The present invention relates to handheld power tools, such as for example chain saws, and more precisely to dampening of power tools.
Handheld power tools are commonly used in both commercial and private settings to cut, saw or in other ways remove material. Handheld power tools may for example be used in forestry for removing unwanted trees or bushes or in gardening applications such as cutting high grass or hedges.
It is desirable to keep the noise and vibrations produced by the tool as low as possible, in order not to disturb people in the surrounding area, spare the worker from stresses as well as obtaining an energy efficient power tool. Additionally, in certain regions of the world, the permissible sound level may soon be lowered, compared to the regulations of today.
There is thus a need for an improved handheld power tool system.
It is an object of the teachings of this application to overcome the problems listed above by providing a vibration dampening sprocket arrangement comprising at least one flexible element arranged such that the drive unit is separated from the driving means by the flexible element.
The inventors thus provide a sprocket arrangement for a handheld power tool such as a saw, comprising a drive unit configured to rotate a drive shaft and cutting tool configured to be driven by the drive shaft via the sprocket arrangement, wherein the sprocket arrangement comprises a gear and at least one flexible element arranged such that the drive shaft in the handheld power tool is flexibly connected to the cutting tool in the handheld power tool. Optionally, the flexible connection between the drive shaft and the cutting tool, provided by the flexible element, may be resilient.
It is a further object of the teachings of this application to provide a handheld power tool comprising a drive unit, a drive shaft, driving means, and a flexible sprocket arrangement such that the drive unit is resiliently separated from the driving means.
The inventors of the present invention have realized, after inventive and insightful reasoning that by utilizing a flexible element provided such that the drive unit is separated from the driving means, the possibility of noise and vibrations propagating through the tool is reduced.
Other aspects are defined by the appended patent claims and are further explained in the detailed description section as well as in the drawings.
Other features and advantages of the disclosed embodiments will appear from the following detailed disclosure, from the attached dependent claims as well as from the drawings. Generally, all terms used in the claims are to be interpreted according to their ordinary meaning in the technical field, unless explicitly defined otherwise herein. All references to “a/an/the [element, device, component, means, step, etc]” are to be interpreted openly as referring to at least one instance of the element, device, component, means, step, etc., unless explicitly stated otherwise. The steps of any method disclosed herein do not have to be performed in the exact order disclosed, unless explicitly stated.
The invention will be described in further detail under reference to the accompanying drawings in which:
The disclosed embodiments will now be described more fully hereinafter with reference to the accompanying drawings, in which certain embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided by way of example so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout. References herein to axial, radial, and tangential refer, unless otherwise specified, to directions in relation to the rotation axis of the sprocket arrangement.
In
In
The vibration dampening sprocket arrangement 5 is shown in
The purpose of the sprocket arrangement 5 is to isolate the drive unit 20 from the driven parts, e.g. the chain 3, of the power tool, which in one embodiment is a chain saw. This arrangement 5 reduces the possibility for noise and vibrations to propagate between the different parts of the tool. It is established that a large part of the noise produced in a power tool derives from when the chain 3 enters the rim and engages with the cogs 8 of the gear 1. By splitting up the gear 1 into different parts and providing a cushioning therebetween, isolation between the parts is obtained. This is accomplished by the inventive sprocket arrangement 5. In an alternative embodiment, the sprocket arrangement 5 may comprise another type of mechanical cushioning, e.g. a spring or similar, instead of the O-rings 6a, 6b, being examples of a flexible element used to separate the handheld power tool from the chain 3. The flexible element thus acting as a dampening means. The flexible element may be a resilient element, and may be formed of a resilient material such as natural or synthetic rubber. The material may also operate as an absorber for absorbing vibrations.
When the arrangement 5 is mounted in a power tool and the chain 3 enters the rim, the chain tie strap is radially carried by the wear rings 2a, 2b before the drive links contact the teeth of the gear 1. Each O-ring 6a, 6b is compressed between the support portion of the respective side plate 7a, 7b and the respective wear ring 2a, 2b, when the tie straps contact the wear rings 2a, 2b, until the drive link engages with the gear 1. At the same time, the wear rings 2a, 2b will be pushed slightly backwards, relative to the rotation of the gear 5. The O-rings 6a, 6b and wear rings 2a, 2b are not fixedly attached to the gear 1. Allowing the wear rings 2a, 2b to move in a speed different from the other parts of the sprocket arrangement 5 provides for an even wear of the rings 2a, 2b and also that the wear is more evenly distributed.
Another advantage with this dampened sprocket arrangement 5 is that it is possible to suppress the polygon effect, i.e. that the chain has an uneven velocity when it exits from the sprocket arrangement 5. This is possible since there is a possibility of compression in the drive system, thanks to the cushioning O-rings 6a, 6b. Also, the wear on moving parts is reduced since the chain 3 moves smoother and has less irregular movements since the rim is cushioned. Further, a smoother chain movement reduces the risk of the chain de-railing.
The sprocket arrangement may be retrofitted on existing power tools, or it may be included in the production of new power tools. Further advantages with the arrangement 5 is that it provides the user with a more comfortable use of the power tool, compared with a tool without the damping arrangement, since both the noise and vibration levels are reduced.
In another embodiment, shown in
The inner part 9, which is also rigid and may be integrally formed of e.g. metal, is provided with outer cogs, defined by grooves and protrusions optionally matching the inner gear of the outer part 10. Further, the inner part 9 comprises a shaft opening in its centre portion, for drivable connection to the drive shaft 21 (
In the illustrated embodiments, the dampening arrangement is applied to a sprocket arrangement comprising a spur, but in another embodiment it may alternatively be applied to a rim.
In
Due to the flexibility of the rubber rings 15a, 15b the effective diameter of the sprocket 25 becomes flexible. When the chain 3 moves around the gear 12 it is allowed to move smoother compared to a gear without dampening since it maintains a more even tension. This provides for a reduced polygon effect when the chain 3 moves around the driving rim of the sprocket 25. This results in less noise as well as reduced wear on the chain 3 and the bar 13, and also a more controlled inlet/outlet in the bar 13 and the rim.
The second side plate 7b is also integrally formed with rivet pins 27, which, on assembly, are configured to penetrate respective rivet holes 28 formed in the first side plate 7a, thereby allowing permanently attaching all parts together by riveting. In the illustrated embodiment, the rivet pins 27 also define the outer splines 29 configured to engage with the inner splines 31 of the sprocket 1.
In some of the embodiments shown the flexible element is functionally arranged between the drive shaft and the chain, but it would also fall within the scope of this invention to arrange the flexible element between the drive shaft and sprocket.
The invention has mainly been described above with reference to a few embodiments. However, as is readily appreciated by a person skilled in the art, other embodiments than the ones disclosed above are equally possible within the scope of the invention, as defined by the appended patent claims.
Number | Date | Country | Kind |
---|---|---|---|
1651753-4 | Dec 2016 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE2017/051241 | 12/11/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/124956 | 7/5/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1975938 | Downey | Nov 1910 | A |
3059491 | Hoff et al. | Oct 1962 | A |
3224473 | Dobbertin et al. | Dec 1965 | A |
3257860 | Runde | Jun 1966 | A |
3339596 | Deelman | Sep 1967 | A |
3410147 | Scott-Jackson | Nov 1968 | A |
4010544 | Siman | Mar 1977 | A |
4321750 | Sugihara | Mar 1982 | A |
4348199 | Oonuma et al. | Sep 1982 | A |
4414876 | Loigerot | Nov 1983 | A |
4869709 | Nagano | Sep 1989 | A |
4876796 | Calkins | Oct 1989 | A |
20050170925 | Hamilton | Aug 2005 | A1 |
20090093329 | Markley | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
1636681 | Jul 2005 | CN |
201128028 | Oct 2008 | CN |
101658962 | Mar 2010 | CN |
202292916 | Jul 2012 | CN |
1996838 | Dec 2008 | EP |
557173649 | Oct 1982 | JP |
Entry |
---|
International Type Search Report for Swedish Application No. 1651753-4 dated Jul. 14, 2017. |
International Search Report and Written Opinion in International patent application No. PCT/SE2017/051241 dated Jan. 26, 2018. |
Number | Date | Country | |
---|---|---|---|
20190366579 A1 | Dec 2019 | US |