The described embodiments relate generally to portable computing devices such as laptop computers, tablet computers, and the like. More particularly, enclosures of portable computing devices and methods of assembling portable computing devices are described.
In recent years, portable computing devices such as laptops, PDAs, media players, cellular phones, etc., have become small, light and powerful. One factor contributing to this reduction in size can be attributed to the manufacturer's ability to fabricate various components of these devices in smaller and smaller sizes while in most cases increasing the power and or operating speed of such components. The trend of smaller, lighter and powerful presents a continuing design challenge in the design of some components of the portable computing devices.
One design challenge associated with the portable computing device is the design of the enclosures used to house the various internal components. This design challenge generally arises from a number conflicting design goals that includes the desirability of making the enclosure lighter and thinner, the desirability of making the enclosure stronger and making the enclosure more esthetically pleasing. The lighter enclosures, which typically use thinner structures and fewer fasteners, tend to be more flexible and therefore they have a greater propensity to buckle and bow when used while the stronger and more rigid enclosures, which typically use more substantial structures and include fasteners, tend to be thicker and carry more weight. Unfortunately, however, the increased weight consistent with the more rugged enclosure can lead to user dissatisfaction whereas bowing of enclosures formed of lightweight material can result in damaging some of the internal components (such as printed circuit boards) of the portable device.
Furthermore, the enclosures are mechanical assemblies having multiple parts that are screwed, bolted, riveted, or otherwise fastened together at discrete points. These assembly techniques typically complicate the housing design and create aesthetic difficulties because of undesirable cracks, seams, gaps or breaks at the mating surfaces and fasteners located along the surfaces of the housing. For example, a mating line surrounding the entire enclosure is produced when using an upper and lower casing. Moreover, the various components and complicated processes used to manufacture the portable device can make assembly a time consuming and cumbersome process requiring, for example, a highly trained assembly operator working with special tools.
Another challenge is related to techniques for mounting structures within the portable computing devices. Conventionally, the structures have been laid over one of the casings (upper or lower) and attached to one of the casings with fasteners such as screws, bolts, rivets, etc. That is, the structures are positioned in a sandwich like manner in layers over the casing and thereafter fastened to the casing. This methodology suffers from the same drawbacks as mentioned above, i.e., assembly is a time consuming and cumbersome process.
In view of the foregoing, there is a need for improved component density and associated assembly techniques that reduce cost and improve outgoing quality. In addition, there is a need for improvements in the manner in which handheld devices are assembled such as improvements that enable structures to be quickly and easily installed within the enclosure. It is also desirable to minimize the Z stack height of the assembled components in order to reduce the overall thickness of the portable computing device and thereby improve the overall aesthetic look and feel of the product.
A portable computing device is disclosed. The portable computing device can take many forms such as a laptop computer, a tablet computer, and so on. In one embodiment, the portable computing device can include at least a single piece housing having a surface for receiving a trim bead and a transparent cover, such that the transparent cover is supported by the housing. The single piece housing can include an integral bottom and side walls that cooperate to form an interior cavity. The exterior surface of the housing can have a substantially flat bottom joined by curved walls. The interior cavity can include a substantially flat bottom portion for mounting battery packs and other components, such as PCB boards. Various structures including ledges, alignment points, attachment points, openings and support structures can be formed in the sidewalls and bottom surfaces of the interior cavity. Ledges around a perimeter of the interior cavity can include a surface for receiving a trim bead and a transparent cover to the housing. In one embodiment, around the perimeter of the cavity, corner brackets can be mounted. The corner brackets can be configured to reduce damage resulting from an impact at the corners.
In one aspect, the single piece housing can be machined from a single billet of material, such as rectangular block of aluminum, using computer numerical controlled (CNC) machine tools and associated techniques. In one embodiment, the single piece housing can be generated by 1) machining the billet to form an exterior surface of the housing, the exterior surface including curved side walls transitioning into a substantially flat bottom surface; 2) machining the billet to form an interior cavity, a portion of the interior cavity substantially flat and parallel to the substantially flat bottom surface; 3) machining the billet to form interior sidewalls to form ledges that extends from the sidewalls, the ledges including a surface, proximately parallel to the flat bottom surface, for receiving a trim bead and a cover and 4) machining the billet to form support shelves for attaching corner brackets to the housing.
In particular embodiments, the corner brackets can be attached to the support shelves using an adhesive and a conductive foam to increase a stiffness and hence, the damage resistance of the housing to impact events. The conductive foam can ground the corner bracket to the remainder of the housing to ensure good antenna performance. The corner brackets can include a surface for receiving corner portions of a trim bead and a cover. The corner brackets can be installed such that a top portion of the surface on the corner brackets for receiving the trim bead is aligned with surfaces for receiving the trim bead formed on ledges of the single piece housing adjacent to the corner bracket. In one embodiment, the surface for receiving the trim bead on the corner brackets can be castellated to increase the strength of the housing proximate to the castellation.
In yet other embodiments, a number of openings can be machined into the single piece housing to provide access to the interior cavity from the exterior of the housing. For example, a first opening in the single piece housing can be formed to allow a SIM tray for supporting a SIM card to extend from the interior cavity through and above one of the sidewalls and a second opening in the single piece housing, adjacent to the first opening, can be formed for allowing access to an ejector mechanism that causes the SIM tray to extend from the interior of the cavity. As another example, an opening can formed in a bottom portion of the housing that is configured to receive a logo stack including a logo insert bonded to a metal sheet. In yet another example, a number of openings can be formed in a curved exterior sidewall of the housing to allow sound from a speaker to exit the housing. The holes can be machined from the exterior to the interior in a direction that is normal to the local curvature of the sidewall.
In yet another embodiment, the housing can be designed such that during a failure of the cover some structural integrity is maintained. In one example, adhesive, such as an adhesive tape, can be applied to a bottom portion of the cover. In the event of a cover failure, the adhesive tape, can hold pieces of the cover together and prevent the cover from breaking into shards.
The embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
In the following paper, numerous specific details are set forth to provide a thorough understanding of the concepts underlying the described embodiments. It will be apparent, however, to one skilled in the art that the described embodiments may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order to avoid unnecessarily obscuring the underlying concepts.
This paper discusses an aesthetically pleasing portable computing device that is easy to carry with one hand and operate with the other. The portable computing device can be formed of a single piece housing and an aesthetically pleasing protective top layer that can be formed of any of a number of durable and strong yet transparent materials such as highly polished glass or plastic. For the remainder of this discussion, however, the protective top layer can take the form of highly polished cover glass without any loss in generality. Furthermore, the uniformity of the appearance of the portable computing device can be enhanced since (unlike conventional portable computing devices) the cover glass can be mounted to the single piece housing without the use of a bezel. This simplicity of design can accrue many advantages to the portable computing device besides those related to aesthetic look and feel. For example, fewer components and less time and effort can be required for assembly of the portable computing device and the absence of seams in the single piece housing can provide good protection against environmental contamination of internal components. Moreover, the ability of the portable computing device to successfully withstand applied loads (such as from day to day use) as well as those from less frequent but potentially more damaging events such as being dropped can be substantially improved over conventional portable computing devices.
In the described embodiments, the single piece housing can be formed from plastic or metal. In the case where the single piece housing is formed of metal, the metal can take the form of a single sheet (such as aluminum). The single sheet of metal can be formed into a shape appropriate for housing various internal components as well as providing various openings into which switches, connectors, displays, and so on can be accommodated. The single piece housing can be forged, molded, or otherwise processed into a desired shape. In one embodiment, a billet of material, such as a rectangular billet of material, can be machined to form a single-piece housing.
The shape of the housing can be asymmetric in that an upper portion of the housing can formed to have a substantially different shape than that exhibited by a lower portion of the housing. For example, the upper portion of the housing can have surfaces that meet at distinct angles forming well defined boundary whereas the lower portion can be formed to have a substantially flat bottom surface. The transition zone between the upper portion having distinct edges and the lower, substantially flat portion can take the form of an edge having a rounded shape providing both a natural change from the upper portion of the housing (i.e., the area of distinct edges) and the smoother surface presented by the lower portion of the housing. It should also be noted that in addition to providing a more aesthetically pleasing transition, the rounded shape of the edge in the transition zone can provide a more comfortable feel when being held in a user's hand either during use or merely being carried about. One of the advantages to using metal for the housing is ability of metal to provide good electrical grounding for any internal components requiring a good ground plane. For example, performance of a built in RF antenna can be substantially improved when a good ground plane is provided. Moreover, a good ground plane can be used to help mitigate the deleterious effects caused by, for example, of electromagnetic interference (EMI) and/or electrostatic discharge (ESD). However, if an RF antenna is present within the housing, then at least a portion of the housing (if metal) is given over to a radio transparent portion.
It should be noted that throughout the following discussion, the term “CNC” is used. The abbreviation CNC stands for computer numerical control and refers specifically to a computer controller that reads computer instructions and drives a machine tool (a powered mechanical device typically used to fabricate components by the selective removal of material). It should be noted however, that any appropriate machining operation can be used to implement the described embodiments and is not strictly limited to those practices associated with CNC.
These and other embodiments are discussed below with reference to
Portable computing device 100 can include single piece housing 102 that can be formed of any number of materials such as plastic or metal which can be forged, molded, machined or otherwise processed into a desired shape. In those cases where portable computing device 100 has a metal housing and incorporates RF based functionality, it may be advantageous to provide at least a portion of housing 102 in the form of radio (or RF) transparent materials such as ceramic, or plastic. An example of a housing including radio transparent portion is described in more detail with respect to
In any case, housing 102 can be configured to at least partially enclose any suitable number of internal components associated with the portable computing device 100. For example, housing 102 can enclose and support internally various structural and electrical components (including integrated circuit chips and other circuitry) to provide computing operations for portable computing device. The integrated circuits can take the form of chips, chip sets, modules any of which can be surface mounted to a printed circuit board, or PCB, or other support structure. For example, a main logic board (MLB) can have integrated circuits mounted thereon that can include at least a microprocessor, semi-conductor (such as FLASH) memory, various support circuits and so on.
Housing 102 can include opening 104 for placing internal components and may be sized to accommodate a display assembly or system suitable for providing a user with at least visual content as for example via a display. In some cases, the display system can include touch sensitive capabilities providing the user with the ability to provide tactile inputs to portable computing device 100 using touch inputs. The display system can be formed and installed separately from a cover 106. The cover 106 can be formed of polycarbonate or other appropriate plastic or highly polished glass. Using highly polished glass, the cover 106 can take the form of cover glass substantially filling opening 104. Trim bead 108 can be used to form a gasket between cover glass 106 and housing 102. Trim bead 108 can be formed of a resilient material such as a plastic along the lines of thermoplastic urethane or TPU. In this way, trim bead 108 can provide protection against environmental contaminants from entering the interior of portable computing device 100.
Although not shown, the display panel underlying cover glass 106 can be used to display images using any suitable display technology, such as LCD, LED. OLED, electronic or e-inks, and so on. In one embodiment, the display assembly and cover glass can be provided as an integrated unit for installation into the housing. In another embodiment, the display assembly and the cover glass 106 can be installed separately.
Display assembly may be placed and secured within the cavity using a variety of mechanisms. In one embodiment, the display assembly and the housing 102 can include alignment points for receiving a fixture. The fixture can be used to accurately align the display assembly with the housing. In one embodiment, after the display assembly is aligned with the housing, it can be secured to the housing 102 using fasteners.
Portable computing device 100 can include a number of mechanical controls for controlling or otherwise modifying certain functions of portable computing device 100. For example, power switch 114 can be used to manually power on or power off portable computing device 100. Mute button 116 can be used to mute any audio output provided by portable computing device 100 whereas volume switch 118 can be used to increase/decrease volume of the audio output by portable computing device 100. It should be noted that each of the above described input mechanisms are typically disposed through an opening in housing 102 such that they can couple to internal components. In some embodiments, portable computing device 100 can include an image capture module 98 configured to provide still or video images. The placement may be widely varied and may include one or more locations including for example front and back of the device, i.e., one through the back housing, the other through the display window.
Portable computing device 100 can include a mechanism for wireless communications, as either a transceiver type device or receiver only, such as a radio, portable computing device 100 can include an antenna that can be disposed internal to a radio transparent portion of housing 102 In other embodiments, a portion of housing 102 can be replaced with radio transparent material in the form of an antenna window described in more detail below. In some embodiments, an antenna can be to an underside of the cover glass 106. The radio transparent material can include, for example, plastic, ceramic, and so on. The wireless communications can be based on many different wireless protocols including for example 3G, 2G, Bluetooth, RF, 802.11, FM, AM, and so on. Any number of antennas may be used, which can use a single window or multiple windows depending on the needs of the system.
The portable computing device can be used on a wireless data network, such as a cellular data network. Access to the cellular data network can require the use of a Subscriber Identity Module (SIM) or SIM card. In one embodiment, the device 100 can include an opening 110b that allows a SIM card to inserted or removed. In a particular embodiment, the SIM card can be carried on a SIM card tray that can extend from a side of the housing 102. The housing can include an opening 110a that allows an ejector for the SIM card tray to be actuated such that the SIM card tray is extended from the housing. The openings, 110a and 110b, for the SIM card tray are shown in
In one embodiment, a bit for punching or drilling the speaker holes can be orientated such that the holes are machined proximately normal to the surface curvature at each location. In some instance, more than one hole can be drilled at a time. For instance, 5 holes can be drilled in a row along a line of constant curvature such that all of the holes are drilled proximately normal to the surface. In one embodiment, cover layers can be placed on the front and back of the housing while the holes are being machined. For example, a stainless sheet can be placed over the exterior surface of the housing and a plastic backing can be placed over the interior of the housing. The external and internal covers can prevent damage to the surrounding housing resulting from chips of material that are generated in the machining process. Generating the holes in this manner can produce a smooth surface where the presence of the holes is not noticeable to the touch.
After the speaker grill holes are formed, a protective layer can be added on an interior surface of the housing that covers the speaker grill holes. The protective layer can be designed to prevent ingress of environmental contaminants, such as water, that can potentially enter into the interior of the cavity via the speaker grill holes. In one embodiment, the protective layer can be formed from a hydrophobic fabric mesh that is acoustically permeable to allow sound through the speaker grill 120 while reducing the risk of environmental ingress.
Returning to
Connector assembly 124 can be any size deemed appropriate such as, for example, a 30 pin connector. In some cases, the connector assembly 124 can serve as both a data and power port thus obviating the need for a separate power connector. Connector assembly 124 can be widely varied. In one embodiment, connector assembly 124 can take the form of a peripheral bus connector. In one embodiment, a connector assembly with 30 pins can be used. These types of connectors include both power and data functionality, thereby allowing both power delivery and data communications to occur between the portable computing device 100 and the host device when the portable computing device 100 is connected to the host device. In some cases, the host device can provide power to the media portable computing device 100 that can be used to operate the portable computing device 100 and/or charge a battery included therein concurrently with the operating.
The housing 102 includes a substantially flat portion 144 surrounded by curved side walls 146. In one embodiment, the housing 102 can have a maximum thickness of less than 1 cm. In a particular embodiment, the maximum thickness is about 8 mm. In
Openings can be formed in the flat portion 144 and the sidewalls 146. The openings can be used for various purposes that involve functional as wells as cosmetic considerations. In one example, the openings can be used for switches. As shown in
In another example, openings can be formed in the housing for external connectors. For example, an opening 134 is provided in the side wall for an audio port, such as for a head phone connector. In yet another example (see
The housing 102 can be formed from a radio opaque material, such as a metal. In a particular embodiment, the housing can include a cut-out portion for placement an RF antenna window to support one or more antennas. The housing can include a cut-out for receiving the RF antenna window 132. The RF antenna window can be formed from a radio transparent material, such as a plastic, to improve wireless data reception for the device. In
In particular embodiments, a device can be configured to access a data network via one or more wireless protocols. For example, using a protocol such as Wi-Fi, a device can be configured to access the Internet via a wireless access point. As another example, using a wireless protocol, such as GSM or CDMA, device can be configured to access a cellular data network via a local cell phone tower. A device implementing two wireless protocols, such as Wi-Fi and GSM or Wi-Fi and CDMA, can employ different antenna system, one for the Wi-Fi and one for the GSM or CDM.
Typically, a component, such as the RF antenna window 132, can be used to implement a cellular data network connection using GSM or CDM. To implement a wireless protocol, such as Wi-Fi, the RF antenna window 132 may not be necessary. Thus, in some embodiments, a housing can be formed without an opening for the RF antenna window 132. In these embodiments, the housing 102 can extend over the surface where RF antenna window 132 is located to conform to the surrounding curvature of the sidewall. Thus, the area where the RF antenna window 132 is located can be formed from the same material as the other portions of the housing 102 and machined in a manner similar to the other sidewalls of the housing.
The sidewalls can be undercut to form ledges, such as ledges 156a, 156b, 156c and 156d, that extend into the center of the cavity from the sidewalls. In one embodiment, the ledges can include portions at different heights. The width of the ledges can vary across each side and vary from side to side. For instance, the width of the ledge 156a can be thinner than ledge 156d. A ledge is not necessarily continuous across a side. In some embodiments, a portion of each ledge can be removed. In addition, a ledge width is not necessarily constant across a side. In some embodiments, the width of the ledge can vary across a side.
Brackets, such as 150a, 150b, 150c and 150d, can be placed at each corner of the housing. The brackets can be formed from a metal, such as stainless steel. The brackets can be configured to add structural stiffness to the housing. During an impact event, such as an impact to the corner of the housing, the corner brackets can limit the amount of impact damage, such as damage to a cover glass. The shape of the brackets can vary from corner to corner. In addition, the simplified shape of the brackets is shown for the purposes of illustration and brackets with different shapes can be used. As is discussed in more detail as follows, the brackets can be bonded with an adhesive to the housing. In one embodiment, The brackets can include a surface for receiving a corner portion of a trim bead and a cover.
In one embodiment, components, such as the batteries, can be disposed within regions 148a and 148b. For instance, in one embodiment, a number of battery packs can be bonded using PSA strips to the housing in region 148a. In one embodiment, three battery packs can be adhered to flat region 148a using adhesive that can take the form of adhesive strips such as PSA. Using adhesive strips can slightly elevate the batteries and provide room for the batteries packs to expand during operation. As another example, in region 148b, a number of PCBs can be placed. The number and type of PCBs can vary from embodiment to embodiment depending on the functionality of the device. A few examples of PCBs that can be secured to the housing in this region include but are not limited to a main logic board, a battery management unit, and/or a RF circuit board. The RF circuit board can also include GPS circuitry. Attachment points can be machined as bossed into the bottom of the housing to secure device components, such as the PCBs. These are described in more detail with respect to
A number of structures, such as bosses 172a and 172b or bosses 174 and 176 can be formed on the bottom of the housing. In one embodiment, the bosses can be used with fasteners to secure one or more PCBs to the housing. For example, the bosses can be used to attach a main logic board, a battery management unit board and radio board. The number and types of boards can vary from embodiment to embodiment. For instance, some embodiments do not include a radio board. Thus, the number and types of bosses can vary from embodiment to embodiment. The bosses can include structures with apertures that allow a fastener, such as a metal or plastic screw to be inserted. The structures can be formed by removing material during a CNC based machining process. Attachment points, such as bosses, can also be formed for other components, such as the display assembly or a Wi-Fi antenna.
The housing 102 can include a number of features adjacent to the sidewalls of the housing and arranged around a perimeter of the housing. One example of a feature is an opening in the sidewall. For example, an opening 134 for an audio port, an opening 136 for a power switch, an opening 140 for a mute button, and an opening 142 for a volume switch, which are described above with respect to
In
In particular embodiments, as described with respect to
In particular embodiments, the ledges around the sides can include a surface 154 for receiving a trim bead 108 and a cover 106 that spans the cavity formed by the interior cavity. As described above, the cover 106 can be formed from a transparent material. When attached, the cover 106 can protect underlying components, such as a display, from damage. Local side views showing the cover 106 and trim bead 108 mounted to the housing are described in more detail with respect to
Features, such as apertures and/or recesses can be formed in the ledges, 156a, 156b, 156c and 156d. For example, two recesses 158 can be formed in side ledge 156d to allow a speaker assembly to be coupled to the housing. The recesses can include an aperture that allows a fastener to be inserted to secure the speaker assembly. In another example, a recess 166 can be formed in side ledge 156d that provides a mounting point for a hall effect sensor. In yet another example, side ledge 156d can include a number of recesses, such as four recesses 168, that can extend into an upper surface of side ledge 156d as well as underneath the side ledge 156d. In one embodiment, the recesses 168 can be configured to allow magnet assemblies to be mounted to the housing 102. The magnet assemblies can be used to secure a cover device that also includes magnets to housing 102.
In one embodiment, a number of brackets can be coupled to the housing 102 to strengthen the housing in particular regions. For instance, the data port opening 122 is relatively large, which can weaken the housing in the area surrounding the opening 122. To strengthen the housing around the data port opening 122, a bracket 152 can be added above the opening. The bracket can be formed from a material, such as a metal. In one embodiment, the bracket can be configured to be attached to the housing, such that it is aligned with the surface 154 for receiving the trim bead. Thus, a portion of the trim bead can be disposed on a bracket, such as bracket 152.
As another example, brackets 150a, 150b, 150c and 150d can be located at each of the respective corners of housing 102. The corner brackets can be used to improve a resistance of the device to impact damage, such as impact damage resulting from the device being dropped on its corners. The impact damage can be reduced because the corner brackets add stiffness that can reduce deformation during an impact event. In one embodiment, the brackets can include a surface for receiving the trim bead 108 that aligns with the surface for receiving the trim bead formed in the side ledges. In addition, when mounted, the brackets can extend towards the interior of the housing to form a ledge, like the side ledges machined into the housing 102. Further details of the corner brackets are described in more detail with respect to
Corner bracket 150a extends around corner 210 to join side ledge 156c and top ledge 156a. The top and side ledges can be formed by undercutting portions of the housing billet during the machining process. A support shelf at a lower height can be formed beneath the height of the ledges 156c and 156a and the corner bracket. If desired, the support shelf can be undercut like the surrounding ledges. In the corners, the support shelf for the corner bracket 150a does not have to extend all around the corner. Material can be removed to allow a component, such as the SIM tray mechanism 206, to be installed.
In one embodiment, the corner brackets can be bonded to the support shelf using a liquid adhesive. A conductive foam can be placed between the corner bracket and the support shelf to ground the metal bracket to the rest of the structure. Details of a bonding scheme and a stack-up for a corner bracket are described in
The use of strengthening brackets is not limited to use around a corner and could also be used at other locations, such as between the corners. For example, a portion of ledge 156c can be removed to allow a component to be installed. Then, a bracket that extends just along this side, as opposed to around a corner, could be used to re-form the ledge over the installed component. The bracket may possibly strengthen the housing in the region where the ledge material is removed and replaced with a bracket. In some embodiments, a portion of a ledge can be removed to form a gap in the ledge, such as to install a component underneath the ledge. However, the gap may not be filled using a bridging structure and the housing can be utilized with a discontinuous ledge.
In one embodiment, the bracket 150a can be formed from a material, such as stainless steel. The shape of bracket can be selected to increase the strength of the housing in the region where it is installed. As an example, the bracket 150a can be castellated in corner 210 to improve impact damage resistance during a corner drop event. The castellation can include raised and sunken portions around corner 210. The raised portions can add additional structure that can strengthen the bracket and dissipate force during an impact event. The amount of castellation, i.e., the number of times the raised and lowered pattern of structure is repeated can be varied. Thus, the example in
To provide castellation, bracket 150a includes a ledge portion 204a that aligns with a ledge portion on side ledge 156c. Ledge portion 204a can be followed by a raised portion, a sunken portion and another raised portion and then a sunken portion 204b. The sunken portion 204b can be shaped to align with a ledge portion on top side 156a. A castellation pattern can be specified by the local geometry, such as a local height and width of the raised and sunken portions and a number of raised and sunken portions. These parameters can be varied from design to design.
As previously described, the trim bead 108 can extend around from a ledge portion on 156c onto the ledge portion 204a on the bracket 150a, over the top of the castellation, onto ledge portion 204b and then onto a ledge portion of top side 156a. In one embodiment, the shape of the trim bead can be modified to match the castellation pattern. For instance, the trim bead can be thinned where the structure is raised to form the castellation. In other embodiments, if the trim bead can be sufficiently thin or formed from a compressible material, a thickness profile of the trim bead may not be modified to account for the castellation pattern around corner 210. For instance, a trim bead with a uniform thickness can be used over a structural location with castellation proximate to corner 210.
The bracket 402 can be attached to the housing such that a top of the bracket is proximately level with a top height of the adjacent structure 404. In one embodiment, to install the bracket, one or more pieces of conductive foam, such as two pieces of conductive foam can be placed on the support shelf and an adhesive path 420 can be routed around the conductive foam. In one embodiment, the adhesive can be a liquid adhesive. In a particular embodiment, the liquid adhesive can be an acrylic adhesive.
Next, a bracket 402 can be placed on top of the foam pieces and a fixture can be placed over the bracket. The fixture can press down on the bracket 402 such that the bracket is installed at the proper height, such as proximately level with the adjacent structure 404. The conductive foam can be loaded when the fixture presses down to push the bracket against the fixture such that the bracket remains at the desired height. The adhesive path 420 can be selected and can be laid down under CNC control to wet the bottom surfaces of the bracket and expand as the bracket is pressed down but not extend into the area next to and underneath the conductive foam. The adhesive can be laid down in this manner to prevent the adhesive from spreading under the foam such that it interferes with the grounding capabilities of the conductive foam.
In 416, the support shelf 410 is shown as a continuous structure. In other embodiments, a portion of the support shelf can be removed. For example, a portion of the support shelf can be removed such that two islands are formed where each piece of the conductive foam rests on a respective island. The bracket 402 can be bonded to each of the islands.
The housing 102 can include a proximately rectangular recess portion in which the RF antenna window 132 is disposed. The bottom of the antenna tray 132 can be curved to conform to an exterior portion of the housing (see
The support wall 226 can include a number of openings, such as openings 224. The openings 224 can be aligned with openings in the RF antenna window 132. The openings can allow wires to be passed through the housing and into the antenna carrier to reach components in the RF antenna window 132, such as one or more antennas and the image capture and/or sensor assembly.
In alternate embodiments, an RF antenna window 132 and its associated antennas can be removed. In this embodiment, the support wall 226 can be removed and the exterior and interior portions of the housing proximate to the antenna location can be formed from the same material as the remaining portions of the housing, such as from a single metal billet. If a image capture device is included at the location shown in
Structure, such as 234, can be located underneath the cover 106. The structure 234 can be associated with components located underneath the cover 106, such as the display assembly. Comparing
In this example, the extended adhesive 230b can act as a safety measure if the cover 106 breaks during an impact event. The cover 106 can be formed from a glass material which can break into shards. The extended adhesive 230b can hold the pieces of the broken cover together so that small shards do not break away from the device during the impact event. Thus, the extended adhesive 230b can serve a function similar to safety glass which can include reinforcing components that provide a limited structural integrity to keep the glass from flying apart during an impact event.
In one embodiment, an insert 256 can be configured to fit within the opening. The insert can be formed from a material, such as a plastic. The logo insert can be thinner than a nominal thickness of the surrounding housing. In one embodiment, the logo insert can be about 0.59 mm thick.
In particular embodiments, the insert can be opaque to light, such as painted black, or formed from an opaque material. In other embodiments, the insert can formed from a translucent material. In one embodiment, the translucent material can be configured to diffuse light from an internal light source, such that the logo appears to be lit when viewed from the exterior.
The logo insert 256 can be bonded to a support structure 252 using an adhesive 254. In particular embodiments, the adhesive can be a tape, such as a pressure sensitive adhesive (PSA) tape or an epoxy, and the support structure can be formed from a sheet of metal, such as a sheet of stainless steel. The metal can be shaped such that it fits around the ledge formed in the housing 102. The support structure 252 can be bonded to the ledge using an adhesive, such as a PSA or an epoxy.
In one embodiment, a conductive tape can be used to ground the support structure 252 to the housing, such as a conductive tape placed over a portion of the housing and a portion of the support structure. In another embodiment, a conductive adhesive can be used to couple the support structure 252 to the housing 102 where the conductive adhesive mechanically attaches and grounds the support structure to the housing. In alternate embodiments, rather than using a separate support structure 252 and logo insert 256, a single piece structure can be used, such as a single piece of molded plastic.
After the logo is installed, a top layer on the interior of the housing can be added. For instance, the top of the sheet of stainless steel can be coated in some manner. In one embodiment, an electrophoretic deposition process can be used to deposit the layer.
The logo stack-up 250 can be part of a fire enclosure associated with the housing 102. The fire enclosure can be configured to contain an exothermic event that has occurred within an interior of the housing, such as an exothermic event associated with the batteries. The metal support structure 252 coupled to the logo insert 256 can help to contain an internal exothermic event.
As described above, the support structure 252 and logo insert 256 can be formed as a single piece. In one embodiment, the single piece can be formed from a metal. The metal can be suitable for use as part of the fire enclosure. However, a cosmetic layer can be applied to a portion of the logo insert 256. In another embodiment, the single piece can be formed from a plastic material. If desired, to improve its fire resistance capabilities, a fire retardant film can be applied over the logo insert 256 within the interior of the housing 102.
In 302, the CNC cutting paths can be determined for removing material that allows the final housing shape to be formed. The machining paths can be optimized to minimize the machining time and increase the throughput. In 304, the billet can be machined to form an exterior shape for the housing. As described above, in some embodiments, the exterior shape can form a bottom of the device. Typically, the exterior shape and the interior shape of the housing can be machined separately using different processes.
In 306, machining to form the interior shape of the housing can begin. The initial machining can involve removing bulk interior portions of the housing within its center to form a somewhat rectangular shaped cavity. After the bulk machining is performed, in 308 finer machining can begin. For instance, a ledge can be formed around an outer top portion for supporting a cover. The ledge can be formed undercutting into the side of the billet using an appropriate machining tool, such as a bit with a right angle. The top ledge can be machined to include a surface for receiving the trim bead (see 108).
The machining can involve guiding a tool over a particular path in 3-dimensions. In one embodiment, local relative dimensions can be utilized to guide the path of a machining bit. The use of local relative dimensions can involve determining a path from a reference point on the housing as the housing is being machined as opposed to an absolute position associated with a fixture or another non-local dimension associated with the housing. As an example, when undercuts are generated into the sidewalls, the local thickness dimensions of the sidewalls can be used to determine a machining path for the cutting tools as opposed to a distance from the centerline of the housing so that a desired sidewall thickness is maintained. This process can be repeated at different locations on the housing as different cuts are generated. For instance, when machining a ledge for the logo where the housing thickness is relatively thin, a local thickness of the housing at this location can be used to guide the machining process. Using local relative dimensions can reduce machining errors, which can be important for making sure that cuts, such as sidewall cuts, do not result in a housing that is too thin a particular region.
In 312, interior attachment and/or alignment points can be formed. Interior attachment points can be formed as apertures in the housing. In some embodiments, the apertures can be formed as a raised column or “boss” in the material of the housing. In other embodiments, a recess can be formed in the housing that is configured to receive an additional component with an aperture, such as an aperture lined with metal threads, that can serve as an attachment point. The additional component can be attached to the housing using an adhesive. The apertures can be configured to receive fasteners, such as screws. The attachment points can be used to secure components, such as but not limited to a display assembly, speakers, a SIM tray mechanism and PCBs.
Alignment points can be a cavity, aperture or marking that can be used during the assembly process. For instance, the housing can include a recess configured to receive a portion of an alignment fixture. The alignment fixture can be used to align a component by fitting a portion of the alignment fixture into a recess in the housing and another portion into a recess in the component. The component can then be moved relative to the housing until it is brought into alignment at which point it can be secured. In one embodiment, a recess can be provided in the housing and a recess can be provided in a display assembly that can be used with an alignment fixture to align the display assembly relative to the housing.
In 312, the machining can include removing excess material from the housing. Excess material can be removed from various locations, such as underneath the ledges formed in the housing to lighten the weight of housing. In 314, interior to exterior cut-outs can be formed in the housing. For instance, openings can be formed for a data port, SIM card tray, volume switch, a slide switch, power switch and audio jack. In one embodiment, the openings can be formed by machining in a direction normal to the shape of the exterior surface.
In one embodiment, a large number of small holes can be formed in the housing to provide egress for sound generated by one or more internal speakers. The holes can be formed by a hole-punching tool that punches one or more holes at a time. In one embodiment, the holes can be punched along a curved side of the housing from the exterior to the interior of the housing. The holes can be punched over a surface where the curvature is changing, such as a sidewall of the housing. A fixture can be used to rotate the housing such that the holes can be punched proximately normal to the curvature of the exterior surface or to make a cut at some other desired angle.
In particular embodiments, brackets can be coupled to the housing to locally increase the structural integrity of the housing. For instance, a bracket can be mounted near the data port opening on a side of the housing. The data port opening is relatively large and the housing can be thin where the data port is provided. The large opening can weaken the housing. Thus, a support bracket can be added proximate to the data port opening. The support brackets can be bonded to the housing using a bonding agent, such as a liquid adhesive and can be grounded to the housing. In various embodiment, metal brackets can be grounded to the housing using a conductive foam or tape.
In another embodiment, support brackets can be added in corners of the housing. The support brackets can add additional strength that improves the drop test performance of the housing. In one embodiment, the corner brackets can includes a castellation pattern to improve their strength. As previously described, a ledge can be formed around the housing to support a cover. Near the corners, it can be desirable to remove material that forms the ledge in the corner region. The ledge material can be removed so that a mechanism can be installed in the corner. For instance, as described above with respect to
In 318, an RF antenna window can be added to the housing. The RF antenna window can be formed from a radio transparent material, such as a plastic. The antenna carrier can be placed close to an edge of the housing. It can be shaped such that it forms a portion of a continuous exterior portion of the housing. The RF antenna window can be used to mount one or more antenna for receiving wireless data, such as data received from a cellular data network. In 320, additional components, such as the batteries, main logic board, display assembly, trim bead and cover can be attached to the housing until a final assembly configuration is achieved.
The file system 954 typically can be configured to provide high capacity storage capability for the electronic device 950. However, to improve the access time to the file system 954, the electronic device 950 can also include a cache 956. As an example, the cache 956 can be a Random-Access Memory (RAM) provided by semiconductor memory. The relative access time to the cache 956, such as a RAM cache, can be substantially shorter than for other memories, such as flash or disk memory. The cache 956 and the file system 954 may be used in combination because the cache 956 may not have the large storage capacity of the file system 954 as well as non-volatile storage capabilities provided by the memory device hosting the file system 954.
Another advantage of using a cache 956 in combination with the file system 954 is that the file system 954, when active, consumes more power than does the cache 956. The use of cache 956 may decrease the active time of the file system 954 and hence reduce the overall power consumed by the electronic device. The power consumption is often a concern when the electronic device 950 is a portable media device that is powered by a battery 974.
The electronic device 950 can also include other types of memory devices. For instance, the electronic device 950 can also include a RAM 970 and a Read-Only Memory (ROM) 972. In particular embodiments, the ROM 972 can store programs, utilities or processes to be executed in a non-volatile manner. The RAM 970 can be used to provide volatile data storage, such as for the cache 956.
The electronic device 950 can include one or more user input devices, such as input 958 that allow a user of the electronic device 950 to interact with the electronic device 950. The input devices, such as 958, can take a variety of forms, such as a button, keypad, dial, touch screen, audio input interface, video/image capture input interface, input in the form of sensor data, etc. Still further, the electronic device 950 includes a display 960 (screen display) that can be controlled by the processor 952 to display information to the user. A data bus 966 can facilitate data transfer between at least the file system 954, the cache 956, the processor 952, and the CODEC 963.
In one embodiment, the electronic device 950 serves to store a plurality of media items (e.g., songs, podcasts, image files and video files, etc.) in the file system 954. The media items (media assets) can pertain to one or more different types of media content. In one embodiment, the media items are audio tracks (e.g., songs, audio books, and podcasts). In another embodiment, the media items are images (e.g., photos). However, in other embodiments, the media items can be any combination of audio, graphical or video content.
When a user desires to have the electronic device play a particular media item, a list of available media items is displayed on the display 960. Then, using the one or more user input devices, such as 958, a user can select one of the available media items. The processor 952, upon receiving a selection of a particular media item, supplies the media data (e.g., audio file) for the particular media item to one or more coder/decoders (CODEC), such as 963. The CODECs, such as 963, can be configured to produce output signals for an output device, such as speaker 964 or display 960. The speaker 964 can be a speaker internal to the media player 950 or external to the electronic device 950. For example, headphones or earphones that connect to the electronic device 950 would be considered an external speaker.
The electronic device 950 can be configured to execute a number of applications besides media playback applications. For instance, the electronic device 950 can be configured execute communication applications, such as voice, text, e-mail or video conferencing applications, gaming applications, web browsing applications as well as many other different types of applications. A user can select one or more applications for execution on the electronic device 950 using the input devices, such as 958.
The electronic device 950 can include an interface 961 that couples to a data link 962. The data link 962 allows the electronic device 950 to couple to a host computer or to accessory devices. The data link 962 can be provided over a wired connection or a wireless connection. In the case of a wireless connection, the interface 961 can include a wireless transceiver. Sensor 976 can take the form of circuitry for detecting any number of stimuli. For example, sensor 976 can include a Hall Effect sensor responsive to external magnetic field, an audio sensor, a light sensor such as a photometer, a gyroscope, and so on.
The various aspects, embodiments, implementations or features of the described embodiments can be used separately or in any combination. Various aspects of the described embodiments can be implemented by software, hardware or a combination of hardware and software. The described embodiments can also be embodied as computer readable code on a computer readable medium for controlling manufacturing operations or as computer readable code on a computer readable medium for controlling a manufacturing line. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, DVDs, magnetic tape, optical data storage devices, and carrier waves. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the invention. Thus, the foregoing descriptions of specific embodiments of the present invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
While the embodiments have been described in terms of several particular embodiments, there are alterations, permutations, and equivalents, which fall within the scope of these general concepts. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present embodiments. For example, although an extrusion process is preferred method of manufacturing the integral tube, it should be noted that this is not a limitation and that other manufacturing methods can be used (e.g., injection molding). It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the described embodiments.
This patent application is a continuation patent application of U.S. patent application Ser. No. 14/083,811, filed Nov. 19, 2013 and titled “Method for Forming a Housing for an Electronic Device,” which is a divisional patent application of U.S. patent application Ser. No. 13/018,174, filed Jan. 31, 2011 and titled “Portable Electronic Device,” the disclosure of which is hereby incorporated herein by reference in its entirety. This patent application is also related to and incorporates by reference in their entireties the following patent applications: (i) U.S. patent application Ser. No. 13/018,239 entitled “Flat Object Ejector Assembly” by Jules Henry et al.;(ii) U.S. patent application Ser. No. 13/018,184 entitled “Antenna, Shielding and Grounding” by Erik A. Uttermann et al.;(iii) U.S. patent application Ser. No. 13/018,153 entitled “Components Assembly” by Stephen R. McClure et al.;(iv) U.S. patent application Ser. No. 13/018,242 entitled “Machining Process and Tools” by Stephen R. McClure et al.
Number | Name | Date | Kind |
---|---|---|---|
1576645 | Eskew et al. | Mar 1926 | A |
3540162 | Blackmer et al. | Nov 1970 | A |
3885925 | Tatar | May 1975 | A |
3969007 | Lowry | Jul 1976 | A |
4193227 | Uhtenwoldt | Mar 1980 | A |
4492059 | Panetti | Jan 1985 | A |
4574527 | Craxton | Mar 1986 | A |
4662093 | Suttles | May 1987 | A |
4800686 | Hirabayashi et al. | Jan 1989 | A |
4977709 | Siden | Dec 1990 | A |
5033237 | Slough et al. | Jul 1991 | A |
5231587 | Frost | Jul 1993 | A |
5419626 | Crockett | May 1995 | A |
5493462 | Peter | Feb 1996 | A |
5655917 | Kaneshige et al. | Aug 1997 | A |
5662515 | Evensen | Sep 1997 | A |
5865668 | Stewart | Feb 1999 | A |
5895311 | Shiotani et al. | Apr 1999 | A |
5898567 | Satake | Apr 1999 | A |
5969506 | Neal | Oct 1999 | A |
6151012 | Bullister | Nov 2000 | A |
6266019 | Stewart et al. | Jul 2001 | B1 |
6343945 | Liikanen | Feb 2002 | B1 |
6361897 | Snyder | Mar 2002 | B1 |
6490435 | Ma et al. | Dec 2002 | B1 |
6560092 | Itou et al. | May 2003 | B2 |
6729893 | Ezaki | May 2004 | B2 |
6749448 | Bright et al. | Jun 2004 | B2 |
6764272 | Nuxoll | Jul 2004 | B1 |
6791825 | Taylor | Sep 2004 | B1 |
6842333 | Lee et al. | Jan 2005 | B2 |
6977808 | Lam | Dec 2005 | B2 |
7145769 | Chen | Dec 2006 | B2 |
7232181 | Schmucker | Jun 2007 | B2 |
7324308 | Kimura | Jan 2008 | B2 |
7331793 | Hernandez et al. | Feb 2008 | B2 |
7333062 | Leizerovich et al. | Feb 2008 | B2 |
7390242 | Kim et al. | Jun 2008 | B2 |
7390292 | Kim et al. | Jun 2008 | B2 |
7494305 | Riall et al. | Feb 2009 | B2 |
7626807 | Hsu | Dec 2009 | B2 |
7633747 | Yang et al. | Dec 2009 | B2 |
7652877 | Nishizawa | Jan 2010 | B2 |
7697281 | Dabov et al. | Apr 2010 | B2 |
7821782 | Doherty et al. | Oct 2010 | B2 |
7839658 | Kim | Nov 2010 | B2 |
7852626 | Eldershaw | Dec 2010 | B2 |
7894185 | Weber | Feb 2011 | B2 |
7896728 | Schwartz | Mar 2011 | B2 |
7921553 | Wojack et al. | Apr 2011 | B2 |
7947900 | Cheng | May 2011 | B2 |
7971464 | Hachino et al. | Jul 2011 | B2 |
D642563 | Akana et al. | Aug 2011 | S |
8007551 | Kaneuchi et al. | Aug 2011 | B2 |
8081430 | Weber et al. | Dec 2011 | B2 |
8123070 | Lim | Feb 2012 | B2 |
8260377 | Paleczny et al. | Sep 2012 | B2 |
8305741 | Chatterjee | Nov 2012 | B2 |
8345410 | Ternus et al. | Jan 2013 | B2 |
8360824 | Harada et al. | Jan 2013 | B2 |
8363399 | Sonehara et al. | Jan 2013 | B2 |
8421689 | Schlub et al. | Apr 2013 | B2 |
8430256 | Allore | Apr 2013 | B2 |
8537543 | Wang et al. | Sep 2013 | B2 |
8587939 | McClure | Nov 2013 | B2 |
9317243 | Becze | Apr 2016 | B2 |
9384672 | Zehr | Jul 2016 | B1 |
20020047807 | Talvitie | Apr 2002 | A1 |
20020057224 | Shinichi | May 2002 | A1 |
20020060645 | Shinichi | May 2002 | A1 |
20020085342 | Chen et al. | Jul 2002 | A1 |
20020136540 | Adams | Sep 2002 | A1 |
20020160725 | Toyoda | Oct 2002 | A1 |
20030160923 | Ma | Aug 2003 | A1 |
20040197642 | Sato | Oct 2004 | A1 |
20050012723 | Pallakoff | Jan 2005 | A1 |
20050026472 | Lee | Feb 2005 | A1 |
20050242773 | Bui | Nov 2005 | A1 |
20060056138 | Chen | Mar 2006 | A1 |
20060111032 | Weston et al. | May 2006 | A1 |
20060164800 | McEwan | Jul 2006 | A1 |
20060197750 | Kerr | Sep 2006 | A1 |
20060203439 | Lim | Sep 2006 | A1 |
20060250762 | Yang et al. | Nov 2006 | A1 |
20060266841 | Hansen | Nov 2006 | A1 |
20060267855 | Askildsen et al. | Nov 2006 | A1 |
20070049175 | Kim et al. | Mar 2007 | A1 |
20070066274 | Kim et al. | Mar 2007 | A1 |
20070081303 | Lam | Apr 2007 | A1 |
20070157993 | Yoon | Jul 2007 | A1 |
20070236870 | Hachino et al. | Oct 2007 | A1 |
20080074329 | Caballero et al. | Mar 2008 | A1 |
20080095394 | Yoon et al. | Apr 2008 | A1 |
20080165063 | Schlub et al. | Jul 2008 | A1 |
20080165485 | Zadesky | Jul 2008 | A1 |
20080187407 | Tien | Aug 2008 | A1 |
20080218955 | Nishizawa | Sep 2008 | A1 |
20080231521 | Anguera Pros et al. | Sep 2008 | A1 |
20080241675 | Enari | Oct 2008 | A1 |
20080310089 | Wang | Dec 2008 | A1 |
20080316120 | Hirota | Dec 2008 | A1 |
20090040703 | Gotham et al. | Feb 2009 | A1 |
20090042495 | Cho et al. | Feb 2009 | A1 |
20090072785 | Moon | Mar 2009 | A1 |
20090094903 | Choul et al. | Apr 2009 | A1 |
20090126450 | Su | May 2009 | A1 |
20090167616 | Chen et al. | Jul 2009 | A1 |
20090197116 | Cheng | Aug 2009 | A1 |
20090201636 | Doherty et al. | Aug 2009 | A1 |
20090257189 | Wang et al. | Oct 2009 | A1 |
20090257207 | Wang | Oct 2009 | A1 |
20090267677 | Myers et al. | Oct 2009 | A1 |
20090309795 | Pohjonen et al. | Dec 2009 | A1 |
20090310580 | Chapman et al. | Dec 2009 | A1 |
20100008514 | Bates et al. | Jan 2010 | A1 |
20100053853 | Allore et al. | Mar 2010 | A1 |
20100056231 | Weiss | Mar 2010 | A1 |
20100061040 | Dabov | Mar 2010 | A1 |
20100076583 | Wojack et al. | Mar 2010 | A1 |
20100091442 | Theobald et al. | Apr 2010 | A1 |
20100132728 | Busch | Jun 2010 | A1 |
20100149047 | Tsujimura et al. | Jun 2010 | A1 |
20100159803 | Shore et al. | Jun 2010 | A1 |
20100226509 | Filson | Sep 2010 | A1 |
20100271767 | Weber et al. | Oct 2010 | A1 |
20100285850 | Paleczny | Nov 2010 | A1 |
20100315769 | Mathew et al. | Dec 2010 | A1 |
20100321325 | Springer et al. | Dec 2010 | A1 |
20110001706 | Sanford et al. | Jan 2011 | A1 |
20110007461 | Moskowitz et al. | Jan 2011 | A1 |
20110037663 | Huang et al. | Feb 2011 | A1 |
20110050560 | Foster | Mar 2011 | A1 |
20110050591 | Kim | Mar 2011 | A1 |
20110134012 | Yang | Jun 2011 | A1 |
20110166690 | Ternus et al. | Jul 2011 | A1 |
20110189924 | Erickson | Aug 2011 | A1 |
20110293133 | Yan et al. | Dec 2011 | A1 |
20110297578 | Stiehl et al. | Dec 2011 | A1 |
20120061473 | Forster | Mar 2012 | A1 |
20120106077 | Tracy | May 2012 | A1 |
20120133560 | Tang | May 2012 | A1 |
20120169547 | Oh | Jul 2012 | A1 |
20120194393 | Uttermann et al. | Aug 2012 | A1 |
20120194998 | McClure et al. | Aug 2012 | A1 |
20120249378 | Li | Oct 2012 | A1 |
20130223836 | Gibbs et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
2639959 | Sep 2004 | CN |
1989654 | Jun 2007 | CN |
201197159 | Feb 2009 | CN |
101540451 | Sep 2009 | CN |
201491423 | May 2010 | CN |
200616414 | May 2006 | TW |
200711564 | Mar 2007 | TW |
M313872 | Jun 2007 | TW |
200725979 | Jul 2007 | TW |
200913370 | Mar 2009 | TW |
200939929 | Sep 2009 | TW |
M390005 | Oct 2010 | TW |
WO2009126480 | Oct 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20170308123 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13018174 | Jan 2011 | US |
Child | 14083811 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14083811 | Nov 2013 | US |
Child | 15648982 | US |