1. Field of the Invention
The invention relates generally to solid handling or manipulating and, more particularly, to handheld devices for solid powder sampling or aspirating and non-contact delivery or dispensing of small amounts of dry solid powders, and methods thereof.
2. Description of the Related Art
There continues to be an increase in demand for the discovery, development and optimization of new materials. These new materials cover the range from polymers, adhesives, and pharmaceuticals all the way to catalysts, phosphors and semiconductors, among others.
A variety of methods and devices exist for obtaining and dispensing small amounts of liquids that have found use in a variety of applications. However, few methods and devices exist for accurately, precisely and/or efficiently manipulating small amounts of solids (e.g., powders), for example, in the milligram range or lower. In the laboratory, such small amounts of solids are often dispensed by hand using a scale. Unfortunately, such conventional methods can be tedious, time consuming, and prone to error.
This disadvantageously not only reduces process efficiency but also undesirably adds to the cost. Moreover, it is a difficult task to effectively utilize small quantities of solids, such as powders, when complex steps to precisely handle, transfer, deliver and process such small quantities are entailed.
Dispensing solid materials in the solid state, such as dry powders, has been a challenge for automation for years. Solid dispensing of samples with a wide range of properties has proven even more difficult. To further complicate matters, many applications and experiments involve sample mass in the microgram range. Some examples include pre-formulation studies (e.g., polymorph determination, salt selection), material compatibility, compound management and logistics, formulation optimization, and stability and forced degradation. The powder handling embodiments disclosed herein are ideally suited for these applications and experiments, among others.
Advantageously, some embodiments provide user-friendly versatile and adaptable apparatuses, devices, systems and kits comprising a handheld powder handling device, that avoid the high cost associated with automated systems, but still provide for efficient and accurate sampling and dispensing of powders. Certain embodiments involve methods that utilize such apparatuses, devices, systems and kits to efficiently and accurately sample and dispense powders in a user-friendly manner, while providing for versatile and adaptable operation.
In some embodiments, handheld powder handling devices provide for sampling and dispensing of substantially fixed powder volumes and therefore fixed masses. Most users would utilize a series of such devices directed to typical or custom selected powder masses. In some embodiments, handheld powder handling devices incorporate a range of volume (mass) adjustability. In some embodiments, handheld powder handling devices are designed with a removable probe or tip so customized fabrication can provide probes or tips of varying lengths and of varying material compatibility.
In some handheld powder handling embodiments, a first element or member and a second element or member are provided. The elements or members are independently operable or actuable. Actuation or operation of the first element or member causes a predetermined quantity of powder to be sampled, aspirated or loaded. Actuation or operation of the second element or member causes the predetermined quantity of powder to be dispensed or delivered. The elements or members can comprise part of a handheld device, apparatus, system or kit.
Some embodiments provide a handheld powder dispensing device that generally comprises a surface, a tip, a push button and a plunger. The surface is configured to be held by a user during operation of the device. The tip comprises a lumen and an orifice at an end thereof. The push button is configured to be actuated by the user. The plunger is operatively coupled to the push button and is moveable within the lumen. Desirably, motion of the surface relative to the plunger causes a predetermined amount of powder to be loaded within the lumen and motion of the plunger relative to the surface causes the powder to be ejected from the orifice.
Some embodiments provide a method of handling a powder using a handheld device. The method generally comprises manually holding a surface of the device. A tip of the device is inserted in a powder source. The surface is pushed so that it moves relative to the tip and so that a predetermined quantity of powder is loaded in the tip. A plunger of the device is manually actuated so that it moves within the tip to eject the predetermined quantity of powder from the tip onto or into a target.
Some embodiments relate to a handheld solid powder sampling and dispensing device The handheld device has an ergonomically contoured outer surface to be held by a user. Actuation of an outer member of the device causes a predetermined quantity of a powder to be loaded within the device. Actuation of a plunger mechanism causes the predetermined quantity of powder to be dispensed. The outer member and the plunger mechanism are independently operable. Advantageously, the target delivery quantity of powder can be varied by a device adjustment mechanism (and/or to some degree by a powder compaction process).
For purposes of summarizing the invention, certain aspects, advantages and novel features of the invention have been described herein above. Of course, it is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught or suggested herein without necessarily achieving other advantages as may be taught or suggested herein.
All of these embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments of the invention will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures, the invention not being limited to any particular preferred embodiment(s) disclosed.
Having thus summarized the general nature of the invention and some of its features and advantages, certain preferred embodiments and modifications thereof will become apparent to those skilled in the art from the detailed description herein having reference to the figures that follow, of which:
The preferred embodiments of the invention described herein relate generally to solid handling or manipulating and, in particular, to handheld devices for solid powder sampling or aspirating and non-contact delivery or dispensing of small amounts of dry powders or solids, and methods thereof.
While the description sets forth various embodiment specific details, it will be appreciated that the description is illustrative only and should not be construed in any way as limiting the invention. Furthermore, various applications of the invention, and modifications thereto, which may occur to those who are skilled in the art, are also encompassed by the general concepts described herein.
As used herein, powder handling or manipulation includes, without limitation, sampling, aspirating, compressing, compacting, changing bulk density or void fraction, changing powder structure, changing powder particle size, dispensing, delivering, moving, mixing or combining one or more powders, mixing or combining one or more powders with one or more liquids, among others.
Embodiments of the invention can be efficaciously utilized to deliver or dispense powders comprising a wide range of masses. In one embodiment, the mass of powder delivered or dispensed is in the range from about 1 microgram (μg) to about 1,000 milligrams (mg), including all values and sub-ranges therebetween. In another embodiment, the mass of powder delivered or dispensed is in the range from about 10 micrograms (μg) to about 500 milligrams (mg), including all values and sub-ranges therebetween. In yet another embodiment, the mass of powder delivered or dispensed is in the range from about 50 micrograms (μg) to about 400 milligrams (mg), including all values and sub-ranges therebetween. In still another embodiment, the mass of powder delivered or dispensed is in the range from about 100 micrograms (μg) to about 5 milligrams (mg), including all values and sub-ranges therebetween. In modified embodiments, the mass of powder delivered or dispensed may be larger or smaller with efficacy, as needed or desired.
Embodiments of the invention can be efficaciously utilized to sample and deliver powders comprising a wide range of sizes and size distributions. In one embodiment, the powder comprises particle having sizes, diameters or effective diameters in the range from about 1 micron (μm) to about 1,000 microns (μm), including all values and sub-ranges therebetween. In another embodiment, the powder comprises particle having sizes, diameters or effective diameters in the range from about 5 microns (μm) to about 500 microns (μm), including all values and sub-ranges therebetween. In yet another embodiment, the powder comprises particle having sizes, diameters or effective diameters in the range from about 10 microns (μm) to about 300 microns (μm), including all values and sub-ranges therebetween. In still another embodiment, the powder comprises particle having sizes, diameters or effective diameters in the range from about 50 microns (μm) to about 200 microns (μm), including all values and sub-ranges therebetween. In a further embodiment, the powder comprises particle having sizes, diameters or effective diameters in the range from about 100 microns (μm) to about 150 microns (μm), including all values and sub-ranges therebetween. In modified embodiments, the powder may comprise particle having larger or smaller sizes, diameters or effective diameters with efficacy, as needed or desired.
One advantage of systems, apparatuses or devices in accordance with embodiments of the invention is that they can effectively and accurately operate substantially independently of the powder bulk or tap density. Without being bound to any particular definition, one definition of bulk or tap powder density is the density obtained from filling a container with the sample material and vibrating it to obtain near optimum packing—tap density is not an inherent property of a material but depends on particle size distribution, measurement techniques and/or interparticle voids.
In one embodiment, the powder bulk or tap density is in the range from about 0.03 to about 4 including all values and sub-ranges therebetween. In modified embodiments, the powder bulk or tap density may be larger or smaller with efficacy, as needed or desired. The powder packing may also be generally defined in terms of void fraction.
Some embodiments relate to powder sampling and dispense techniques in combination with liquid aspirate and/or dispense functions. Advantageously, this versatility allows for a broad range of applications which involve the handling and manipulation of solids and liquids (e.g., chemical and biological reagents).
U.S. Patent Application Publication No. US 2004/0146434 A1 discloses certain systems and methods of manipulating small amounts of solids. The entirety of this patent document is hereby incorporated by reference herein and is considered a part of the present patent specification/application.
U.S. patent application Ser. No. 12/020,438, filed Jan. 25, 2008, entitled NON-CONTACT POSITIVE DISPENSE SOLID POWDER SAMPLING APPARATUS AND METHOD, Attorney Docket No. ENTEV.001A, discloses certain embodiments of powder handling or manipulation. The entirety of this patent document is hereby incorporated by reference herein and is considered a part of the present patent specification/application.
In some embodiments, to dispense liquid or reagent drops down to the nanoliter, and in some cases in the picoliter, range a technology and product base as available from BioDot, Inc. of Irvine, Calif., U.S.A. is utilized to deliver liquids or reagents. In brief, the BioDot dispensing (and/or aspirating) system in accordance with some embodiments, comprises a positive displacement syringe pump or device (or a direct current fluid source) hydraulically coupled or in fluid communication with a solenoid dispenser or actuator, and motion control means or device(s) to provide relative motion between the dispensing/aspirating tip and the target(s)/source(s), as needed or desired. BioDot's U.S. Pat. Nos. 5,738,728, 5,741,554, 5,743,960, 5,916,524, 6,537,505 B1, 6,576,295 B2, RE38,281 E, U.S. Patent Application Publication Nos. US 2003/0211620 A1, US 2004/0072364 A1, US 2004/0072365 A1, US 2004/0219688 A1, US 2005/0056713 A1, US 2006/0211132 A1, and European Patent No. EP 1 485 204 B1, the entirety of each one of which is hereby incorporated by reference herein, disclose liquid dispensing (and/or aspirating) systems and methods which can be efficaciously utilized in accordance with certain embodiments of the invention. All of these patent documents comprise a part of the present patent specification/application.
U.S. Pat. Nos. 6,063,339, 6,551,557 B1, 6,589,791 B1, and U.S. Patent Application Publication Nos. US 2002/0064482 A1, US 2003/0207464 A1, US 2003/0215957 A1, US 2003/0228241 A1, the entirety of each one of which is hereby incorporated by reference herein, disclose liquid dispensing (and/or aspirating) systems and methods which can be efficaciously utilized in accordance with certain embodiments of the invention. All of these patent documents comprise a part of the present patent specification/application.
Turning now to the drawings,
The handheld powder handling device 10 generally comprises a grip 12, an outer housing or barrel 14, a cap 16 at a proximal end or portion of the outer housing 14, a probe housing 18 at a distal end or portion of the outer housing 14, a probe 20 mounted to the probe housing 18, an ejection or plunger rod or mechanism 22, and an inner housing or insert 24.
The grip 12 is generally cylindrical in shape and circumscribes at least a portion of the outer housing 14. The grip 12 is desirably ergonomically shaped and/or contoured to be held by a hand of a user. The grip 12 may comprise a textured surface, a ribbed surface, a stubbed surface, a surface with pillars, or the like, so as to advantageously facilitate a reliable grip to hold the powder handling device 10 by a user.
In some cases, the grip 12 can have ergonomic design analogous to a liquid pipettor or pipette. The grip 12 can be fabricated from a number of suitable materials, for example, but not limited to a soft foam, a plastic or other compliant grip material, as needed or desired.
The outer housing 14 is generally hollow and cylindrical in shape and may have an outer taper at its distal portion. Several of the components of the handheld powder sampling device 10 reside within the outer housing 14.
As discussed in further detail below, the outer housing 14 is moveable or displaceable in a generally axial direction and is used in the powder sampling or aspirating process. To control and facilitate this motion, the outer housing is operatively coupled to one or more bearings 26 (e.g., linear bearings) or the like, and a source of energy storage and release such as a probe compression spring 28.
The cap 16 has a generally cylindrical configuration and is partially received within the proximal end or portion of outer housing 14. The cap 16 closes the proximal end of the outer housing 14 and is mechanically or magnetically attached or connected thereto. This connection may be a substantially sealing connection, at least to some extent. The cap 16 has a generally central through opening 30 that receives at least a portion of the ejection rod 22. The cap 16 is also connected to a proximal end or portion of the compression spring 28, thereby coupling the outer housing 14 thereto.
In some embodiments, and as discussed further below, the cap 16 is color coded and marked with a serial number 32 or the like. This provides a user-friendly identification system when a series of powder handling devices, with each specifically designed for delivery of a particular amount (mass and/or volume) of a powder, are employed.
The probe housing 18 has a generally cylindrical configuration and is partially received within the distal end or portion of outer housing 14. The probe housing 18 has a generally central through opening that receives a portion of the probe 20 and within which the probe 20 is mechanically or magnetically connected or attached to a proximal end or portion of the probe housing 18. As discussed further below, the probe housing 18 also receives a portion of a source of energy storage and release, such as a probe plunger spring 34. In some embodiments, the probe housing 18 can connect to a range of probe sizes.
The probe 20 generally comprises a probe body 36 and a generally axially moveable or displaceable probe plunger 38 that is used to deliver or dispense the desired mass of sampled powder, as discussed in further detail below. A portion of the probe body 36 is received within the probe housing 18, and a distal end or portion of the probe body 36 is mechanically or magnetically connected or attached to a proximal end or portion of the probe housing 18. A portion of the probe plunger 38 also extends within the probe housing 18.
The probe body 36 has a generally cylindrical configuration, desirably of varying diameters, with an axial opening extending therethrough. The probe body 36 generally comprises a distal generally cylindrical tip 40 with a generally cylindrical inner passage or lumen 42 and a distal end 44 with an opening or orifice 46. The distal end 44 may have a beveled, conical or inwardly tapered outer configuration to facilitate insertion into a powder source, and a protective cap or the like can be provided to cover the orifice 46 when the device is not in use. The exposed portion of the probe body can be marked with a serial number 48 or the like for probe identification purposes.
The probe plunger 38 has an elongated and generally cylindrical configuration. The probe plunger 38 generally comprises a telescoping rod or barrel 50 and a proximal barrel/stop portion 52 with a larger outer diameter or periphery. The telescoping rod or barrel 50 has a distal end 54 and the stop portion 52 has a distal face or end 56.
The plunger rod or barrel 50 is received within the probe body 36 and extends into the probe tip 40. The tip lumen space between the rod distal end 54 and the tip distal end 44 and/or tip orifice 46 generally defines the fill space or volume 60 of the powder to be sampled and dispensed. (Various arrangements and parameters of this volume and its adjustability are discussed further herein.) A proximal portion of the rod 50 can also extend into the outer housing 24, typically when the probe plunger 38 is not in an actuated state or dispense mode.
The probe plunger spring 34 extends over a portion of the plunger rod or barrel 50 and through the plunger stop 52. As discussed in further detail below, the spring 34 is also connected to a distal portion of the ejection rod 22, and serves to bias the probe plunger 38 to its operational state after a powder delivery or dispense operation.
The ejection rod 22 has a generally cylindrical configuration with a proximal end or portion mechanically or magnetically connected or attached to a push button, knob or cap 62 or the like. The bush button B62 is configured to be depressed or actuated (e.g., by a thumb of a user) in a generally axial direction to actuate ejection of the powder. The push button 62 comprises the proximal-most portion of the device 10 and serves to actuate or push the ejection rod 22 during a powder delivery or dispense operation. The push button 62 can be fabricated from a number of suitably durable and lightweight materials, such as, but not limited to, a plastic, a metal (e.g., aluminum), an alloy, (e.g., different kinds of steels), among others, as needed or desired.
The ejection rod 22 is of an elongated configuration and has a distal pusher portion or barrel 63 of a larger diameter or periphery. A distal end or face of the pusher portion 63 is mechanically or magnetically connected or attached to (or contacts or abuts) a proximal face or end of the probe plunger stop portion 52.
As discussed in further detail below, the ejection rod 22 is moveable or displaceable in a generally axial direction and is used in the powder delivery or dispensing process. To facilitate this motion, the outer housing is operatively coupled to one or more bearings 64 (e.g., a linear bearing) or the like. A portion of the probe compression spring 28 extends over a portion of the ejection rod 22 and a distal end of the spring 28 abuts (or is connected to) a proximal end the bearing 64.
In some embodiments, and as discussed further herein, one or more variable thickness spacers 66 are mechanically or magnetically connected to the proximal face of the ejection rod distal pusher portion 63 and abut an opposed face of the inner housing 24. The spacers 66 serve to generally define the fill volume 60 (and, as such, the subject powder mass) and allow for adjustability of the same, thereby advantageously providing overall versatility and adaptability.
The ejection rod 22 extends from the push button 62, through the cap 16 into the outer housing 14, and then into the inner housing 24. The bearing 64 is coupled to a portion of the ejection rod 22 within the outer housing 24. The ejector rod pusher portion 63 is the distal-most portion of the ejector rod 22 and is spaced from the bearing 64 by a reduced inner diameter portion of the inner housing 24.
The inner housing or insert 24 couples to several components of the handheld device 10. The inner housing 24 has a hollow generally cylindrical configuration with a generally cylindrical inner passage 68, desirably of a variable diameter or periphery. The one or more linear bearings 26 associated with the outer housing 14 engage an inner surface of the outer housing 14 and an outer surface of the inner housing 24.
The inner passage 68 of the inner housing 24 has a proximal portion, a distal portion 70 and a medial portion therebetween having a reduced diameter or periphery. The proximal portion of the inner passage 68 receives at least a portion of the probe compression spring 28, a portion (smaller diameter) of the ejection rod 22, and the one or more linear bearings 64 associated with the ejection rod 22. The medial portion of the inner passage 68 also receives the smaller diameter portion of the ejection rod 22.
The distal portion 70 of the inner passage 68 receives a portion of the ejection rod 22 including the pusher portion 63 and the associated one or more spacers 66. The distal portion 70 of the inner passage 68 receives a portion of the probe plunger 38 including the pusher portion 63 and a portion of the probe plunger spring 34.
The force applied to eject the powder can be varied, for example, by appropriate selection the probe plunger spring 34. In some cases, this fore will be analogous to a liquid pipettor. The spring constant is typically about 2.0 to 2.5 lb/inch, but it can range from about 1 lb/inch or less to about 5 lb/inch or more.
The compression travel of the outer housing or barrel 14 can be appropriately selected as well as the properties of the associated probe compression spring 28. For example, the probe compression travel can be about 12 mm. This may be divided in increments, for example, equally divided increments of about 2 mm for in-process powder compression or compaction. This is advantageous in some cases, and typically allows for the powder to be compressed by up to about 20% or more, depending on the powder properties. This would also vary the hardness of the powder plug. Additionally, the compression can be useful for delivering a different mass (an increase of about up to 20% or more) for a given volume due to increased compression. Another compaction advantage can be that it would provide some control over the height-diameter ratio of a sampled powder plug. The probe compression spring constant is typically about 9 to 10 lb/inch, but it can range from about 5 lb/inch or less to about 20 lb/inch or more. Another advantage of the probe compression spring 28 is that it for overdrive protection/compensation to the moveable outer housing 14.
Thus, in some embodiments, for a fixed height or fill volume 60 the targeted powder mass can be sampled substantially independently of the fill height. This advantageously provides enhanced versatility and adaptability in operation. The compression force (pressure) can be measured by a suitable sensor or transducer, such as a load cell arrangement. Correlations can be created (e.g., by regression analysis or the like) to relate the compression force and sampled mass for different powders.
Referring now to
The size of the probes 20 used in conjunction with any of the handheld powder handling embodiments disclosed herein can be selected, as needed or desired. For example, a single probe size may be used or a field-selection of sizes. The probe size can be characterized by the inner diameter of the probe tip 40 (or the diameter of the lumen 42). Typical probe sizes can include, without limitation, 0.5, 0.8, 1.0, 2.0, 3.0 and 5.0 mm diameters, among others. In some embodiments, an interchangeable assembly allows all probes to be used with a single handheld device. This also provides for easy repair and replacement of a probe. The device configuration, in some cases, requires no special tools for setup, repair, and switching of probes.
The handheld device in accordance with embodiments of the invention can allow for fixed sampling quantity (mass, volume) configurations. These include, without limitation, 100 μg, 250 μg, 500 μg, 1 mg, 2 mg, 5 mg, 10 mg, 25 mg, among others. The variable thickness spacers 66 powder fill height adjustment. For example, this can be in fixed intervals of 0.1 mm to 0.5 mm for combinations of fill heights to yield target mass. (combination of spacers to yield a total desired fill height). Robust device design for setting of fill height so that variations in fill height setting are minimized.
The following table illustrates some examples of probe parameters:
The handheld powder handling devices disclosed herein, such as the device 10, can be efficaciously fabricated from a number of materials. In one embodiment, many of the device components are fabricated from aluminum for combined durability and weight balance. In certain embodiments, some components may be magnetically connected to provide for easy assembly, disassembly and interchangeability. In some embodiments, the handheld devices may be serviceable by the user, for example, to replace springs, and in these cases ease in disassembly and assembly is desirable.
The handheld powder handling devices disclosed herein, such as the device 10, can sample powder from a wide range of sources. For example, but not limited to, tubes/vials 1.75 inches tall (4 mL scintillation vials) or vials 2 inches tall (20 mL scintillation vials), among others.
The dispensing performance of the handheld powder handling devices disclosed herein advantageously achieves an accuracy greater than 95% and has a % CV with 10 replicate samples of less than or equal to about 10% CV. The intra probe-to-probe dispensing performance (i.e. multiple probes of same nominal dimensions) is also equivalent to the above accuracy and % CV.
The case 72 and cover 76 are desirably formed from a hard plastic or the like, among others, to provide adequate protection. The insert 72 is custom designed and is desirably fabricated from foam or the like, among others, to provide a cushioning effect.
The rack 80 can also be configured to hold individual probes 20 of different sizes or these can be mounted on a separate rack or holder to form part of the system or kit 110 or an independent system or kit. For example, one system or kit 110 can comprise two handheld devices 10 and one or more additional probes 20 of different sizes. Extra replacement and/or spare probes can also be included.
The handheld powder handling device 10a comprises an adjustment thumb wheel 82 or the like and a position indicator 84 associated with indicia or markings 86 that reflect the powder fill volume 60 (or target powder mass) within the probe tip 42. The thumb wheel is operatively coupled to the probe plunger 38 and is capable of retracting or advancing it within the probe tip 44 to select a predetermined fill volume 60 (or target powder mass).
In some embodiments, the handheld powder handling device 10a comprises a removable probe 20. The probe 20 can be reusable or disposable. In some embodiments, only the tip portion of the probes 20 is disposable. A combination of reusable and disposable probes/tips of varying sizes may also be provided with efficacy. Any of these probes, and others taught herein (e.g., probes directed to a particular target amount or mass), can be efficaciously utilized in conjunction with any of the powder handling device embodiments disclosed herein, as needed or desired.
In the illustrated embodiment, the removable probe 20 is mechanically connected to the probe housing 36 using a quarter turn locking feature. In other embodiments, the probe 20 may be connected to the housing 36 in other mechanical or non-mechanical manners, for example, via a magnetic connection or the like.
In some embodiments, the device 10a can sample a powder mass based on a compression force (pressure) mode of operation as discussed above. Thus, for a fixed height or powder fill volume the targeted powder mass can be sampled substantially independently of the fill height. This advantageously provides enhanced versatility and adaptability in operation.
The ejection mechanism 16b comprises a pneumatically actuated or air operated plunger to eject the target powder mass. This also allows the ability to operate in a predetermined substantially constant pressure (e.g., substantially powder height independent) mode.
In some embodiments, an ergonomically contoured handle 92 allows the user to hold the device 10b. The device operation may be controlled and monitored via a controller 94 or the like. The controller 94 can comprise an on-board unit or it may comprise an independent unit. A display or console 96 can be interfaced with the controller 94. The display 96 can be mounted to the device 10b or it may comprise a separate unit. For example, the display 96 may be connected to the handle 92 for ease in visualization.
Wireless coupling between control and monitoring elements may be efficaciously utilized, as needed or desired. Remote control devices can also be used with efficacy, as needed or desired.
The handle 92 can comprise one or more buttons 97 or triggers 98 interfaced with the controller so that the user can easily operate the device 10b while holding it. Optionally, control buttons and triggers can be independent from the device 10.
In some embodiments, one or more force or pressure sensors or transducers 99 are provided. For example, one sensor can comprise a force sensor to measure the compression force exerted on the powder during sampling, and another sensor can comprise a pressure sensor to monitor the pneumatic actuation pressure. The force or pressure sensors 99 are also desirably interfaced with the controller 94. In some embodiments, the sensor(s) comprise a load cell arrangement.
In some embodiments, the handheld powder handling device 10b comprises a removable probe 20, as discussed above. Also, as discussed above, any of the probe embodiments disclosed herein may be utilized in conjunction with the device 10b with efficacy, as needed or desired.
In some embodiments, the device 10b can sample a powder mass based on a compression force (pressure) mode of operation as discussed above. Thus, for a fixed height or powder fill volume the targeted powder mass can be sampled substantially independently of the fill height. This advantageously provides enhanced versatility and adaptability in operation.
The probes 20 can comprise removable probes that are reusable or disposable. Similarly, probe tips 40 with different sizes can be efficaciously mounted on a holder or rack, wherein the tips are reusable or disposable, as needed or desired.
It is to be understood that the flexible stripper sheet embodiments and the vibration plate embodiments of the powder source assemblies 514 can be efficaciously combined, as needed or desired.
When the handheld device 10 is ready to sample it is in a state with a predetermined fill volume 60 available for powder sampling (see
The sampling of powders can occur from many different source vessels, including microwell plates, scintillation vials, dram vials, tube-based storage systems, among others. Delivery can occur to the same formats as well.
The probe tip 40 is lowered into the powder source 526 and the device outer housing or barrel 14 is pushed in a generally axial direction towards the powder source 526 so that it slidingly moves forward. This is generally depicted in
The amount of displacement of the barrel 14 (compression of spring 28) or repetition of the barrel pushing process can be used to compact or compress the sampled powder 160, as needed or desired. This is generally depicted in step or act 230 in
The downward force on the barrel 14 is relieved and the probe tip 40 is raised from the powder source 526 with the user holding the device 10 by the grip 12. The barrel 14 and spring 28 return to their original state, and a predetermined mass, volume, amount or quantity of the powder 160 has now been sampled and loaded into the probe tip 40 for delivery. This is generally depicted in step or act 240 in
The device 10 is moved to a target destination or vial 536 and the probe tip 40 is positioned over it with the user holding the device 10 by the grip 12. The target vial 536 is a location wherein or whereat the sampled powder is to be delivered or dispensed. This is generally depicted in step or act 250 in
The user actuates the ejection mechanism or depresses the ejection button 62 in a direction 180 (e.g., by using a thumb) to eject or dispense a predetermined quantity (mass, volume) of the powder 160 into the target vial 536. This is generally depicted in FIG. 21C, step or act 260 in
Depression of the ejection button 62 causes motion of the ejection rod or plunger 22 and probe plunger 38 in the general direction 180, and some compression of spring 34. More specifically, the ejection pusher or barrel 63 is displaced and pushes the probe plunger barrel or stop 52 so that the probe plunger telescoping rod or barrel 50 slideably and generally axially moves within the probe body lumen 42, and the rod distal end 54 ejects or dispenses a predetermined quantity of powder 160 (e.g., in the form of a plug). The contact or abutment of the rod distal end 56 between a distal end of probe housing 18 (or other device abutment surface) can serve as a stop to control the motion of the plunger rod 50.
Once the ejection button 62 is released, the ejection rod 22 and the probe plunger 38 and the spring 34 move back to their original state. The motion during these events is generally depicted by arrows 190.
Some embodiments relate to a handheld solid powder sampling and dispensing device The handheld device has an ergonomically contoured outer surface to be held by a user. Actuation of an outer member of the device causes a predetermined quantity of a powder to be loaded within the device. Actuation of a plunger mechanism causes the predetermined quantity of powder to be dispensed. The outer member and the plunger mechanism are independently operable. Advantageously, the target delivery quantity of powder can be varied by a device adjustment mechanism (and/or to some degree by a powder compaction process).
To further characterize embodiments of the handheld powder sampling and dispensing devices, a panel of number of different powders was dispensed in both the sub-microgram and microgram range. Each powder sample target mass was dispensed multiple times. The results of this panel of powders are depicted in
It is important to note that the largest source of variability in dispensed mass, in some cases, is the variation in powder bulk density. The data in
There continues to be an increase in demand for the discovery, development and optimization of new materials. These new materials cover the range from polymers, adhesives, and pharmaceuticals all the way to catalysts, phosphors and semiconductors. Through the advances championed by the pharmaceutical industry there now exists an automation infrastructure base that can support research in new materials at a basic level. In particular, many of the automation solutions developed for combinatorial chemistry and high throughput screening have been adapted to work with the broader array of reagents and compounds encountered in non-pharmaceutical applications. The combinatorial approach is ideally used in applications where interactions beyond simple 1 and 2 components are to be studied (e.g. ternary and quaternary mixtures). In many advanced materials discovery applications it is not uncommon to conduct experiments with 5 component mixtures (and greater). To the extent that these complex combinatorial experiments have been carried out in a micro-scale, with corresponding small material budgets, screening of conditions previously unthought-of have proven extremely valuable
However, many of the automated platforms tend to be expensive and may not necessarily address the concerns of many applications that would be more suited to a simplified and cost-effective approach. Moreover, many markets can benefit from an initial low-asset approach, before investigating the need for investing in a complex automated system.
Certain unique automation approaches are disclosed in U.S. patent application Ser. No. 12/020,438, filed Jan. 25, 2008, entitled NON-CONTACT POSITIVE DISPENSE SOLID POWDER SAMPLING APPARATUS AND METHOD, Attorney Docket No. ENTEV.001A, discloses certain embodiments of powder handling or manipulation. The entirety of this patent document is hereby incorporated by reference herein and is considered a part of the present patent specification/application.
Synthesis of New Materials: As advances in material property determination have been made, a renewed focus on creating materials and mixtures has begun. Depending on the nature of the material to be synthesized, a variety of techniques to create materials can be employed. Many of these approaches involve combinatorial methods, where complex multi-component mixtures are required in order to explore non-obvious “chemical space”. There have been advancements in liquid handling techniques, particularly inkjet-based approaches, resulting in the ability to explore synthesis approaches in the nanoliter to microliter regime. In addition to synthesis new materials themselves, there is a great deal of interest in changing the local environment (chemical, spatial, thermal, etc.) that a material exists in to explore and possibly exploit unique properties.
Optimization of Material Properties: Once a new material has been made it is often necessary or desirable to optimize its properties based on some measure of performance or critical property. There are many properties that are of interest, including mechanical, thermal, electrical, chemical, optical, morphological and magnetic. Based on measurement of the properties of interest, optimization of the material or its components occurs; iteration of syntheses and measurement continues until the final desired properties are achieved. Depending on the nature of the material these optimization experiments can involve either manipulating the material itself or its surrounding environment. Because many materials are costly to synthesize or produce, performing optimization experiments with minimal sample consumption is often desired. Optimization experiments in the nanoliter to microliter volume range and microgram to milligram mass range are quite common.
Polymorph Screening: A number of currently marketed pharmaceutical products have more than one crystalline form. A compound that exists in more than one crystalline form is considered to be polymorphic. While polymorphs are the same in terms of chemical composition, their physicochemical properties can very significantly. These differing physicochemical properties can dramatically affect a compounds efficacy due to changes in properties such as dissolution rate, solubility and bioavailability. Knowing this, pharmaceutical companies are moving toward more structured polymorph screens for new chemical entities. These screens are being performed earlier in the drug development process in order to maximize the chances that the most stable physical form is carried forward into the clinic. Regulatory bodies now also require demonstration of polymorph identification in submissions. Lastly, polymorph screening of compounds in late development is often valuable in terms of maximizing the intellectual property investment a pharmaceutical company has made, and offers opportunities to extend a patent portfolio.
Polymorph screening involves re-crystallizing a compound from a variety of organic solvents while often varying environmental conditions, such as rate of cooling, solution concentration (i.e. extent of supersaturation), rate of stirring (or absence of stirring), etc. Depending on the specific approach taken, and the amount of compound available for a screen, anywhere from 10's to 1000's of unique combinatorial conditions are created and analyzed for the resulting polymorphic form.
Some embodiments of the system 410 are available from BioDot Inc. of Irvine, Calif., U.S.A. In some embodiments, the reagent dispenser 410 has been specially designed to work with the most challenging of reagents and fluids. Applications involving highly viscous reagents, dispensed in a non-contact combinatorial fashion, are readily served by the dispensing system 410. An example of this type of application would be pharmaceutical pre-formulation studies (some examples of which are discussed herein). The base system is configurable from a single syringe pump, up to as many as 96 individually controllable syringe pumps. The typical non-contact dispense volume range for the dispensing system 410, in some embodiments, is between about 2 microliters (EL) and about 5 milliliters (mL), depending on the specific properties of the reagents being dispensed (e.g., viscosity). The system 410 typically delivers these volumes to within 2% of the target volume with a reproducibility within 5% Relative Standard Deviation (RSD). There are optional heated fluid lines in order to extend the reagent dispensing range (e.g., decrease the effective reagent viscosity).
Some key benefits of the system 410 include, without limitation: ability to dispense a wide variety of fluids such as highly viscous fluids (viscosities up to ˜3000 cp), organic solvents, strong acids and bases; multi-channel configuration for combinatorial applications; flow-through dispense and aspirate/dispense modes (rheology dependent); and non-contact dispense mode for rapid dispensing with minimal carryover.
When dealing with lower liquid volumes, in some embodiments, to dispense liquid or reagent drops down to the nanoliter, and in some cases in the picoliter, range a technology and product base as available from BioDot, Inc. of Irvine, Calif., U.S.A. is utilized to deliver liquids or reagents. In brief, the BioDot dispensing (and/or aspirating) system in accordance with some embodiments, comprises a positive displacement syringe pump or device (or a direct current fluid source) hydraulically coupled or in fluid communication with a solenoid dispenser or actuator, and motion control means or device(s) to provide relative motion between the dispensing/aspirating tip and the target(s)/source(s), as needed or desired. In some embodiments, the low volume liquid handling system 310 comprises any one of these BioDot systems.
BioDot's U.S. Pat. Nos. 5,738,728, 5,741,554, 5,743,960, 5,916,524, 6,537,505 B1, 6,576,295 B2, RE38,281 E, U.S. Patent Application Publication Nos. US 2003/0211620 A1, US 2004/0072364 A1, US 2004/0072365 A1, US 2004/0219688 A1, US 2005/0056713 A1, US 2006/0211132 A1, and European Patent No. EP 1 485 204 B1, the entirety of each one of which is hereby incorporated by reference herein, disclose liquid dispensing (and/or aspirating) systems and methods which can be efficaciously utilized in accordance with certain embodiments of the invention. All of these patent documents comprise a part of the present patent specification/application. In some embodiments, the low volume liquid handling system 310 comprises any one of the systems disclosed in the above-mentioned patent documents.
U.S. Pat. Nos. 6,063,339, 6,551,557 B1, 6,589,791 B1, and U.S. Patent Application Publication Nos. US 2002/0064482 A1, US 2003/0207464 A1, US 2003/0215957 A1, US 2003/0228241 A1, the entirety of each one of which is hereby incorporated by reference herein, disclose liquid dispensing (and/or aspirating) systems and methods which can be efficaciously utilized in accordance with certain embodiments of the invention. All of these patent documents comprise a part of the present patent specification/application. In some embodiments, the low volume liquid handling system 310 comprises any one of the systems disclosed in the above-mentioned patent documents.
Salt Selection (
Typical salt selection screens involve re-crystallizing a particular compound from a variety of counter-ion solutions, as well as varying crystallization solvents and conditions. Depending on the specific approach taken, and the amount of compound available for a screen, anywhere from 10's to 1000's of unique combinatorial conditions are created and analyzed for the resulting salt form.
Compatibility Experiments (
SolubilitE Experiments (
Dosing Studies (
Dosing screens are typically conducted by creating a range of vehicles from both aqueous and non-aqueous excipients. These mixtures can be created through combinatorial means, or can be made up as simple ratios of ingredients. A common strategy is to create a “library” of vehicles and use this library as a screen for all compounds. Alternatively, a unique set of vehicles can be created for a particular compound based on the specific chemistry or functionality of the compound of interest. Once the compound has been added to the range of vehicles selection of the most suitable formulation is based on determining or estimating the compounds solubility in the vehicle. This can be accomplished either by quantitative measurement (e.g. HPLC) or by visual inspection for solubility (i.e. presence of un-dissolved compound or precipitation).
Some key benefits of the systems 310 (310a, 310b) include, without limitation: nanoliter and picoliter, non-contact dispensing allows low volume dispensing (e.g., supports advanced materials research programs), can be used in conjunction with multiple dispense modes (e.g., discrete drops and bursts of drops), and can create a variety of dispense patterns (e.g., drops, lines, and dashes, among others); multi-channel configuration for combinatorial applications, among others, flow-through dispense and aspirate/dispense modes (rheology dependent); several platform sizes and configurations to choose from; can be efficaciously combined with the reagent handling capabilities of the system 410.
Referring in particular to
The methods which are described and illustrated herein are respectively not limited to the sequence of acts or steps described, nor are they respectively necessarily limited to the practice of all of the acts or steps set forth. Other sequences of acts or steps, or less than all of the acts or steps, or simultaneous occurrence of the acts or steps, may be utilized in practicing embodiments of the invention.
It is to be understood that any range of values disclosed, taught or suggested herein comprises all values and sub-ranges therebetween. For example, a range from 5 to 10 will comprise all numerical values between 5 and 10 and all sub-ranges between 5 and 10.
From the foregoing description, it will be appreciated that a novel approach for solid powder handling or manipulation has been disclosed. While the components, techniques and aspects of the invention have been described with a certain degree of particularity, it is manifest that many changes may be made in the specific designs, constructions and methodology herein above described without departing from the spirit and scope of this disclosure.
While a number of preferred embodiments of the invention and variations thereof have been described in detail, other modifications and methods of using and other materials discovery, development and optimization, and life sciences, biotech, pharmaceutical, diagnostic, medical, chemical, biological and/or agricultural applications for the same will be apparent to those of skill in the art. Accordingly, it should be understood that various applications, modifications, and substitutions may be made of equivalents without departing from the spirit of the invention or the scope of the claims.
Various modifications and applications of the invention may occur to those who are skilled in the art, without departing from the true spirit or scope of the invention. It should be understood that the invention is not limited to the embodiments set forth herein for purposes of exemplification, but is to be defined only by a fair reading of the claims, including the full range of equivalency to which each element thereof is entitled.