comprises guidance for capturing additional three-dimensional range data to improve the projected accuracy of dimensioning calculations corresponding to the object relative to the projected accuracy corresponding to previously captured three-dimensional range data.
  • 16. The handheld dimensioner according to claim 15, wherein the user-interface subsystem comprises a display.
  • 17. The handheld dimensioner according to claim 15, wherein the quality indicator comprises a visual image of the field-of-view with a graphical overlay, the graphical overlay corresponding to the quality.
  • 18. The handheld dimensioner according to claim 15, wherein the quality indicator comprises a graphical scale displaying the quality as one of a range of qualities on the graphical scale.
  • 19. The handheld dimensioner according to claim 15, wherein the quality indicator comprises at least one prompt for provoking an action by a user.
  • 20. The handheld dimensioner according to claim 15, wherein the user interface comprises a light for presenting illumination corresponding to the quality indicator.
  • 21. The handheld dimensioner according to claim 15, wherein the user interface comprises a speaker for presenting sounds corresponding to the quality indicator.
  • 22. The handheld dimensioner according to claim 15, wherein the user interface comprises a haptic device for presenting vibrations corresponding to the quality indicator.
  • 23. A handheld dimensioner configured to indicate a quality of three-dimensional range data used for dimensioning an object for shipping, the handheld dimensioner comprising: a dimensioning subsystem for capturing visual images and three-dimensional range data of a field of view;a user-interface subsystem comprising a display for presenting graphical information;a control subsystem communicatively coupled to the dimensioning subsystem and the user-interface subsystem, the control subsystem comprising at least one processor and at least one non-transitory storage medium for storing processor-executable instructions, wherein the processor-executable instructions configure the processor to: (i) receive three-dimensional range data from the dimensioning subsystem corresponding to a field of view comprising an object for shipping, (ii) assess a quality of the three-dimensional range data, the quality indicating suitability for making dimensioning calculations corresponding to the object in the field of view based on the three-dimensional range data, (iii) transmit the quality of the three-dimensional range data to the user-interface (iv) indicate the quality of the three-dimensional range data via the display for presenting graphical information;wherein indicate the quality comprises providing guidance for capturing additional three-dimensional range data to improve the accuracy of dimensioning calculations corresponding to the object relative to dimensioning calculations from previously captured three-dimensional range data.
  • 24. The handheld dimensioner according to claim 23, wherein the graphical information comprises a gauge indicating the quality of the three-dimensional range data.
  • 25. The handheld dimensioner according to claim 15, wherein the graphical information comprises positioning guidance.
  • 26. The method according to claim 1, wherein the quality of the three-dimensional range data corresponds to gaps in the three-dimensional range data.
  • 27. The method according to claim 1, wherein the quality of the three-dimensional range data corresponds to completeness of the three-dimensional range data.
  • 28. The method according to claim 1, wherein the quality of the three-dimensional range data corresponds to projected results of dimensioning calculations based on the three-dimensional range data.
  • 29. The method according to claim 1, wherein the quality of the three-dimensional range data corresponds to illumination conditions in the field of view.
  • 30. The method according to claim 1, wherein the quality of the three-dimensional range data corresponds to lighting uniformity in the field of view.
  • 31. The method according to claim 1, wherein the quality of the three-dimensional range data corresponds to diversity of object colors in the field of view.
  • 32. The method according to claim 1, wherein the quality of the three-dimensional range corresponds to agreement between an object in the field of view and a wireframe rendering of the object.
  • 33. The method according to claim 1, wherein the three-dimensional range data comprises a depth map, and wherein the quality of the three-dimensional range data comprises a quality of the depth map.
  • 34. The method according to claim 1, wherein the guidance comprises a prompt intended to provoke a user to adjust the uniformity and/or brightness of lighting with respect to the object.
  • 35. The method according to claim 1, wherein the guidance comprises a prompt intended to provoke a user to change the relative orientation as between at least a pair of respective surfaces of the object and the field of view.
US Referenced Citations (812)
Number Name Date Kind
3971065 Bayer Jul 1976 A
4279328 Ahlbom Jul 1981 A
4398811 Nishioka et al. Aug 1983 A
4495559 Gelatt, Jr. Jan 1985 A
4730190 Win et al. Mar 1988 A
4803639 Steele et al. Feb 1989 A
5175601 Fitts Dec 1992 A
5184733 Arnarson et al. Feb 1993 A
5220536 Stringer et al. Jun 1993 A
5331118 Jensen Jul 1994 A
5359185 Hanson Oct 1994 A
5384901 Glassner et al. Jan 1995 A
5548707 LoNegro Aug 1996 A
5555090 Schmutz Sep 1996 A
5561526 Huber et al. Oct 1996 A
5590060 Granville et al. Dec 1996 A
5606534 Stringer et al. Feb 1997 A
5619245 Kessler et al. Apr 1997 A
5655095 LoNegro et al. Aug 1997 A
5661561 Wurz et al. Aug 1997 A
5699161 Woodworth Dec 1997 A
5729750 Ishida Mar 1998 A
5730252 Herbinet Mar 1998 A
5732147 Tao Mar 1998 A
5734476 Dlugos Mar 1998 A
5737074 Haga et al. Apr 1998 A
5748199 Palm May 1998 A
5767962 Suzuki et al. Jun 1998 A
5831737 Stringer et al. Nov 1998 A
5850370 Stringer et al. Dec 1998 A
5850490 Johnson Dec 1998 A
5869827 Rando Feb 1999 A
5870220 Migdal et al. Feb 1999 A
5900611 Hecht May 1999 A
5923428 Woodworth Jul 1999 A
5929856 LoNegro et al. Jul 1999 A
5938710 Lanza et al. Aug 1999 A
5959568 Woolley Sep 1999 A
5960098 Tao Sep 1999 A
5969823 Wurz et al. Oct 1999 A
5978512 Kim et al. Nov 1999 A
5979760 Freyman et al. Nov 1999 A
5988862 Kacyra et al. Nov 1999 A
5991041 Woodworth Nov 1999 A
6009189 Schaack Dec 1999 A
6025847 Marks Feb 2000 A
6049386 Stringer et al. Apr 2000 A
6053409 Brobst et al. Apr 2000 A
6064759 Buckley et al. May 2000 A
6067110 Nonaka et al. May 2000 A
6069696 McQueen et al. May 2000 A
6115114 Berg et al. Sep 2000 A
6137577 Woodworth Oct 2000 A
6177999 Wurz et al. Jan 2001 B1
6189223 Haug Feb 2001 B1
6232597 Kley May 2001 B1
6236403 Chaki May 2001 B1
6246468 Dimsdale Jun 2001 B1
6333749 Reinhardt et al. Dec 2001 B1
6336587 He et al. Jan 2002 B1
6369401 Lee Apr 2002 B1
6373579 Ober et al. Apr 2002 B1
6429803 Kumar Aug 2002 B1
6457642 Good et al. Oct 2002 B1
6507406 Yagi et al. Jan 2003 B1
6517004 Good et al. Feb 2003 B2
6519550 D'Hooge et al. Feb 2003 B1
6535776 Tobin et al. Mar 2003 B1
6661521 Stern Sep 2003 B1
6674904 McQueen Jan 2004 B1
6705526 Zhu et al. Mar 2004 B1
6781621 Gobush et al. Aug 2004 B1
6824058 Patel et al. Nov 2004 B2
6832725 Gardiner et al. Dec 2004 B2
6858857 Pease et al. Feb 2005 B2
6922632 Foxlin Jul 2005 B2
6971580 Zhu et al. Dec 2005 B2
6995762 Pavlidis et al. Feb 2006 B1
7057632 Yamawaki et al. Jun 2006 B2
7085409 Sawhney et al. Aug 2006 B2
7086162 Tyroler Aug 2006 B2
7104453 Zhu et al. Sep 2006 B1
7128266 Marlton et al. Oct 2006 B2
7137556 Bonner et al. Nov 2006 B1
7159783 Walczyk et al. Jan 2007 B2
7161688 Bonner et al. Jan 2007 B1
7205529 Andersen et al. Apr 2007 B2
7214954 Schopp May 2007 B2
7277187 Smith et al. Oct 2007 B2
7307653 Dutta Dec 2007 B2
7310431 Gokturk et al. Dec 2007 B2
7413127 Ehrhart et al. Aug 2008 B2
7527205 Zhu et al. May 2009 B2
7586049 Wurz Sep 2009 B2
7602404 Reinhardt et al. Oct 2009 B1
7614563 Nunnink et al. Nov 2009 B1
7639722 Paxton et al. Dec 2009 B1
7726575 Wang et al. Jun 2010 B2
7780084 Zhang et al. Aug 2010 B2
7788883 Buckley et al. Sep 2010 B2
7974025 Topliss Jul 2011 B2
8027096 Feng et al. Sep 2011 B2
8028501 Buckley et al. Oct 2011 B2
8050461 Shpunt et al. Nov 2011 B2
8055061 Katano Nov 2011 B2
8061610 Nunnink Nov 2011 B2
8072581 Breiholz Dec 2011 B1
8102395 Kondo et al. Jan 2012 B2
8132728 Dwinell et al. Mar 2012 B2
8134717 Pangrazio et al. Mar 2012 B2
8149224 Kuo et al. Apr 2012 B1
8194097 Xiao et al. Jun 2012 B2
8212889 Chanas et al. Jul 2012 B2
8228510 Pangrazio et al. Jul 2012 B2
8230367 Bell et al. Jul 2012 B2
8294969 Plesko Oct 2012 B2
8305458 Hara Nov 2012 B2
8310656 Zalewski Nov 2012 B2
8313380 Zalewski et al. Nov 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Suzhou et al. Dec 2012 B2
8339462 Stec et al. Dec 2012 B2
8350959 Topliss et al. Jan 2013 B2
8351670 Ijiri et al. Jan 2013 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8374498 Pastore Feb 2013 B2
8376233 Van Horn et al. Feb 2013 B2
8381976 Mohideen et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Horn et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8437539 Komatsu et al. May 2013 B2
8441749 Brown et al. May 2013 B2
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8463079 Ackley et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van Horn et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8570343 Halstead Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8576390 Nunnink Nov 2013 B1
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8740082 Wilz Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8746563 Hennick et al. Jun 2014 B2
8750445 Peake et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Qu et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8736909 Reed et al. Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Barten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8792688 Unsworth Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794525 Amundsen et al. Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van Horn et al. Aug 2014 B2
8810779 Hilde Aug 2014 B1
8820630 Qu et al. Sep 2014 B2
8822848 Meagher Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
8844823 Fritz et al. Sep 2014 B2
8849019 Li et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8854633 Laffargue Oct 2014 B2
8866963 Grunow et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Barten Oct 2014 B2
8868803 Bremer et al. Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein Nov 2014 B2
8880426 Smith Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8897596 Passmore et al. Nov 2014 B1
8903172 Smith Dec 2014 B2
8908995 Benos et al. Dec 2014 B2
8910870 Li et al. Dec 2014 B2
8910875 Ren et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915439 Feng et al. Dec 2014 B2
8915444 Havens et al. Dec 2014 B2
8916789 Woodburn Dec 2014 B2
8918250 Hollifield Dec 2014 B2
8918564 Caballero Dec 2014 B2
8925818 Kosecki et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8942480 Ellis Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944327 Meier et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8967468 Gomez et al. Mar 2015 B2
8971346 Sevier Mar 2015 B2
8976030 Cunningham et al. Mar 2015 B2
8976368 Akel et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985457 Soule et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8985461 Gelay et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
8998091 Edmonds et al. Apr 2015 B2
9002641 Showering Apr 2015 B2
9007368 Laffargue et al. Apr 2015 B2
9010641 Qu et al. Apr 2015 B2
9014441 Truyen et al. Apr 2015 B2
9015513 Murawski et al. Apr 2015 B2
9016576 Brady et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9022288 Nahill et al. May 2015 B2
9030964 Essinger et al. May 2015 B2
9033240 Smith et al. May 2015 B2
9033242 Gillet et al. May 2015 B2
9036054 Koziol et al. May 2015 B2
9037344 Chamberlin May 2015 B2
9038911 Xian et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
D733112 Chaney et al. Jun 2015 S
9047098 Barten Jun 2015 B2
9047359 Caballero et al. Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047525 Barber Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9049640 Wang et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9053378 Hou et al. Jun 2015 B1
9053380 Xian et al. Jun 2015 B2
9057641 Amundsen et al. Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9064165 Havens et al. Jun 2015 B2
9064167 Xian et al. Jun 2015 B2
9064168 Todeschini et al. Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066032 Wang Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9082023 Feng et al. Jul 2015 B2
9082195 Holeva et al. Jul 2015 B2
9142035 Rotman Sep 2015 B1
9233470 Bradski et al. Jan 2016 B1
9299013 Curlander et al. Mar 2016 B1
9424749 Reed et al. Aug 2016 B1
9486921 Straszheim et al. Nov 2016 B1
9828223 Svensson et al. Nov 2017 B2
20010027995 Patel et al. Oct 2001 A1
20010032879 He et al. Oct 2001 A1
20020054289 Thibault et al. May 2002 A1
20020067855 Chiu et al. Jun 2002 A1
20020105639 Roelke Aug 2002 A1
20020109835 Goetz Aug 2002 A1
20020113946 Kitaguchi et al. Aug 2002 A1
20020118874 Chung et al. Aug 2002 A1
20020158873 Williamson Oct 2002 A1
20020167677 Okada et al. Nov 2002 A1
20020179708 Zhu et al. Dec 2002 A1
20020196534 Lizotte et al. Dec 2002 A1
20030038179 Tsikos et al. Feb 2003 A1
20030053513 Vatan et al. Mar 2003 A1
20030063086 Baumberg Apr 2003 A1
20030091227 Chang et al. May 2003 A1
20030156756 Gokturk et al. Aug 2003 A1
20030197138 Pease et al. Oct 2003 A1
20030225712 Cooper et al. Dec 2003 A1
20030235331 Kawaike et al. Dec 2003 A1
20040008259 Gokturk et al. Jan 2004 A1
20040019274 Galloway et al. Jan 2004 A1
20040024754 Mane et al. Feb 2004 A1
20040066329 Zeitfuss et al. Apr 2004 A1
20040073359 Ichijo et al. Apr 2004 A1
20040083025 Yamanouchi et al. Apr 2004 A1
20040089482 Ramsden et al. May 2004 A1
20040098146 Katae et al. May 2004 A1
20040105580 Hager et al. Jun 2004 A1
20040118928 Patel et al. Jun 2004 A1
20040132297 Baba et al. Jul 2004 A1
20040155975 Hart et al. Aug 2004 A1
20040165090 Ning Aug 2004 A1
20040184041 Schopp Sep 2004 A1
20040211836 Patel et al. Oct 2004 A1
20040214623 Takahashi Oct 2004 A1
20040233461 Armstrong et al. Nov 2004 A1
20040258353 Gluckstad et al. Dec 2004 A1
20050006477 Patel Jan 2005 A1
20050117215 Lange Jun 2005 A1
20050128193 Popescu et al. Jun 2005 A1
20050128196 Popescu et al. Jun 2005 A1
20050168488 Montague Aug 2005 A1
20050211782 Martin Sep 2005 A1
20050257748 Kriesel et al. Nov 2005 A1
20050264867 Cho et al. Dec 2005 A1
20060047704 Gopalakrishnan Mar 2006 A1
20060078226 Zhou Apr 2006 A1
20060108266 Bowers et al. May 2006 A1
20060109105 Varner et al. May 2006 A1
20060112023 Horhann May 2006 A1
20060151604 Zhu et al. Jul 2006 A1
20060159307 Anderson et al. Jul 2006 A1
20060159344 Shao et al. Jul 2006 A1
20060232681 Okada Oct 2006 A1
20060255150 Longacre Nov 2006 A1
20060269165 Viswanathan Nov 2006 A1
20060276709 Khamene et al. Dec 2006 A1
20060291719 Ikeda et al. Dec 2006 A1
20070003154 Sun et al. Jan 2007 A1
20070025612 Iwasaki et al. Feb 2007 A1
20070031064 Zhao et al. Feb 2007 A1
20070063048 Havens et al. Mar 2007 A1
20070116357 Dewaele May 2007 A1
20070127022 Cohen et al. Jun 2007 A1
20070143082 Degnan Jun 2007 A1
20070153293 Gruhlke et al. Jul 2007 A1
20070171220 Kriveshko Jul 2007 A1
20070177011 Lewin et al. Aug 2007 A1
20070181685 Zhu et al. Aug 2007 A1
20070237356 Dwinell et al. Oct 2007 A1
20070291031 Konev et al. Dec 2007 A1
20070299338 Stevick et al. Dec 2007 A1
20080013793 Hillis et al. Jan 2008 A1
20080035390 Wurz Feb 2008 A1
20080047760 Georgitsis Feb 2008 A1
20080050042 Zhang et al. Feb 2008 A1
20080056536 Hildreth et al. Mar 2008 A1
20080062164 Bassi et al. Mar 2008 A1
20080077265 Boyden Mar 2008 A1
20080079955 Storm Apr 2008 A1
20080164074 Wurz Jun 2008 A1
20080204476 Montague Aug 2008 A1
20080212168 Olmstead et al. Sep 2008 A1
20080247635 Davis et al. Oct 2008 A1
20080273191 Kim et al. Nov 2008 A1
20080273210 Hilde Nov 2008 A1
20080278790 Boesser et al. Nov 2008 A1
20090059004 Bochicchio Mar 2009 A1
20090095047 Patel et al. Apr 2009 A1
20090134221 Zhu et al. May 2009 A1
20090225333 Bendall et al. Sep 2009 A1
20090237411 Gossweiler et al. Sep 2009 A1
20090268023 Hsieh Oct 2009 A1
20090272724 Gubler Nov 2009 A1
20090273770 Bauhahn et al. Nov 2009 A1
20090313948 Buckley et al. Dec 2009 A1
20090318815 Barnes et al. Dec 2009 A1
20090323084 Dunn et al. Dec 2009 A1
20090323121 Valkenburg Dec 2009 A1
20100035637 Varanasi et al. Feb 2010 A1
20100060604 Zwart et al. Mar 2010 A1
20100091104 Sprigle Apr 2010 A1
20100113153 Yen et al. May 2010 A1
20100118200 Gelman et al. May 2010 A1
20100128109 Banks May 2010 A1
20100161170 Siris Jun 2010 A1
20100171740 Andersen et al. Jul 2010 A1
20100172567 Prokoski Jul 2010 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20100202702 Benos et al. Aug 2010 A1
20100208039 Stettner Aug 2010 A1
20100211355 Horst et al. Aug 2010 A1
20100217678 Goncalves Aug 2010 A1
20100220849 Colbert et al. Sep 2010 A1
20100220894 Ackley et al. Sep 2010 A1
20100223276 Al-Shameri et al. Sep 2010 A1
20100254611 Amz Oct 2010 A1
20100274728 Kugelman Oct 2010 A1
20100303336 Abraham Dec 2010 A1
20100315413 Izadi et al. Dec 2010 A1
20100321482 Cleveland Dec 2010 A1
20110019155 Daniel et al. Jan 2011 A1
20110040192 Brenner et al. Feb 2011 A1
20110040407 Lim Feb 2011 A1
20110043609 Choi et al. Feb 2011 A1
20110075936 Deaver Mar 2011 A1
20110099474 Grossman et al. Apr 2011 A1
20110169999 Grunow et al. Jul 2011 A1
20110188054 Petronius et al. Aug 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20110234389 Mellin Sep 2011 A1
20110235854 Berger et al. Sep 2011 A1
20110249864 Venkatesan et al. Oct 2011 A1
20110254840 Halstead Oct 2011 A1
20110260965 Kim et al. Oct 2011 A1
20110279916 Brown et al. Nov 2011 A1
20110286007 Pangrazio et al. Nov 2011 A1
20110286628 Goncalves et al. Nov 2011 A1
20110288818 Thierman Nov 2011 A1
20110297590 Ackley et al. Dec 2011 A1
20110301994 Tieman Dec 2011 A1
20110303748 Lemma et al. Dec 2011 A1
20110310227 Konertz et al. Dec 2011 A1
20120024952 Chen Feb 2012 A1
20120056982 Katz et al. Mar 2012 A1
20120057345 Kuchibhotla Mar 2012 A1
20120067955 Rowe Mar 2012 A1
20120074227 Ferren et al. Mar 2012 A1
20120081714 Pangrazio et al. Apr 2012 A1
20120111946 Golant May 2012 A1
20120113223 Hilliges et al. May 2012 A1
20120126000 Kunzig et al. May 2012 A1
20120140300 Freeman Jun 2012 A1
20120168509 Nunnink et al. Jul 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120179665 Baarman et al. Jul 2012 A1
20120185094 Rosenstein et al. Jul 2012 A1
20120190386 Anderson Jul 2012 A1
20120193423 Samek Aug 2012 A1
20120197464 Wang et al. Aug 2012 A1
20120201288 Kolze et al. Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120218436 Rodriguez et al. Sep 2012 A1
20120223141 Good et al. Sep 2012 A1
20120224026 Bayer et al. Sep 2012 A1
20120224060 Gurevich et al. Sep 2012 A1
20120236288 Stanley Sep 2012 A1
20120242852 Hayward et al. Sep 2012 A1
20120113250 Farlotti et al. Oct 2012 A1
20120256901 Bendall Oct 2012 A1
20120262558 Boger et al. Oct 2012 A1
20120280908 Rhoads et al. Nov 2012 A1
20120282905 Owen Nov 2012 A1
20120282911 Davis et al. Nov 2012 A1
20120284012 Rodriguez et al. Nov 2012 A1
20120284122 Brandis Nov 2012 A1
20120284339 Rodriguez Nov 2012 A1
20120284593 Rodriguez Nov 2012 A1
20120293610 Doepke et al. Nov 2012 A1
20120293625 Schneider et al. Nov 2012 A1
20120294549 Doepke Nov 2012 A1
20120299961 Ramkumar et al. Nov 2012 A1
20120300991 Mikio Nov 2012 A1
20120313848 Galor et al. Dec 2012 A1
20120314030 Datta Dec 2012 A1
20120314058 Bendall et al. Dec 2012 A1
20120316820 Nakazato et al. Dec 2012 A1
20130019278 Sun et al. Jan 2013 A1
20130038881 Pesach et al. Feb 2013 A1
20130038941 Pesach et al. Feb 2013 A1
20130043312 Van Horn Feb 2013 A1
20130050426 Sarmast et al. Feb 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130093895 Palmer et al. Apr 2013 A1
20130094069 Lee et al. Apr 2013 A1
20130101158 Lloyd et al. Apr 2013 A1
20130156267 Muraoka et al. Jun 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130200150 Reynolds et al. Aug 2013 A1
20130208164 Cazier Aug 2013 A1
20130211790 Loveland et al. Aug 2013 A1
20130222592 Gieseke Aug 2013 A1
20130223673 Davis et al. Aug 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130291998 Konnerth Nov 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306731 Pedraro Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308013 Li et al. Nov 2013 A1
20130308625 Corcoran Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130313325 Wilz et al. Nov 2013 A1
20130329012 Bartos Dec 2013 A1
20130329013 Metois et al. Dec 2013 A1
20130342342 Sabre et al. Dec 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140009586 McNamer et al. Jan 2014 A1
20140019005 Lee et al. Jan 2014 A1
20140021259 Moed et al. Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140031665 Pinto et al. Jan 2014 A1
20140034731 Gao et al. Feb 2014 A1
20140034734 Sauerwein Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039674 Motoyama et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140042814 Kather et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140058612 Wong et al. Feb 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140062709 Hyer et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067104 Osterhout Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071430 Hansen et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140079297 Tadayon et al. Mar 2014 A1
20140091147 Evans et al. Apr 2014 A1
20140097238 Ghazizadeh Apr 2014 A1
20140098091 Hori Apr 2014 A1
20140098243 Ghazizadeh Apr 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140100813 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Li et al. Apr 2014 A1
20140104451 Todeschini et al. Apr 2014 A1
20140104664 Lee Apr 2014 A1
20140106594 Skvoretz Apr 2014 A1
20140106725 Sauerwein Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140121438 Kearney May 2014 A1
20140121445 Ding et al. May 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140131448 Xian et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140135984 Hirata May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140139654 Taskahashi May 2014 A1
20140140585 Wang May 2014 A1
20140142398 Patil et al. May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140152975 Ko Jun 2014 A1
20140158468 Adami Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Zumsteg et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140166759 Liu et al. Jun 2014 A1
20140168380 Heidemann et al. Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140175172 Jovanovski et al. Jun 2014 A1
20140177931 Kocherscheidt et al. Jun 2014 A1
20140191644 Chaney Jul 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140192187 Atwell et al. Jul 2014 A1
20140192551 Masaki Jul 2014 A1
20140197238 Lui et al. Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140201126 Zadeh et al. Jul 2014 A1
20140203087 Smith et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140205150 Ogawa Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140225918 Mittal et al. Aug 2014 A1
20140225985 Klusza et al. Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140232930 Anderson Aug 2014 A1
20140240454 Lee Aug 2014 A1
20140247279 Nicholas et al. Sep 2014 A1
20140247280 Nicholas et al. Sep 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140267609 Laffargue Sep 2014 A1
20140268093 Tohme et al. Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140270361 Amma et al. Sep 2014 A1
20140278387 DiGregorio Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140284384 Lu et al. Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140306833 Ricci Oct 2014 A1
20140307855 Withagen Oct 2014 A1
20140312121 Lu et al. Oct 2014 A1
20140313527 Askan Oct 2014 A1
20140319219 Liu et al. Oct 2014 A1
20140319220 Coyle Oct 2014 A1
20140319221 Oberpriller et al. Oct 2014 A1
20140320408 Zagorsek et al. Oct 2014 A1
20140326787 Barten Nov 2014 A1
20140332590 Wang et al. Nov 2014 A1
20140344943 Todeschini et al. Nov 2014 A1
20140346233 Liu et al. Nov 2014 A1
20140347533 Ovsiannikov et al. Nov 2014 A1
20140350710 Gopalkrishnan et al. Nov 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140353373 Van Horn et al. Dec 2014 A1
20140361073 Qu et al. Dec 2014 A1
20140361082 Xian et al. Dec 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20140379613 Nishitani et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150001304 Todeschini Jan 2015 A1
20150003673 Fletcher Jan 2015 A1
20150009100 Haneda et al. Jan 2015 A1
20150009301 Ribnick et al. Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150009610 London et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028102 Ren et al. Jan 2015 A1
20150028103 Jiang Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150036876 Marrion et al. Feb 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150048168 Fritz et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053766 Havens et al. Feb 2015 A1
20150053768 Wang et al. Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150062369 Gehring et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150063676 Lloyd et al. Mar 2015 A1
20150069130 Gannon Mar 2015 A1
20150070158 Hayasaka Mar 2015 A1
20150071818 Todeschini Mar 2015 A1
20150083800 Li et al. Mar 2015 A1
20150086114 Todeschini Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150099557 Pettinelli et al. Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150102109 Huck Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150116498 Vartiainen et al. Apr 2015 A1
20150117749 Chen et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150129659 Feng et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150136854 Lu et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150144701 Xian et al. May 2015 A1
20150149946 Benos et al. May 2015 A1
20150161429 Xian Jun 2015 A1
20150163474 You Jun 2015 A1
20150169925 Chang et al. Jun 2015 A1
20150169929 Williams et al. Jun 2015 A1
20150178900 Kim et al. Jun 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150193644 Kearney et al. Jul 2015 A1
20150193645 Colavito et al. Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150204662 Kobayashi et al. Jul 2015 A1
20150204671 Showering Jul 2015 A1
20150213647 Laffargue et al. Jul 2015 A1
20150219748 Hyatt Aug 2015 A1
20150229838 Hakim Aug 2015 A1
20150269403 Lei et al. Sep 2015 A1
20150201181 Herschbach Oct 2015 A1
20150276379 Ni et al. Oct 2015 A1
20150308816 Laffargue et al. Oct 2015 A1
20150316368 Moench et al. Nov 2015 A1
20150325036 Lee Nov 2015 A1
20150332463 Galera et al. Nov 2015 A1
20150355470 Herschbach Dec 2015 A1
20160048725 Holz et al. Feb 2016 A1
20160063429 Varley et al. Mar 2016 A1
20160065912 Peterson Mar 2016 A1
20160090283 Svensson et al. Mar 2016 A1
20160090284 Svensson et al. Mar 2016 A1
20160138247 Conway et al. May 2016 A1
20160138248 Conway et al. May 2016 A1
20160138249 Svensson et al. May 2016 A1
20160169665 Deschenes et al. Jun 2016 A1
20160187186 Coleman et al. Jun 2016 A1
20160187187 Coleman et al. Jun 2016 A1
20160187210 Coleman et al. Jun 2016 A1
20160191801 Sivan Jun 2016 A1
20160202478 Masson et al. Jul 2016 A1
20160203641 Bostick et al. Jul 2016 A1
20160223474 Tang et al. Aug 2016 A1
20170115490 Hsieh et al. Apr 2017 A1
20170121158 Wong May 2017 A1
20170182942 Hardy et al. Jun 2017 A1
20170336870 Everett et al. Nov 2017 A1
Foreign Referenced Citations (60)
Number Date Country
2004212587 Apr 2005 AU
201139117 Oct 2008 CN
3335760 Apr 1985 DE
10210813 Oct 2003 DE
102007037282 Mar 2008 DE
3007096 Apr 2016 EE
1111435 Jun 2001 EP
1443312 Aug 2004 EP
1112483 May 2006 EP
1232480 May 2006 EP
2013117 Jan 2009 EP
2286932 Feb 2011 EP
2372648 Oct 2011 EP
2381421 Oct 2011 EP
2533009 Dec 2012 EP
2562715 Feb 2013 EP
2722656 Apr 2014 EP
2779027 Sep 2014 EP
2833323 Feb 2015 EP
2843590 Mar 2015 EP
2845170 Mar 2015 EP
2966595 Jan 2016 EP
3006893 Apr 2016 EP
3012601 Apr 2016 EP
2503978 Jan 2014 GB
2525053 Oct 2015 GB
2531928 May 2016 GB
H04129902 Apr 1992 JP
200696457 Apr 2006 JP
2007084162 Apr 2007 JP
2008210276 Sep 2008 JP
2014210646 Nov 2014 JP
2015174705 Oct 2015 JP
20100020115 Feb 2010 KR
20110013200 Feb 2011 KR
20110117020 Oct 2011 KR
20120028109 Mar 2012 KR
9640452 Dec 1996 WO
0077726 Dec 2000 WO
0114836 Mar 2001 WO
2006095110 Sep 2006 WO
2007015059 Feb 2007 WO
200712554 Nov 2007 WO
2011017241 Feb 2011 WO
2012175731 Dec 2012 WO
2013021157 Feb 2013 WO
2013033442 Mar 2013 WO
2013163789 Nov 2013 WO
2013166368 Nov 2013 WO
2013173985 Nov 2013 WO
20130184340 Dec 2013 WO
2014019130 Feb 2014 WO
2014102341 Jul 2014 WO
2014110495 Jul 2014 WO
2014149702 Sep 2014 WO
2014151746 Sep 2014 WO
2015006865 Jan 2015 WO
2016020038 Feb 2016 WO
2016061699 Apr 2016 WO
2016061699 Apr 2016 WO
Non-Patent Literature Citations (196)
Entry
Search Report and Opinion in Related EP Application 151769431, dated Jan. 8, 2016, 8 pages.
European Search Report for related EP Application No. 15188440.0, dated Mar. 8, 2016, 8 pages.
United Kingdom Search Report in related application GB1517842.9, dated Apr. 8, 2016, 8 pages.
Great Britain Search Report for related Application On. GB1517843.7, dated Feb. 23, 2016; 8 pages.
Second Chinese Office Action in related CN Application No. 2015220810562.2, dated Mar. 22, 2016, 5 pages, no references.
European Search Report in related EP Application No. 15190315.0, dated Apr. 1, 2016, 7 pages.
Second Chinese Office Action in related CN Application No. 2015220810562.2, dated Mar. 22, 2016, 5 pages. English Translation provided [No references].
European Search Report for related Application EP 151902491, dated Mar. 22, 2016, 7 pages.
Second Chinese Office Action in related CN Application No. 201520810313.3, dated Mar. 22, 2016, 5 pages. English Translation provided [No references].
European Extended Search Report in Related EP Application No. 16172995.9, dated Aug. 22, 2016, 11 pages.
European Search Report in related EP Application No. 13186043.9, dated Sep. 9, 2015, 7 pages.
UK Search Report in related GB Application GB1517842.9, dated Apr. 8, 2016, 8 pages.
European Extended search report in related EP Application No. 15190306.9, dated Sep. 9, 2016, 15 pages.
Collings et al., “The Applications and Technology of Phase-Only Liquid Crystal on Silicon Devices”, Journal of Display Technology, IEEE Service Center, New, York, NY, US, vol. 7, No. 3, Mar. 1, 2011 (Mar. 1, 2011), pp. 112-119.
U.S. Appl. No. 14/519,179 for Dimensioning System With Multipath Interference Mitigation filed Oct. 21, 2014 (Thuries et al.); 30 pages.
U.S. Appl. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014, (Ackley et al.); 39 pages.
U.S. Appl. No. 14/453,019 for Dimensioning System With Guided Alignment, filed Aug. 6, 2014 (Li et al.); 31 pages.
U.S. Appl. No. 14/452,697 for Interactive Indicia Reader , filed Aug. 6, 2014, (Todeschini); 32 pages.
U.S. Appl. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.); 36 pages.
U.S. Appl. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.); 8 pages.
U.S. Appl. No. 14/513,808 for Identifying Inventory Items in a Storage Facility filed Oct. 14, 2014 (Singel et al.); 51 pages.
U.S. Appl. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.); 22 pages.
U.S. Appl. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.); 21 pages.
U.S. Appl. No. 14/483,056 for Variable Depth of Field Barcode Scanner filed Sep. 10, 2014 (McCloskey et al.); 29 pages.
U.S. Appl. No. 14/531,154 for Directing an Inspector Through an Inspection filed Nov. 3, 2014 (Miller et al.); 53 pages.
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages.
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages.
U.S. Appl. No. 14/340,627 for an Axially Reinforced Flexible Scan Element, filed Jul. 25, 2014 (Reublinger et al.); 41 pages.
U.S. Appl. No. 14/676,327 for Device Management Proxy for Secure Devices filed Apr. 1, 2015 (Yeakley et al.); 50 pages.
U.S. Appl. No. 14/257,364 for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering); 31 pages.
U.S. Appl. No. 14/327,827 for a Mobile-Phone Adapter for Electronic Transactions, filed Jul. 10, 2014 (Hejl); 25 pages.
U.S. Appl. No. 14/334,934 for a System and Method for Indicia Verification, filed Jul. 18, 2014 (Hejl); 38 pages.
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al); 16 pages.
U.S. Appl. No. 14/707,123 for Application Independent DEX/UCS Interface filed May 8, 2015 (Pape); 47 pages.
U.S. Appl. No. 14/283,282 for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.); 31 pages.
U.S. Appl. No. 14/619,093 for Methods for Training a Speech Recognition System filed Feb. 11, 2015 (Pecorari); 35 pages.
U.S. Appl. No. 29/524,186 for Scanner filed Apr. 17, 2015 (Zhou et al.); 17 pages.
U.S. Appl. No. 14/705,407 for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.); 42 pages.
U.S. Appl. No. 14/614,706 for Device for Supporting an Electronic Tool on a User's Hand filed Feb. 5, 2015 (Oberpriller et al.); 33 pages.
U.S. Appl. No. 14/628,708 for Device, System, and Method for Determining the Status of Checkout Lanes filed Feb. 23, 2015 (Todeschini); 37 pages.
U.S. Appl. No. 14/704,050 for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages.
U.S. Appl. No. 14/529,563 for Adaptable Interface for a Mobile Computing Device filed Oct. 31, 2014 (Schoon et al.); 36 pages.
U.S. Appl. No. 14/705,012 for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Fitch et al.); 44 pages.
U.S. Appl. No. 14/715,672 for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.); 35 pages.
U.S. Appl. No. 14/695,364 for Medication Management System filed Apr. 24, 2015 (Sewell et al.); 44 pages.
U.S. Appl. No. 14/664,063 for Method and Application for Scanning a Barcode With a Smart Device While Continuously Running and Displaying an Application on the Smart Device Display filed Mar. 20, 2015 (Todeschini); 37 pages.
U.S. Appl. No. 14/735,717 for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini); 39 pages.
U.S. Appl. No. 14/527,191 for Method and System for Recognizing Speech Using Wildcards in an Expected Response filed Oct. 29, 2014 (Braho et al.); 45 pages.
U.S. Appl. No. 14/702,110 for System and Method for Regulating Barcode Data Injection Into a Running Application on a Smart Device filed May 1, 2015 (Todeschini et al.); 38 pages.
U.S. Appl. No. 14/535,764 for Concatenated Expected Responses for Speech Recognition filed Nov. 7, 2014 (Braho et al.); 51 pages.
U.S. Appl. No. 14/687,289 for System for Communication via a Peripheral HUB filed Apr. 15, 2015 (Kohtz et al.); 37 pages.
U.S. Appl. No. 14/747,197 for Optical Pattern Projector filed Jun. 23, 2015 (Thuries et al.); 33 pages.
U.S. Appl. No. 14/674,329 for Aimer for Barcode Scanning filed Mar. 31, 2015 (Bidwell); 36 pages.
U.S. Appl. No. 14/702,979 for Tracking Battery Conditions filed May 4, 2015 (Young et al.); 70 pages.
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages.
U.S. Appl. No. 14/747,490 for Dual-Projector Three-Dimensional Scanner filed Jun. 23, 2015 (Jovanovski et al.); 40 pages.
U.S. Appl. No. 14/740,320 for Tactile Switch for a Mobile Electronic Device filed Jun. 16, 2015 (Barndringa); 38 pages.
U.S. Appl. No. 14/695,923 for Secure Unattended Network Authentication filed Apr. 24, 2015 (Kubler et al.); 52 pages.
U.S. Appl. No. 29/513,410 for Electronic Device filed Dec. 30, 2014 (Nguyen et al.); 10 pages.
U.S. Appl. No. 29/513,411 for Electronic Device filed Dec. 30, 2014 (Nguyen et al.); 9 pages.
U.S. Appl. No. 14/715,916 for Evaluating Image Values filed May 19, 2015 (Ackley); 60 pages.
U.S. Appl. No. 14/740,373 for Calibrating a Volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages.
European Search Report from related EP Application No. 16168216.6, dated Oct. 20, 2016, 8 pages.
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned.
U.S. Appl. No. 14/462,801 for Mobile Computing Device With Data Cognition Software, filed Aug. 19, 2014 (Todeschini et al.); 38 pages.
U.S. Appl. No. 14/724,134 for Electronic Device With Wireless Path Selection Capability filed May 28, 2015 (Wang et al.); 42 pages.
U.S. Appl. No. 14/277,337 for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages.
U.S. Appl. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.); 42 pages.
U.S. Appl. No. 14/724,849 for Method of Programming the Default Cable Interface Software in an Indicia Reading Device filed May 29, 2015 (Baden); 29 pages.
U.S. Appl. No. 14/446,391 for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.); 37 pages.
U.S. Appl. No. 14/722,608 for Interactive User Interface for Capturing a Document in an Image Signal filed May 27, 2015 (Showering et al.); 59 pages.
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2, 2015 (Fitch et al.); 61 pages.
U.S. Appl. No. 14/614,796 for Cargo Apportionment Techniques filed Feb. 5, 2015 (Morton et al.); 56 pages.
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages.
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); 17 pages.
U.S. Appl. No. 14/578,627 for Safety System and Method filed Dec. 22, 2014 (Ackley et al.); 32 pages.
U.S. Appl. No. 14/573,022 for Dynamic Diagnostic Indicator Generation filed Dec. 17, 2014 (Goldsmith); 43 pages.
U.S. Appl. No. 14/724,908 for Imaging Apparatus Having Imaging Assembly filed May 29, 2015 (Barber et al.); 39 pages.
U.S. Appl. No. 14/519,195 for Handheld Dimensioning System With Feedback filed Oct. 21, 2014 (Laffargue et al.); 39 pages.
U.S. Appl. No. 14/519,211 for System and Method for Dimensioning filed Oct. 21, 2014 (Ackley et al.); 33 pages.
U.S. Appl. No. 14/519,233 for Handheld Dimensioner With Data-Quality Indication filed Oct. 21, 2014 (Laffargue et al.); 36 pages.
U.S. Appl. No. 14/679,275 for Dimensioning System Calibration Systems and Methods filed Apr. 6, 2015 (Laffargue et al.); 47 pages.
U.S. Appl. No. 14/744,633 for Imaging Apparatus Comprising Image Sensor Array Having Shared Global Shutter Circuitry filed Jun. 19, 2015 (Wang); 65 pages.
U.S. Appl. No. 29/528,590 for Electronic Device filed May 29, 2015 (Fitch et al.); 9 pages.
U.S. Appl. No. 14/519,249 for Handheld Dimensioning System With Measurement-Conformance Feedback filed Oct. 21, 2014 (Ackley et al.); 36 pages.
U.S. Appl. No. 14/744,836 for Cloud-Based System for Reading of Decodable Indicia filed Jun. 19, 2015 (Todeschini et al.); 26 pages.
U.S. Appl. No. 14/398,542 for Portable Electronic Devices Having a Separate Location Trigger Unit for Use in Controlling an Application Unit filed Nov. 3, 2014 (Bian et al.); 22 pages.
U.S. Appl. No. 14/405,278 for Design Pattern for Secure Store filed Mar. 9, 2015 (Zhu et al.); 23 pages.
U.S. Appl. No. 14/745,006 for Selective Output of Decoded Message Data filed Jun. 19, 2015 (Todeschini et al.); 36 pages.
U.S. Appl. No. 14/568,305 for Auto-Contrast ViewFinder for an Indicia Reader filed Dec. 12, 2014 (Todeschini); 29 pages.
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages.
U.S. Appl. No. 14/580,262 for Media Gate for Thermal Transfer Printers filed Dec. 23, 2014 (Bowles); 36 pages.
U.S. Appl. No. 14/590,024 for Shelving and Package Locating Systems for Delivery Vehicles filed Jan. 6, 2015 (Payne); 31 pages.
U.S. Appl. No. 29/519,017 for Scanner filed Mar. 2, 2015 (Zhou et al.); 11 pages.
U.S. Appl. No. 14/748,446 for Cordless Indicia Reader With a Multifunction Coil for Wireless Charging and EAS Deactivation, filed Jun. 24, 2015 (Xie et al.); 34 pages.
U.S. Appl. No. 14/529,857 for Barcode Reader With Security Features filed Oct. 31, 2014 (Todeschini et al.); 32 pages.
U.S. Appl. No. 29/528,165 for In-Counter Barcode Scanner filed May 27, 2015 (Oberpriller et al.); 13 pages.
U.S. Appl. No. 14/662,922 for Multifunction Point of Sale System filed Mar. 19, 2015 (Van Horn et al.); 41 pages.
U.S. Appl. No. 14/596,757 for System and Method for Detecting Barcode Printing Errors filed Jan. 14, 2015 (Ackley); 41 pages.
U.S. Appl. No. 14/533,319 for Barcode Scanning System Using Wearable Device With Embedded Camera filed Nov. 5, 2014 (Todeschini); 29 pages.
European Search Report for Related EP Application No. 15189214.8, dated Mar. 3, 2016, 9 pages.
Padzensky, Ron; “Augmera; Gesture Control”, Dated Apr. 18, 2015, 15 pages.
Grabowski, Ralph; “New Commands in AutoCADS 2010: Part 11 Smoothing 3D Mesh Objects” Dated 2011, 6 pages.
Theodoropoulos, Gabriel; “Using Gesture Recognizers to Handle Pinch, Rotate, Pan, Swipe, and Tap Gestures” dated Aug. 25, 2014, 34 pages.
Search Report and Opinion in related GB Application No. 1517112.7, dated Feb. 19, 2016, 6 Pages.
U.S. Appl. No. 14/800,757 , Eric Todeschini, filed Jul. 16, 2015, not published yet, Dimensioning and Imaging Items, 80 pages.
Proesmans, Marc et al. “Active Acquisition of 3D Shape for Moving Objects” 0-7803-3258-X/96 1996 IEEE; 4 pages.
U.S. Appl. No. 14/747,197, Serge Thuries et al., filed Jun. 23, 2015, not published yet, Optical Pattern Projector; 33 pages.
U.S. Appl. No. 14/747,490, Brian L. Jovanovski et al., filed Jun. 23, 2015, not published yet, Dual-Projector Three-Dimensional Scanner; 40 pages.
U.S. Appl. No. 14/715,916, H. Sprague Ackley, filed May 19, 2015, not published yet, Evaluating Image Values; 54 pages.
U.S. Appl. No. 14/793,149, H. Sprague Ackley, filed Jul. 7, 2015, not published yet, Mobile Dimensioner Apparatus for Use in Commerce; 57 pages.
U.S. Appl. No. 14/740,373, H. Sprague Ackley et al., filed Jun. 16, 2015, not published yet, Calibrating a Volume Dimensioner; 63 pages.
U.S. Appl. No. 14/801,023, Tyler Doomenbal et al., filed Jul. 16, 2015, not published yet, Adjusting Dimensioning Results Using Augmented Reality, 39 pages.
Leotta, Matthew, Generic, Deformable Models for 3-D Vehicle Surveillance, May 2010, Doctoral Dissertation, Brown University, Providence RI, 248 pages.
Ward, Benjamin, Interactive 3D Reconstruction from Video, Aug. 2012, Doctoral Thesis, Univesity of Adelaide, Adelaide, South Australia, 157 pages.
Hood, Frederick W.; William A. Hoff, Robert King, Evaluation of an Interactive Technique for Creating Site Models from Range Data, Apr. 27-May 1, 1997 Proceedings of the ANS 7th Topical Meeting on Robotics & Remote Systems, Augusta GA, 9 pages.
Gupta, Alok; Range Image Segmentation for 3-D Objects Recognition, May 1988, Technical Reports (CIS), Paper 736, University of Pennsylvania Department of Computer and Information Science, retrieved from Http://repository.upenn.edu/cis_reports/736, Accessed May 31, 2015, 157 pages.
Reisner-Kollmann,Irene; Anton L. Fuhrmann, Werner Purgathofer, Interactive Reconstruction of Industrial Sites Using Parametric Models, May 2010, Proceedings of the 26th Spring Conference of Computer Graphics SCCG ′10, 8 pages.
Drummond, Tom; Roberto Cipolla, Real-Time Visual Tracking of Complex Structures, Jul. 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, No. 7; 15 pages.
Zhang, Zhaoxiang; Tieniu Tan, Kaiqi Huang, Yunhong Wang; Three-Dimensional Deformable-Model-based Localization and Recognition of Road Vehicles; IEEE Transactions on Image Processing, vol. 21, No. 1, Jan. 2012, 13 pages.
Leotta, Matthew J.; Joseph L. Mundy; Predicting High Resolution Image Edges with a Generic, Adaptive, 3-D Vehicle Model; IEEE Conference on Computer Vision and Pattern Recognition, 2009; 8 pages.
Spiller, Jonathan; Object Localization Using Deformable Templates, Master's Dissertation, University of the Witwatersrand, Johannesburg, South Africa, 2007; 74 pages.
EP Search and Written Opinion Report in related matter EP Application No. 14181437.6, dated Mar. 26, 2015, 7 pages.
Hetzel, Gunter et al.; “3D Object Recognition from Range Images using Local Feature Histograms,”, Proceedings 2OO1 IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2001. Kauai, Hawaii, Dec. 8-14, 2001; pp. 394-399, XP010584149, ISBN: 978-0-7695-1272-3.
Intention to Grant in counterpart European Application No. 14157971 A dated Apr. 14, 2015, pp. 1-8.
Decision to Grant in counterpart European Application No. 14157971.4 dated Aug. 6, 2015, pp. 1-2.
Salvi, Joaquim et al. “Pattern Codification Strategies in Structured Light Systems” published in Pattern Recognition; The Journal of the Pattern Recognition Society, Accepted Oct. 2, 2003; 23 pages.
Office Action in counterpart European Application No. 13186043.9 dated Sep. 30, 2015, pp. 1-7.
Lloyd et al., “System for Monitoring the Condition of Packages Throughout Transit”, U.S. Appl. No. 14/865,575, filed Sep. 25, 2015, 59 pages, not yet published.
James Chamberlin, “System and Method for Picking Validation”, U.S. Appl. No. 14/865,797, filed Sep. 25, 2015, 44 pages, not yet published.
Jovanovski et al., “Image-Stitching for Dimensioning”, U.S. Appl. No. 14/870,488, filed Sep. 30, 2015, 45 pages, not yet published.
Todeschini et al.; “Depth Sensor Based Auto-Focus System for an Indicia Scanner,” U.S. Appl. No. 14/872,176, filed Oct. 1, 2015, 44 pages, not yet published.
Wikipedia, “3D projection” Downloaded on Nov. 25, 2015 from www.wikipedia.com, 4 pages.
McCloskey et al., “Methods for Improving the Accuracy of Dimensioning-System Measurements,” U.S. Appl. No. 14/873,613, filed Sep. 2, 2015, 47 pages, not yet published.
Search Report in counterpart European Application No. 15182675.7, dated Dec. 4, 2015, 10 pages.
McCloskey et al., “Image Transformation for Indicia Reading,” U.S. Appl. No. 14/982,032, filed Oct. 30, 2015, 48 pages, not yet published.
European Partial Search Report for related EP Application No. 15190306.9, dated May 6, 2016, 8 pages.
Mike Stensvold, “Get the Most Out of Variable Aperture Lenses”, published on www.OutdoorPhotogrpaher.com; dated Dec. 7, 2010; 4 pages, [As noted on search report retrieved from URL: http;//www.outdoorphotographer.com/gear/lenses/get-the-most-out-ofvariable-aperture-lenses.html on Feb. 9, 2016].
European Search Report for related EP Application No. 16152477.2, dated May 24, 2016, 8 pages.
Lloyd, Ryan and Scott McCloskey, “Recognition of 3D Package Shapes for Singe Camera Metrology” IEEE Winter Conference on Applications of computer Visiona, IEEE, Mar. 24, 2014, pp. 99-106, {retrieved on Jun. 16, 2014}.
European Extended Search Report in related EP Application No. 16190017.0, dated Jan. 4, 2017, 6 pages.
European Extended Search Report in related EP Application No. 16173429.8, dated Dec. 1, 2016, 8 pages.
Extended European Search Report in related EP Application No. 16175410.0, dated Dec. 13, 2016, 5 pages.
United Kingdom combined Search and Examination Report in related GB Application No. 1607394.2, dated Oct. 19, 2016, 7 pages.
Peter Clarke, Actuator Developer Claims Anti-Shake Breakthrough for Smartphone Cams, Electronic Engineering Times, p. 24, May 16, 2011.
U.S. Appl. No. 14/055,234, not yet published, Hand Held Products, Inc. filed Oct. 16, 2013; 26 pages.
U.S. Appl. No. 13/912,262, not yet published, filed Jun. 7, 2013, Hand Held Products Inc., Method of Error Correction for 3D Imaging Device: 33 pages.
European Search Report for application No. EP13186043 (now EP2722656 (Apr. 23, 2014)): Total pp. 7.
International Search Report for PCT/US2013/039438 (WO2013166368), dated Oct. 1, 2013, 7 pages.
U.S. Appl. No. 14/453,019, not yet published, filed Aug. 6, 2014, Hand Held Products Inc., Dimensioning System With Guided Alignment: 31 pages.
European Office Action for application EP 13186043, dated Jun. 12, 2014(now EP2722656 (Apr. 23, 2014)), Total of 6 pages.
U.S. Appl. No. 14/461,524, not yet published, filed Aug. 18, 2014, Hand Held Products Inc., System and Method for Package Dimensioning: 21 pages.
U.S. Appl. No. 14/490,989, not yet published, filed Sep. 19, 2014, Intermec IP Corporation, Volume Dimensioning System Calibration Systems and Methods.
Wikipedia, YUV description and definition, downloaded from http://www.wikipeida.org/wiki/YUV on Jun. 29, 2012, 10 pages.
YUV Pixel Format, downloaded from http://www.fource.org/yuv.php on Jun. 29, 2012; 13 pages.
YUV to RGB Conversion, downloaded from http://www.fource.org/fccyvrgb.php on Jun. 29, 2012; 5 pages.
Benos et al., “Semi-Automatic Dimensioning with Imager of a Portable Device,” U.S. Appl. No. 61/149,912; filed Feb. 4, 2009 (now expired), 56 pages.
Dimensional Weight—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensional_weight, download date Aug. 1, 2008, 2 pages.
Dimensioning—Wikipedia, the Free Encyclopedia, URL=http://en.wikipedia.org/wiki/Dimensioning, download date Aug. 1, 2008, 1 page.
M.Zahid Gurbuz, Selim Akyokus, Ibrahim Emiroglu, Aysun Guran, An Efficient Algorithm for 3D Rectangular Box Packing, 2009, Applied Automatic Systems: Proceedings of Selected AAS 2009 Papers, pp. 131-134.
European extended Search report in related EP Application 13785171.3, dated Sep. 19, 2016, 8 pages.
El-Hakim et al., “Multicamera vision-based approach to flexible feature measurement for inspection and reverse engineering”, published in Optical Engineering, Society of Photo-Optical Instrumentation Engineers, vol. 32, No. 9, Sep. 1, 1993, 15 pages.
El-Hakim et al., “A Knowledge-based Edge/Object Measurement Technique”, Retrieved from the Internet: URL: https://www.researchgate.net/profile/Sabry_E1 -Hakim/publication/44075058_A_Knowledge_Based_EdgeObject_Measurement_Technique/links/00b4953b5faa7d3304000000.pdf [retrieved on Jul. 15, 2016] dated Jan. 1, 1993, 9 pages.
European extended search report in related EP Application 16190833.0, dated Mar. 9, 2017, 8 pages.
United Kingdom Combined Search and Examination Report in related Application No. GB1620676.5, dated Mar. 8, 2017, 6 pages.
European Exam Report in related , EP Application No. 16168216.6, dated Feb. 27, 2017, 5 pages.
Thorlabs, Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6430, 4 pages.
EKSMA Optics, Advisory Action dated Apr. 12, 2017 in related commonly owned application, downloaded from http://eksmaoptics.com/optical-systems/f-theta-lenses/f-theta-lens-for-1064-nm/, 2 pages.
Sill Optics, Advisory Action dated Apr. 12, 2017 in related commonly owned application, http://www.silloptics.de/1/products/sill-encyclopedia/laser-optics/f-theta-lenses/, 4 pages.
Chinese Notice of Reexamination in related Chinese Application 201520810313.3, dated Mar. 14, 2017, English Computer Translation provided, 7 pages.
Extended European search report in related EP Application 16199707.7, dated Apr. 10, 2017, 15 pages.
Ulusoy et al., One-Shot Scanning using De Bruijn Spaced Grids, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, 7 pages.
European Examination report in related EP Application No. 14181437.6, dated Feb. 8, 2017, 5 pages.
Wikipedia, “Microlens”, Downloaded from https://en.wikipedia.org/wiki/Microlens, pp. 3.
Fukaya et al., “Characteristics of Speckle Random Pattern and Its Applications”, pp. 317-327, Nouv. Rev. Optique, t.6, n.6. (1975).
Ralph Grabowski, “Smothing 3D Mesh Objects,” New Commands in AutoCAD 2010: Part 11, 6 pages.
European Exam Report in related EP Application No. 16152477.2, dated Jun. 20, 2017, 4 pages.
European Exam Report in related EP Applciation 16172995.9, dated Jul. 6, 2017, 9 pages.
United Kingdom Search Report in related Application No. GB1700338.5, dated Jun. 30, 2017, 5 pages.
European Search Report in related EP Application No. 17175357.7, dated Aug. 17, 2017, pp. 1-7.
European Exam Report in related EP Application No. 15176943.7, dated Apr. 12, 2017, 6 pages.
European Exam Report in related EP Application No. 15188440.0, dated Apr. 21, 2017, 4 pages.
EP Search Report in related EP Application No. 17171844 dated Sep. 18, 2017. 4 pages [Only new art cited herein}.
EP Extended Search Report in related EP Applicaton No. 17174843.7 dated Oct. 17, 2017, 5 pages {Only new art cited herein}.
UK Further Exam Report in related UK Application No. GB1517842.9, dated Sep. 1, 2017, 5 pages (only new art cited herein).
Boavida et al., “Dam monitoring using combined terrestrial imaging systems”, 2009 Civil Engineering Survey De/Jan. 2009, pp. 33-38 {Cited in Notice of Allowance dated Sep. 15, 2017 in related matter}.
Ulusoy, Ali Osman et al.; “One-Shot Scanning using De Bruijn Spaced Grids”, Brown University; 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 1786-1792 [Cited in EPO Search Report dated Dec. 5, 2017}.
Extended European Search report in related EP Application No. 17189496.7 dated Dec. 5, 2017; 9 pages.
Examination Report in related EP Application No. 15190315, dated Jan. 26, 2018, 6 pages [Only new art cited herein].
Examination Report in related GB Application No. GB1517843.7, dated Jan. 19, 2018, 4 pages [Only new art cited herein].
Extended European Search report in related EP Application No. 17190323.0 dated Jan. 19, 2018; 6 pages [Only new art cited herein].
European Extended Search Report in related EP Application No. 17201794.9, dated Mar. 16, 2018, 10 pages [Only new art cited herein].
European Extended Search Report in related EP Application 17205030.4, dated Mar. 22, 2018, 8 pages.
European Exam Report in related EP Application 16172995.9, dated Mar. 15, 2018, 7 pages (Only new art cited herein).
United Kingdom Combined Search and Examination Report dated Mar. 21, 2018, 5 pages (Art has been previously cited).
European extended Search Report in related Application No. 17207882.6 dated Apr. 26, 2018, 10 pages.
Related Publications (1)
Number Date Country
20160112643 A1 Apr 2016 US