This application is related to U.S. Provisional Application No. 60/867,778, entitled “Showerhead System” and filed on Nov. 29, 2006, which is hereby incorporated by reference herein in its entirety.
The present invention generally relates to showerheads, and more particularly to handheld showerheads.
Handheld showerheads typically have showerhead and handle portions. The showerhead portion includes a showerhead face with nozzles and openings for delivering water to a user from the handheld showerhead. The handle portion provides a structure for a user to hold when using the handheld showerhead.
Handheld showerheads may include more than one mode of operation. Multiple modes of operation provide a user with flexibility to select a desired spray pattern, or pause water flow from the handheld showerhead. Some possible spray patterns for a handheld showerhead with multiple modes of operation may include standard water streams, converging water streams, pulsating water streams, and mist sprays. For a handheld showerhead with multiple modes of operation, a circular ring is formed to rotate around the showerhead face. A user rotates the circular ring around the showerhead face until the desired mode of operation is selected.
To rotate a mode or feature control ring around a showerhead face, the showerhead must have a round face, thus limiting the options for designing an aesthetically appealing showerhead. Further, the face ring's location causes the user to place a hand in the shower flow, thus directing the shower flow potentially in multiple directions undesired directions. Yet further, two hands are often needed to rotate a face ring around the showerhead in order to change the showerhead mode.
One embodiment may take the form of a handheld showerhead. The handheld showerhead may include a showerhead portion including a plurality of nozzles and at least two fluid channels in fluid communication with respective subsets of the plurality of nozzles. The at least two fluid channels are defined in part by at least two walls that are adjacent and parallel to each other and a curved wall that extends between edges of the at least two walls. The showerhead further includes a base wall defining two or more fluid channel inlets each in fluid communication with a respective one of the two more fluid channels, a handle portion operatively associated with the showerhead portion, including at least one of a fluid inlet and a fluid passage, and a rotatable mode selector. Movement of the mode selector selectively places the fluid inlet or the fluid passage of the handle portion in fluid communication with one of the at least two fluid channels via a respective one of the fluid channel inlets.
Another embodiment may take the form of a handheld showerhead. The showerhead includes a showerhead portion and a handle portion operatively associated with the showerhead portion. The showerhead portion includes at least two fluid channels, wherein the at least two fluid channels are defined in part by at least two walls that are adjacent and parallel to each other and a curved wall that extends between the edges of the at least two walls and a base wall formed at a first end of each of the at least two fluid channels and defining two or more fluid inlets each in fluid communication with a respective one of the two or more fluid channels. The handle portion includes a fluid passage and a rotatable mode selector. The showerhead portion is positioned relative to the handle portion such that a fluid exiting the showerhead portion under operational flow conditions initially moves primarily in a direction that forms a right angle or an acute angle with respect to a longitudinal axis of the handle portion and rotation of the mode selector selectively places the fluid inlet or the fluid passage in fluid communication with one of at least two fluid channels.
Yet another embodiment may take the form of handheld showerhead including a showerhead portion and a handle portion in fluid communication with a fluid supply and the showerhead portion. The showerhead portion may also include a mode selector portion which itself includes a rotationally-fixed first end coupling that may include a number of fluid apertures. The mode selector may also include a rotatable control knob body and a first fluid seal positioned between the first end coupling and the control knob body that is coupled to the control knob body. Within the fluid seal, there may be at least one fluid control aperture. The movable mode selector may also comprise a rotationally-fixed second end coupling concentrically aligned with the first end coupling. The rotationally-fixed second end coupling may include a fluid outlet aperture in fluid communication with the control knob body and a fluid inlet aperture in fluid communication with a fluid supply. There may also be a second fluid seal positioned between the second end coupling and the control knob body, along with a single mechanical fastener axially coupling the control knob body with the first end coupling and the second end coupling.
Still another embodiment may take the form of handheld fluid control valve. The valve may include a rotationally-fixed first end coupling comprising at least three fluid output apertures, a rotatable control knob body, and a first fluid seal positioned between the first end coupling and the control knob body that is coupled to the control knob body. The first fluid seal may comprise at least one fluid control aperture. The handheld fluid control valve may also include a rotationally fixed second end coupling concentrically aligned with the first end coupling which comprises a fluid outlet aperture in fluid communication with the control knob body, a single fluid inlet aperture in fluid communication with a fluid sully, and a second fluid seal position between the second end coupling and the control knob body. The valve may also include a rotationally-fixed mechanical fastener which axially couples the control knob body with the first end coupling and the second end coupling. In certain embodiments, the mechanical fastener may comprise a fluid seal between the first end coupling and the second end coupling.
In another exemplary implementation, a handheld showerhead may have a handle portion including a fluid inlet; a showerhead portion extending from the handle portion, and a mode selector. The showerhead portion may have a plurality of nozzles and a plurality of fluid channels. A first one of the fluid channels may be in fluid communication with a first set of the plurality of nozzles and a second one of the fluid channels may be in fluid communication with a second set of the plurality of nozzles. The showerhead portion may also have a showerhead base wall defining two or more apertures each in fluid communication with a respective one of the plurality of fluid channels. The mode selector may have a control knob mounted between the handle portion and the showerhead portion and configured to rotate about an axis, and a rotatable selection structure connected to the control knob and configured to rotate about the axis. The selection structure may define a fluid cavity and an outlet aperture that is in fluid communication with the fluid inlet. Rotation of the control knob rotates the selection structure and selectively aligns the outlet aperture in the selection structure with one of the two or more apertures in the showerhead base wall to direct the water flow from the fluid cavity to at least one of the two or more fluid channels of the showerhead.
In a further exemplary implementation, a handheld showerhead includes a handle portion, a showerhead portion extending from the handle portion, a mode selector positioned between the handle portion and showerhead portion, and a water supply connector at least partially housed within the handle portion and the mode selector. The showerhead portion may have a plurality of nozzles and two or more fluid channels. A first one of the fluid channels is in fluid communication with a first set of the plurality of nozzles and a second one of the fluid channels is in fluid communication with a second set of the plurality of nozzles. The showerhead portion may also have a showerhead base wall defining two or more apertures each in fluid communication with a respective one of the two or more fluid channels. The mode selector may include a control knob mounted between the handle portion and the showerhead portion and configured to rotate about a longitudinal axis of the handle portion. The mode selector may also include a control ring that defines an inlet aperture at a proximal end and an outlet aperture at a distal end positioned for selective alignment with the two or more apertures in the showerhead base wall. The mode selector may further include a tab structure that is operably connected to each of and between the control knob and the control ring. The water supply connector may define a fluid inlet configured for connection to a water supply, a fluid passage configured to transport the water flow from the fluid inlet within the handle, and have a collar structure positioned distal from the fluid inlet and configured to receive the control ring. The collar structure may have an opening configured to allow the tab structure to pass through the collar structure and connect with the control ring.
Described herein are various embodiments of handheld showerheads with mode selectors. The handheld showerheads may include showerheads with two or more groups of nozzles and/or openings. Each group of nozzles and/or openings may provide a unique spray mode, such as a mist spray, a pulsating stream, converging streams, and so on. A handle portion connected to a showerhead portion may collectively define a body of the showerhead. A user may grasp the handle portion to change the position of the showerhead relative to the user. The handle portion may include a water supply connector and a mode selector movable relative to the handle portion for selecting a showerhead spray mode. The mode selector may take the form of a control knob or lever, and may be positioned anywhere along the handle portion. A user may selectively rotate or slide the control knob relative to the handle portion to change the showerhead's spray mode.
In the embodiment depicted in
If desired, more or less than two nozzle groups may provide more or less than two spray modes. Similarly, more or less groups of pulsating openings may provide more or less than one pulsating spray mode. Further, nozzles 106 may be substituted for the pulsating openings 108 to deliver pulsating spray modes from the showerhead portion 104, and openings 108 may be substituted for the nozzles 106 to deliver non-pulsating spray modes. Yet further, any spray mode, pulsating or non-pulsating, may be delivered from the showerhead portion 104 by a combination of nozzles 106 and openings 108. The nozzles 106 and openings 108 may be configured to deliver converging or non-converging water streams, mist sprays, or any other spray from the showerhead portion 104.
With continued reference to
Still referring the
Turning to
For a handheld showerhead 100 with three spray modes, the showerhead portion 104 of the front showerhead handle portion 130 may be divided into three front fluid chambers 136a-c by front showerhead sidewalls 138 extending rearwardly from the front face of the showerhead portion 104. Each front fluid chamber 136a-c fluidly communicates with one of the three groups of nozzles 106 or openings 108 and may include a turbine 135 or other device to provide pulsating, rotating, or other various streams, flows, or sprays. For example, the outer front fluid chamber 136c fluidly communicates with the first group of nozzles 106a. Although each group of nozzles 106a-b and openings 108 is shown and described as being in fluid communication with one front fluid chamber 136a-c, any group of nozzles 106 or openings 108 may be in fluid communication with two or more front fluid chambers 136. Similarly, one or more front fluid chambers 136a-c may be used to provide fluid communication to each group of nozzles 106 or openings 108 associated with a spray mode.
In a manner similar to the front showerhead handle member 130, and as best shown in
With continued reference to
Similarly, as best shown in
Each fluid channel is separate from the other fluid channels (i.e., not in fluid communication with the other fluid channels) and is in fluid communication with one of the three fluid chambers formed in the showerhead portion 104. In some embodiments, two or more rear channels 148a-c may combine with two or more front channels 144a-c to define two or more fluid channels in fluid communication with a fluid chamber, thus providing two or more fluid channels for fluid to flow from the handle base 134 to a fluid chamber in the showerhead 104. Alternatively or conjunctively, tubes or other fluid conveyance structures may be positioned or defined within the handle or showerhead portions 102, 104 to provide fluid communication between the showerhead fluid chambers and handle base 134.
Now turning to
As described in more detail below, each base fluid aperture 160a-c may be selectively placed in fluid communication with the water supply connector 12. When a base fluid aperture 160a-c is selectively fluidly connected to the water supply connector 124, water flows from a water source in fluid communication with the water supply connector 124 into the fluid channel fluidly connected with the base fluid aperture 160a-c. From this fluid channel, water then flows into the fluid chamber fluidly connected with the fluid channel and out the nozzles 106 or openings 108 fluidly connected to the fluid chamber, thus delivering water in at least one of the showerhead spray modes to the user.
Referring back to
With reference to
An annular control knob ring 176 may extend upwardly from an upper portion of the control knob body 172. The control knob ring 176 may define a control knob fastening aperture 178 on a top face thereof for receiving a handle connection shaft 180. As described in more detail below, the handle connection shaft 180 receives a mechanical fastener 171, such as a screw or the like, for rotatably joining the control knob 122 to the handle portion 102.
With further reference to
The base fluid apertures 160a-c and the control knob fluid aperture 182 may be sized and positioned to allow fluid communication between one base fluid aperture 160a-c and the water supply connector 124. However, the base fluid apertures 160a-c and/or the control knob fluid aperture 182 may be sized and/or positioned to form fluid communication between two or more of the base fluid apertures 160a-c and the water supply connector 124 at one or more relative rotational positions between the handle portion 102 and the control knob 122. Alternatively, in some embodiments, the control knob 122 may have two or more control knob fluid apertures 182 sized and positioned to provide at least partial concurrent fluid communication between one or more (e.g., two) of the base fluid apertures 160a-c. It may be desired to provide fluid communication between two or more base fluid apertures 160a-c when the handheld showerhead 100 is designed to provide two or more distinct spray modes concurrently.
With continued reference to
Returning to
Keying features other than the one depicted in the figures and described above may be used. For example, a keying peg could be formed on the control knob 122 and a keying recess formed in the handle seal 184. As yet another example, the control knob ring 176 and the outer seal sidewall 188 may be asymmetrically shaped to provide a single position, or a limited number of positions, for joining the handle seal 184 to the control knob 122. The foregoing examples of keying features are merely illustrative and are not intended to limit other keying approaches. Further, the handle seal 184 and the control knob 122 may include two or more keying features.
With reference to
Turning back to
The water supply connector shaft 210 may define a water supply connector fluid inlet 212 near a lower end of the water supply connector shaft 210. The water supply connector fluid inlet 212 may co-axially align with the water supply connector shaft's longitudinal axial. The water supply connector shaft 210 may also define a water supply connector fluid outlet 214 in an upper portion of the water supply connector shaft 210. The water supply connector outlet 214 may be transverse relative to the water supply connector shaft's longitudinal axis.
The water supply connector shaft 210 may further define a water supply connector fluid passage 202 extending along at least a portion of water supply connector shaft's longitudinal axis as shown in
With reference to
To change the showerhead spray mode (i.e., the set of nozzles 106 and/or openings 108 that deliver fluid from the showerhead portion 104), the control knob 122 may be selectively rotated relative to the handle portion 102 until the control knob fluid aperture 182 aligns with another base fluid aperture 160a-c. Once aligned, fluid is delivered from the nozzles 106 or openings 108 in fluid communication with the fluid channel associated with the newly selected base fluid aperture 160a-c. When the control knob fluid aperture 182 does not align with any of the base fluid apertures 160a-c, then no fluid flows to the showerhead portion 104 since no fluid channels are in fluid communication with the handle fluid chamber 200.
Returning back to
With reference to
An upper portion of the handle connection shaft 180 may be a generally cylindrical shaft, which may be received through the control knob fastening aperture 178 and may generally abut the inner seal sidewall 186 as shown in
A control knob body rotation limiter, such as a stop 236, may optionally extend from the upper water supply connector flange 230 along at least a portion of the length of the water supply connector shaft 210. As shown in
With reference to
The plunger spring 244 biases the plunger 242 into an aligned plunger recess 241 on the control knob 122. Movement of the plunger 242 into a plunger recess 241 by aligning the plunger recess 241 with the plunger 242 by rotating the control knob 122 relative to the handle portion 102 may provide a physical indication that a control knob fluid aperture 182 is aligned with a base fluid aperture 160a-c. Once aligned, a rotational force sufficient to overcome the spring force biasing the plunger 242 into the plunger recess 241 may be required to continue rotating the control knob 122 relative to the handle portion 102. Thus, the plunger 242 may also prevent further rotational movement of the control knob 122 relative to the handle portion 102 until the user exerts a sufficient force to overcome the spring force biasing the plunger into the plunger recess 241.
Although the second embodiment operates in a similar manner to the first embodiment, the individual components may be slightly modified. For example, the handle portion 304 and the showerhead portion 302 may be separate components rather integrally formed to form a body for the handheld showerhead 300. As another example, the control knob 306 may be positioned between the showerhead portion 302 and the handle portion 304 rather than positioned at the lower end of the handle portion 304. As yet another example and with reference to
With reference to
As described above, the front and rear showerhead sidewalls 316, 322 may be heat welded, sonic welded, or otherwise connected to form fluid-tight seals along between their respective joints. Sidewalls for the front and rear channels 324, 326 may be similarly joined to form fluid tight channels with the showerhead portion 302. Alternatively or conjunctively, tubes or other fluid conveyance structures may be positioned or defined within the showerhead portion 302 to provide fluid communication between the showerhead fluid chambers and showerhead portion base apertures 330.
Turning to
With reference to
Like the first embodiment, the control knob 306 may include finger gripping features, such as projections 346, spaced around its exterior for grasping by the fingers of a user to aid the user in rotating the control knob 306 relative to the handle portion 304. Additionally, rotating the control knob 306 relative to the handle portion 304 may be facilitated by an arcuate shaped cap 348, or other shaped cap, formed at an end of the control tab 338. As a user rotates the control knob 306 relative to the handle portion 304, the control ring 336 also rotates relative to the handle portion 304 via the joining of the control knob 306 to the control ring 336 by the control tab 338.
With continued reference to
The upper end of the control ring body 350 may step inwardly to define a space between the handle portion 304, the showerhead portion 302 and the control ring 336 for receiving a cup seal, or ring, or other appropriate seal member 358. The seal member 358 may be similar to the handle seal described above for the first embodiment. The seal member 358 prevents fluid leakage between the joint formed between the showerhead portion 302, handle portion 304 and the control ring 336.
With reference to
The water supply connector 334 may include a water supply collar 370 positioned at the upper end of the water supply connector shaft 308. As shown best in
With reference to
Like the first embodiment, the water supply connector 334 for the second embodiment may include a plunger aperture 384 for receipt of a plunger spring 386 and a plunger 388 as shown in
Turning to
The upper collar sidewall 378 may define an upper collar chamber to receive seal member 358 and the showerhead portion base 332 as shown in
Although the third embodiment operates in a manner similar to the first and second embodiments, the individual components may be slightly modified. For example, the handle portion 408 and the showerhead portion 402 may be separate components rather integrally formed as shown in
With reference to
With reference to
As best shown in
With continued reference to
With reference to
The core valve fluid outlet 420 may receive a valve seal 440. The valve seal 440 prevents fluid from flowing from the valve core fluid outlet 420 to a fluid channel 412a-d unless the valve core outlet 420 is at least partially aligned with it. As shown in
With reference to
Fluid in the handle fluid chamber 434 flows to any fluid channel 412a-d at least partially aligned with the valve core fluid outlet 420. From each of the one or more aligned fluid channels 412a-d, fluid flows to the respective fluidly connected showerhead fluid chambers and is delivered from the showerhead portion 402 via the set of nozzles 404 and/or openings 406 in fluid communication with such showerhead fluid chambers. Selective rotation of the valve core 418 relative to the water supply connector 416 changes which fluid channels 412a-d align with the valve core fluid outlet 432, and thus permits a user to select which set of nozzles 404 and/or openings 406 (i.e., which shower spray mode) provide fluid from the showerhead.
With reference to
With reference to
With reference to
With reference to
With continued reference to
Turning to
With reference to
Although the fourth embodiment operates in a similar manner to the previously described embodiments, individual components may be slightly modified. For example, the handle portion and the mode selector 502 may be a single component. As another example, the mode selector 502 slides along the longitudinal axis of the water supply connector 504.
The showerhead portion for the fourth embodiment is omitted. However any showerhead portion, including any described above, having fluid channels (which may be formed within the showerhead portion, or by using elements, such as hoses, tubes or the like, or by some combination thereof) arranged to fluidly communicate with the fluid channels defined in an upper portion of the water supply connector 504 may be used for the showerhead portion.
Turning to
The upper water supply connector portion 508 may define two or more upper fluid chambers 518a-d. Although four upper fluid chambers 518a-d are depicted in the figures, there may be more or less than four such chambers. Each upper fluid chamber 518a-d may be fluidly connected to a fluid chamber inlet 520a-d. Each fluid chamber inlet 520a-d may be formed at a different axial and radial position along the axial length of the upper water supply connector portion 508 as shown best in
Fluid communication between the water supply connector fluid outlet 516 and a fluid chamber inlet 520a-d may be selectively enabled or disabled using the mode selector 502. More particularly and with reference to
One or more mode selector outlets 530a-d may be defined in the inner mode selector sidewall 522 and positioned in the portion of the mode selector 502 proximate the upper water supply connector portion 508. Further, each mode selector outlet 530a-d may be sized and positioned such that as the mode selector 502 moves relative to the water supply connector 504 along the water supply connector's longitudinal axis, each mode selector outlet 530a-d will at least partially align with at least one of the fluid chamber inlets 520a-d. When a mode selector outlet 530a-d at least partially aligns with a fluid chamber inlet 520a-d, fluid communication between this fluid chamber inlet 520a-d and the handle fluid chamber 526 is enabled, which in turn opens fluid communication between the fluid passage 512 and the upper fluid chamber 518a-d associated with the fluid chamber inlet 520a-d. The mode selector 502 may then be further moved to not at least partially align with the fluid chamber inlet 520a-d, thus ending the fluid communication between the fluid passage 512 and the upper fluid chamber 518a-d.
As shown in
In the lower position, another of the mode selector outlets 530a-d may align with the lowermost fluid chamber inlet 520a, thus fluidly connecting the handle fluid chamber 526 with the upper fluid chamber 518a associated with the lowermost fluid chamber inlet 520a. One or more of the other fluid chamber inlets 520b-d may no longer be covered by the mode selector 502, such as shown in the figures, or may be covered by the mode selector 502, thus preventing fluid communication between their associated upper fluid chambers 518b-d and the handle fluid chamber 526. Check valves or other suitable one-way flow structures (not shown) may be positioned within, or joined to, the fluid chamber inlets 520a-d to prevent fluid from flowing out of their associated upper fluid chambers 518a-d when the fluid chamber inlets 520a-d are not covered by the mode selector 502. Also, although three of the fluid chamber inlets 520a-d are shown as uncovered by the mode selector 502 when moved to a lower position, the mode selector 502, the water supply connector 504, the mode selector outlets 530a-d, and the fluid chamber inlets 520a-d may be configured to ensure each fluid chamber inlet 520a-d remains covered for all operational positions of the mode selector 502 relative to the water supply connector 504.
In sum, a fluid, such as water, flows into the water supply connector's fluid passage 512 from a fluid hose via the water supply connector fluid inlet 514. Fluid then flows to the handle fluid chamber 526 through the water supply connector fluid outlet 516 and the mode selector inlet 528. From the handle fluid chamber 526, fluid flows to an upper fluid chamber 518a-d when a mode selector outlet 530a-d at least partially aligns with the fluid chamber inlet 520a-d associated with the upper fluid chamber 518a-d. Finally, fluid flows through the showerhead nozzles or openings via a fluid channel fluidly joined to the upper fluid chamber 518a-d. Moving the mode selector 502 relative to the water supply connector 504 changes which fluid chamber inlet 520 the mode selector outlet or outlets 530a-d align with, thus changing which nozzles or openings deliver water from the showerhead.
With further reference to
The water supply connector shaft 506 may define a spring opening 540 for receiving a spring 542 to bias a ball 544 (or other element, such as the plunger described above) against the mode selector 502. Ball grooves 546, corresponding to alignments of mode selector outlets 530a-d with fluid chamber inlets 520a-d, may be formed in the mode selector 502 to receive the ball 544 when a ball groove 546 aligns with the spring opening 540. Receipt of the ball 544 within the ball groove 546 provides a physical indication when a spray mode is selected by the user in a manner similar to the one described above for the other embodiments with respect to the plunger. Receipt of the ball 544 within the ball groove 546 may also minimize unintended movement of the mode selector 502 relative to the water supply connector 504 in a manner similar to the one described above for other embodiments with respect to the plunger. Other means, methods, or structures for providing an indication of when a mode is selected, or for preventing inadvertent movement of the mode selector 502 relative to the water supply connector 504, may be used in combination with, or in lieu of, the described ball and spring arrangement.
Upper and lower stops 550, 552 may be positioned on the water supply connector 504 to limit the upper and lower movement of the mode selector 502 relative to the water supply connector 504. The upper and lower stops 550, 552 may take the form of upper and lower flanges extending outwardly from the water supply connector shaft 506 as shown in
With references to
The components of the handheld showerhead for any of the various embodiments described above, including, but not limited to, the showerhead portion, the handle portion, the mode selector, the plunger, the spring, the seal elements, the nozzles, the water supply connector, and so on, may be composed of any suitable material, including, but not limited to, metals, ceramics, rubbers, plastics, and the like. Further, each of the components may be formed from a single element, or from multiple elements suitably joined together.
All directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, inner, outer, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the example of the invention, and do not create limitations, particularly as to the position, orientation, or use of the invention unless specifically set forth in the claims. Joinder references (e.g., attached, coupled, connected, joined, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily infer that two elements are directly connected and in fixed relation to each other.
In some instances, components are described with reference to “ends” having a particular characteristic and/or being connected with another part. However, those skilled in the art will recognize that the present invention is not limited to components which terminate immediately beyond their points of connection with other parts. Thus, the term “end” should be interpreted broadly, in a manner that includes areas adjacent, rearward, forward of, or otherwise near the terminus of a particular element, link, component, part, member or the like. In methodologies directly or indirectly set forth herein, various steps and operations are described in one possible order of operation, but those skilled in the art will recognize that steps and operations may be rearranged, replaced, or eliminated without necessarily departing from the spirit and scope of the present invention. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the spirit of the invention as defined in the appended claims.
This application is a continuation of U.S. patent application Ser. No. 13/872,296 filed on 29 Apr. 2013 and entitled “Handheld Showerhead with Mode Selector in Handle,” which is a divisional of U.S. patent application Ser. No. 13/270,060 filed on 10 Oct. 2011 and entitled “Handheld Showerhead with Fluid Passageways,” now U.S. Pat. No. 8,584,972, issued 19 Nov. 2013, which is a continuation of U.S. patent application Ser. No. 12/870,032 filed on 27 Aug. 2010 and entitled “Handheld Showerhead with Mode Control in Handle,” now U.S. Pat. No. 8,146,838, issued 3 Apr. 2012, which is a continuation of U.S. patent application Ser. No. 11/669,132 filed on 30 Jan. 2007 and entitled, “Handheld Showerhead with Mode Control and Method of Selecting a Handheld Showerhead Mode,” now U.S. Pat. No. 7,789,326, issued 7 Sep. 2010, which claims the benefit of priority pursuant to 35 U.S.C. §119(e) of U.S. Provisional Application No. 60/882,898 filed 29 Dec. 2006, entitled “Handheld Showerhead with Mode Control,” each of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
203094 | Wakeman | Apr 1878 | A |
204333 | Josias | May 1878 | A |
309349 | Hart | Dec 1884 | A |
428023 | Schoff | May 1890 | A |
432712 | Taylor | Jul 1890 | A |
445250 | Lawless | Jan 1891 | A |
453109 | Dreisorner | May 1891 | A |
486986 | Schinke | Nov 1892 | A |
566384 | Engelhart | Aug 1896 | A |
566410 | Schinke | Aug 1896 | A |
570405 | Jerguson et al. | Oct 1896 | A |
694888 | Pfluger | Mar 1902 | A |
800802 | Franquist | Oct 1905 | A |
832523 | Andersson | Oct 1906 | A |
835678 | Hammond | Nov 1906 | A |
845540 | Ferguson | Feb 1907 | A |
854094 | Klein | May 1907 | A |
926929 | Dusseau | Jul 1909 | A |
1001842 | Greenfield | Aug 1911 | A |
1003037 | Crowe | Sep 1911 | A |
1018143 | Vissering | Feb 1912 | A |
1046573 | Ellis | Dec 1912 | A |
1130520 | Kenney | Mar 1915 | A |
1203466 | Benson | Oct 1916 | A |
1217254 | Winslow | Feb 1917 | A |
1218895 | Porter | Mar 1917 | A |
1255577 | Berry | Feb 1918 | A |
1260181 | Garnero | Mar 1918 | A |
1276117 | Riebe | Aug 1918 | A |
1284099 | Harris | Nov 1918 | A |
1327428 | Gregory | Jan 1920 | A |
1451800 | Agner | Apr 1923 | A |
1459582 | Dubee | Jun 1923 | A |
1469528 | Owens | Oct 1923 | A |
1500921 | Bramson et al. | Jul 1924 | A |
1560789 | Johnson et al. | Nov 1925 | A |
1597477 | Panhorst | Aug 1926 | A |
1633531 | Keller | Jun 1927 | A |
1669949 | Reynolds | May 1928 | A |
1692394 | Sundh | Nov 1928 | A |
1695263 | Jacques | Dec 1928 | A |
1724147 | Russell | Aug 1929 | A |
1724161 | Wuesthoff | Aug 1929 | A |
1736160 | Jonsson | Nov 1929 | A |
1754127 | Srulowitz | Apr 1930 | A |
1758115 | Kelly | May 1930 | A |
1778658 | Baker | Oct 1930 | A |
1821274 | Plummer | Sep 1931 | A |
1849517 | Fraser | Mar 1932 | A |
1890156 | Konig | Dec 1932 | A |
1906575 | Goeriz | May 1933 | A |
1934553 | Mueller et al. | Nov 1933 | A |
1946207 | Haire | Feb 1934 | A |
2011446 | Judell | Aug 1935 | A |
2024930 | Judell | Dec 1935 | A |
2033467 | Groeniger | Mar 1936 | A |
2044445 | Price et al. | Jun 1936 | A |
2085854 | Hathaway et al. | Jul 1937 | A |
2096912 | Morris | Oct 1937 | A |
2117152 | Crosti | May 1938 | A |
D113439 | Reinecke | Feb 1939 | S |
2196783 | Shook | Apr 1940 | A |
2197667 | Shook | Apr 1940 | A |
2216149 | Weiss | Oct 1940 | A |
D126433 | Enthof | Apr 1941 | S |
2251192 | Krumsiek et al. | Jul 1941 | A |
2268263 | Newell et al. | Dec 1941 | A |
2285831 | Pennypacker | Jun 1942 | A |
2342757 | Roser | Feb 1944 | A |
2402741 | Draviner | Jun 1946 | A |
D147258 | Becker | Aug 1947 | S |
D152584 | Becker | Feb 1949 | S |
2467954 | Becker | Apr 1949 | A |
2518709 | Mosby, Jr. | Aug 1950 | A |
2546348 | Schuman | Mar 1951 | A |
2567642 | Penshaw | Sep 1951 | A |
2581129 | Muldoon | Jan 1952 | A |
D166073 | Dunkelberger | Mar 1952 | S |
2648762 | Dunkelberger | Aug 1953 | A |
2664271 | Arutunoff | Dec 1953 | A |
2671693 | Hyser et al. | Mar 1954 | A |
2676806 | Bachman | Apr 1954 | A |
2679575 | Haberstump | May 1954 | A |
2680358 | Zublin | Jun 1954 | A |
2726120 | Bletcher et al. | Dec 1955 | A |
2759765 | Pawley | Aug 1956 | A |
2776168 | Schweda | Jan 1957 | A |
2792847 | Spencer | May 1957 | A |
2873999 | Webb | Feb 1959 | A |
2930505 | Meyer | Mar 1960 | A |
2931672 | Merritt et al. | Apr 1960 | A |
2935265 | Richter | May 1960 | A |
2949242 | Blumberg et al. | Aug 1960 | A |
2957587 | Tobin | Oct 1960 | A |
2966311 | Davis | Dec 1960 | A |
D190295 | Becker | May 1961 | S |
2992437 | Nelson et al. | Jul 1961 | A |
3007648 | Fraser | Nov 1961 | A |
D192935 | Becker | May 1962 | S |
3032357 | Shames et al. | May 1962 | A |
3034809 | Greenberg | May 1962 | A |
3037799 | Mulac | Jun 1962 | A |
3081339 | Green et al. | Mar 1963 | A |
3092333 | Gaiotto | Jun 1963 | A |
3098508 | Gerdes | Jul 1963 | A |
3103723 | Becker | Sep 1963 | A |
3104815 | Schultz | Sep 1963 | A |
3104827 | Aghnides | Sep 1963 | A |
3111277 | Grimsley | Nov 1963 | A |
3112073 | Larson et al. | Nov 1963 | A |
3143857 | Eaton | Aug 1964 | A |
3196463 | Farneth | Jul 1965 | A |
3231200 | Heald | Jan 1966 | A |
3236545 | Parkes et al. | Feb 1966 | A |
3239152 | Bachli et al. | Mar 1966 | A |
3266059 | Stelle | Aug 1966 | A |
3272437 | Coson | Sep 1966 | A |
3273359 | Fregeolle | Sep 1966 | A |
3306634 | Groves et al. | Feb 1967 | A |
3323148 | Burnon | Jun 1967 | A |
3329967 | Martinez et al. | Jul 1967 | A |
3341132 | Parkison | Sep 1967 | A |
3342419 | Weese | Sep 1967 | A |
3344994 | Fife | Oct 1967 | A |
3363842 | Burns | Jan 1968 | A |
3383051 | Fiorentino | May 1968 | A |
3389925 | Gottschald | Jun 1968 | A |
3393311 | Dahl | Jul 1968 | A |
3393312 | Dahl | Jul 1968 | A |
3404410 | Sumida | Oct 1968 | A |
3492029 | French et al. | Jan 1970 | A |
3516611 | Piggott | Jun 1970 | A |
3546961 | Marton | Dec 1970 | A |
3550863 | McDermott | Dec 1970 | A |
3552436 | Stewart | Jan 1971 | A |
3565116 | Gabin | Feb 1971 | A |
3566917 | White | Mar 1971 | A |
3580513 | Martin | May 1971 | A |
3584822 | Oram | Jun 1971 | A |
3596835 | Smith et al. | Aug 1971 | A |
3612577 | Pope | Oct 1971 | A |
3637143 | Shames et al. | Jan 1972 | A |
3641333 | Gendron | Feb 1972 | A |
3647144 | Parkison et al. | Mar 1972 | A |
3663044 | Contreras et al. | May 1972 | A |
3669470 | Deurloo | Jun 1972 | A |
3672648 | Price | Jun 1972 | A |
3682392 | Kint | Aug 1972 | A |
3685745 | Peschcke-Koedt | Aug 1972 | A |
D224834 | Laudell | Sep 1972 | S |
3711029 | Bartlett | Jan 1973 | A |
3722798 | Bletcher et al. | Mar 1973 | A |
3722799 | Rauh | Mar 1973 | A |
3731084 | Trevorrow | May 1973 | A |
3754779 | Peress | Aug 1973 | A |
D228622 | Juhlin | Oct 1973 | S |
3762648 | Deines et al. | Oct 1973 | A |
3768735 | Ward | Oct 1973 | A |
3786995 | Manoogian et al. | Jan 1974 | A |
3801019 | Trenary et al. | Apr 1974 | A |
3810580 | Rauh | May 1974 | A |
3826454 | Zieger | Jul 1974 | A |
3840734 | Oram | Oct 1974 | A |
3845291 | Portyrata | Oct 1974 | A |
3860271 | Rodgers | Jan 1975 | A |
3861719 | Hand | Jan 1975 | A |
3865310 | Elkins et al. | Feb 1975 | A |
3869151 | Fletcher et al. | Mar 1975 | A |
3887136 | Anderson | Jun 1975 | A |
3896845 | Parker | Jul 1975 | A |
3902671 | Symmons | Sep 1975 | A |
3910277 | Zimmer | Oct 1975 | A |
D237708 | Grohe | Nov 1975 | S |
3929164 | Richter | Dec 1975 | A |
3929287 | Givler et al. | Dec 1975 | A |
3958756 | Trenary et al. | May 1976 | A |
D240322 | Staub | Jun 1976 | S |
3963179 | Tomaro | Jun 1976 | A |
3967783 | Halsted et al. | Jul 1976 | A |
3979096 | Zieger | Sep 1976 | A |
3997116 | Moen | Dec 1976 | A |
3998390 | Peterson et al. | Dec 1976 | A |
3999714 | Lang | Dec 1976 | A |
4005880 | Anderson et al. | Feb 1977 | A |
4006920 | Sadler et al. | Feb 1977 | A |
4023782 | Eifer | May 1977 | A |
4042984 | Butler | Aug 1977 | A |
4045054 | Arnold | Aug 1977 | A |
D245858 | Grube | Sep 1977 | S |
D245860 | Grube | Sep 1977 | S |
4068801 | Leutheuser | Jan 1978 | A |
4081135 | Tomaro | Mar 1978 | A |
4084271 | Ginsberg | Apr 1978 | A |
4091998 | Peterson | May 1978 | A |
D249356 | Nagy | Sep 1978 | S |
4117979 | Lagarelli et al. | Oct 1978 | A |
4129257 | Eggert | Dec 1978 | A |
4130120 | Kohler, Jr. | Dec 1978 | A |
4131233 | Koenig | Dec 1978 | A |
4133486 | Fanella | Jan 1979 | A |
4135549 | Baker | Jan 1979 | A |
D251045 | Grube | Feb 1979 | S |
4141502 | Grohe | Feb 1979 | A |
4151955 | Stouffer | May 1979 | A |
4151957 | Gecewicz et al. | May 1979 | A |
4162801 | Kresky et al. | Jul 1979 | A |
4165837 | Rundzaitis | Aug 1979 | A |
4167196 | Morris | Sep 1979 | A |
4174822 | Larsson | Nov 1979 | A |
4185781 | O'Brien | Jan 1980 | A |
4190207 | Fienhold et al. | Feb 1980 | A |
4191332 | De Langis et al. | Mar 1980 | A |
4203550 | On | May 1980 | A |
4209132 | Kwan | Jun 1980 | A |
D255626 | Grube | Jul 1980 | S |
4219160 | Allred, Jr. | Aug 1980 | A |
4221338 | Shames et al. | Sep 1980 | A |
4239409 | Osrwo | Dec 1980 | A |
4243253 | Rogers, Jr. | Jan 1981 | A |
4244526 | Arth | Jan 1981 | A |
D258677 | Larsson | Mar 1981 | S |
4254914 | Shames et al. | Mar 1981 | A |
4258414 | Sokol | Mar 1981 | A |
4272022 | Evans | Jun 1981 | A |
4274400 | Baus | Jun 1981 | A |
4275843 | Moen | Jun 1981 | A |
4282612 | King | Aug 1981 | A |
D261300 | Klose | Oct 1981 | S |
D261417 | Klose | Oct 1981 | S |
4303201 | Elkins et al. | Dec 1981 | A |
4319608 | Raikov et al. | Mar 1982 | A |
4324364 | Diller | Apr 1982 | A |
4330089 | Finkbeiner | May 1982 | A |
D266212 | Haug et al. | Sep 1982 | S |
4350298 | Tada | Sep 1982 | A |
4353508 | Butterfield et al. | Oct 1982 | A |
4358056 | Greenhut et al. | Nov 1982 | A |
D267582 | Mackay et al. | Jan 1983 | S |
D268359 | Klose | Mar 1983 | S |
D268442 | Darmon | Mar 1983 | S |
D268611 | Klose | Apr 1983 | S |
4383554 | Merriman | May 1983 | A |
4396797 | Sakuragi et al. | Aug 1983 | A |
4398669 | Fienhold | Aug 1983 | A |
4425965 | Bayh, III et al. | Jan 1984 | A |
4432392 | Paley | Feb 1984 | A |
D274457 | Haug | Jun 1984 | S |
4461052 | Mostul | Jul 1984 | A |
4465308 | Martini | Aug 1984 | A |
4467964 | Kaeser | Aug 1984 | A |
4495550 | Visciano | Jan 1985 | A |
4527745 | Butterfield et al. | Jul 1985 | A |
4540202 | Amphoux et al. | Sep 1985 | A |
4545081 | Nestor et al. | Oct 1985 | A |
4553775 | Halling | Nov 1985 | A |
D281820 | Oba et al. | Dec 1985 | S |
4561593 | Cammack et al. | Dec 1985 | A |
4564889 | Bolson | Jan 1986 | A |
4571003 | Roling et al. | Feb 1986 | A |
4572232 | Gruber | Feb 1986 | A |
D283645 | Tanaka | Apr 1986 | S |
4587991 | Chorkey | May 1986 | A |
4588130 | Trenary et al. | May 1986 | A |
4598866 | Cammack et al. | Jul 1986 | A |
4614303 | Moseley, Jr. et al. | Sep 1986 | A |
4616298 | Bolson | Oct 1986 | A |
4618100 | White et al. | Oct 1986 | A |
4629124 | Gruber | Dec 1986 | A |
4629125 | Liu | Dec 1986 | A |
4643463 | Halling et al. | Feb 1987 | A |
4645244 | Curtis | Feb 1987 | A |
RE32386 | Hunter | Mar 1987 | E |
4650120 | Kress | Mar 1987 | A |
4650470 | Epstein | Mar 1987 | A |
4652025 | Conroy, Sr. | Mar 1987 | A |
4654900 | McGhee | Apr 1987 | A |
4657185 | Rundzaitis | Apr 1987 | A |
4669666 | Finkbeiner | Jun 1987 | A |
4669757 | Bartholomew | Jun 1987 | A |
4674687 | Smith et al. | Jun 1987 | A |
4683917 | Bartholomew | Aug 1987 | A |
4703893 | Gruber | Nov 1987 | A |
4717180 | Roman | Jan 1988 | A |
4719654 | Blessing | Jan 1988 | A |
4733337 | Bieberstein | Mar 1988 | A |
D295437 | Fabian | Apr 1988 | S |
4739801 | Kimura et al. | Apr 1988 | A |
4749126 | Kessener et al. | Jun 1988 | A |
D296582 | Haug et al. | Jul 1988 | S |
4754928 | Rogers et al. | Jul 1988 | A |
D297160 | Robbins | Aug 1988 | S |
4764047 | Johnston et al. | Aug 1988 | A |
4778104 | Fisher | Oct 1988 | A |
4787591 | Villacorta | Nov 1988 | A |
4790294 | Allred, III et al. | Dec 1988 | A |
4801091 | Sandvik | Jan 1989 | A |
4809369 | Bowden | Mar 1989 | A |
4839599 | Fischer | Jun 1989 | A |
4841590 | Terry | Jun 1989 | A |
4842059 | Tomek | Jun 1989 | A |
D302325 | Charet et al. | Jul 1989 | S |
4850616 | Pava | Jul 1989 | A |
4854499 | Neuman | Aug 1989 | A |
4856822 | Parker | Aug 1989 | A |
4865362 | Holden | Sep 1989 | A |
D303830 | Ramsey et al. | Oct 1989 | S |
4871196 | Kingsford | Oct 1989 | A |
4896658 | Yonekubo et al. | Jan 1990 | A |
D306351 | Charet et al. | Feb 1990 | S |
4901927 | Valdivia | Feb 1990 | A |
4903178 | Englot et al. | Feb 1990 | A |
4903897 | Hayes | Feb 1990 | A |
4903922 | Harris, III | Feb 1990 | A |
4907137 | Schladitz et al. | Mar 1990 | A |
4907744 | Jousson | Mar 1990 | A |
4909435 | Kidouchi et al. | Mar 1990 | A |
4914759 | Goff | Apr 1990 | A |
4946202 | Perricone | Aug 1990 | A |
4951329 | Shaw | Aug 1990 | A |
4953585 | Rollini et al. | Sep 1990 | A |
4964573 | Lipski | Oct 1990 | A |
4972048 | Martin | Nov 1990 | A |
D313267 | Lenci et al. | Dec 1990 | S |
4976460 | Newcombe et al. | Dec 1990 | A |
D314246 | Bache | Jan 1991 | S |
D315191 | Mikol | Mar 1991 | S |
4998673 | Pilolla | Mar 1991 | A |
5004158 | Halem et al. | Apr 1991 | A |
D317348 | Geneve et al. | Jun 1991 | S |
5020570 | Cotter | Jun 1991 | A |
5022103 | Faist | Jun 1991 | A |
5032015 | Christianson | Jul 1991 | A |
5033528 | Volcani | Jul 1991 | A |
5033897 | Chen | Jul 1991 | A |
D319294 | Kohler, Jr. et al. | Aug 1991 | S |
D320064 | Presman | Sep 1991 | S |
5046764 | Kimura et al. | Sep 1991 | A |
D321062 | Bonbright | Oct 1991 | S |
5058804 | Yonekubo et al. | Oct 1991 | A |
D322119 | Haug et al. | Dec 1991 | S |
D322681 | Yuen | Dec 1991 | S |
5070552 | Gentry et al. | Dec 1991 | A |
D323545 | Ward | Jan 1992 | S |
5082019 | Tetrault | Jan 1992 | A |
5086878 | Swift | Feb 1992 | A |
5090624 | Rogers | Feb 1992 | A |
5100055 | Rokitenetz et al. | Mar 1992 | A |
D325769 | Haug et al. | Apr 1992 | S |
D325770 | Haug et al. | Apr 1992 | S |
5103384 | Drohan | Apr 1992 | A |
D326311 | Lenci et al. | May 1992 | S |
D327115 | Rogers | Jun 1992 | S |
5121511 | Sakamoto et al. | Jun 1992 | A |
D327729 | Rogers | Jul 1992 | S |
5127580 | Fu-I | Jul 1992 | A |
5134251 | Martin | Jul 1992 | A |
D328944 | Robbins | Aug 1992 | S |
5141016 | Nowicki | Aug 1992 | A |
D329504 | Yuen | Sep 1992 | S |
5143300 | Cutler | Sep 1992 | A |
5145114 | Monch | Sep 1992 | A |
5148556 | Bottoms et al. | Sep 1992 | A |
D330068 | Haug et al. | Oct 1992 | S |
D330408 | Thacker | Oct 1992 | S |
D330409 | Raffo | Oct 1992 | S |
5153976 | Benchaar et al. | Oct 1992 | A |
5154355 | Gonzalez | Oct 1992 | A |
5154483 | Zeller | Oct 1992 | A |
5161567 | Humpert | Nov 1992 | A |
5163752 | Copeland et al. | Nov 1992 | A |
5171429 | Yasuo | Dec 1992 | A |
5172860 | Yuch | Dec 1992 | A |
5172862 | Heimann et al. | Dec 1992 | A |
5172866 | Ward | Dec 1992 | A |
D332303 | Klose | Jan 1993 | S |
D332994 | Huen | Feb 1993 | S |
D333339 | Klose | Feb 1993 | S |
5197767 | Kimura et al. | Mar 1993 | A |
D334794 | Klose | Apr 1993 | S |
D335171 | Lenci et al. | Apr 1993 | S |
5201468 | Freier et al. | Apr 1993 | A |
5206963 | Wiens | May 1993 | A |
5207499 | Vajda et al. | May 1993 | A |
5213267 | Heimann et al. | May 1993 | A |
5220697 | Birchfield | Jun 1993 | A |
D337839 | Zeller | Jul 1993 | S |
5228625 | Grassberger | Jul 1993 | A |
5230106 | Henkin et al. | Jul 1993 | A |
D338542 | Yuen | Aug 1993 | S |
5232162 | Chih | Aug 1993 | A |
D339492 | Klose | Sep 1993 | S |
D339627 | Klose | Sep 1993 | S |
D339848 | Gottwald | Sep 1993 | S |
5246169 | Heimann et al. | Sep 1993 | A |
5246301 | Hirasawa | Sep 1993 | A |
D340376 | Klose | Oct 1993 | S |
5253670 | Perrott | Oct 1993 | A |
5253807 | Newbegin | Oct 1993 | A |
5254809 | Martin | Oct 1993 | A |
D341007 | Haug et al. | Nov 1993 | S |
D341191 | Klose | Nov 1993 | S |
D341220 | Eagan | Nov 1993 | S |
5263646 | McCauley | Nov 1993 | A |
5265833 | Heimann et al. | Nov 1993 | A |
5268826 | Greene | Dec 1993 | A |
5276596 | Krenzel | Jan 1994 | A |
5277391 | Haug et al. | Jan 1994 | A |
5286071 | Storage | Feb 1994 | A |
5288110 | Allread | Feb 1994 | A |
5294054 | Benedict et al. | Mar 1994 | A |
5297735 | Heimann et al. | Mar 1994 | A |
5297739 | Allen | Mar 1994 | A |
D345811 | Van Deursen et al. | Apr 1994 | S |
D346426 | Warshawsky | Apr 1994 | S |
D346428 | Warshawsky | Apr 1994 | S |
D346430 | Warshawsky | Apr 1994 | S |
D347262 | Black et al. | May 1994 | S |
D347265 | Gottwald | May 1994 | S |
5316216 | Cammack et al. | May 1994 | A |
D348720 | Haug et al. | Jul 1994 | S |
5329650 | Zaccai et al. | Jul 1994 | A |
D349947 | Hing-Wah | Aug 1994 | S |
5333787 | Smith et al. | Aug 1994 | A |
5333789 | Garneys | Aug 1994 | A |
5340064 | Heimann et al. | Aug 1994 | A |
5340165 | Sheppard | Aug 1994 | A |
D350808 | Warshawsky | Sep 1994 | S |
5344080 | Matsui | Sep 1994 | A |
5349987 | Shieh | Sep 1994 | A |
5356076 | Bishop | Oct 1994 | A |
5356077 | Shames | Oct 1994 | A |
D352092 | Warshawsky | Nov 1994 | S |
D352347 | Dannenberg | Nov 1994 | S |
D352766 | Hill et al. | Nov 1994 | S |
5368235 | Drozdoff et al. | Nov 1994 | A |
5369556 | Zeller | Nov 1994 | A |
5370427 | Hoelle et al. | Dec 1994 | A |
5385500 | Schmidt | Jan 1995 | A |
D355242 | Warshawsky | Feb 1995 | S |
D355703 | Duell | Feb 1995 | S |
D356626 | Wang | Mar 1995 | S |
5397064 | Heitzman | Mar 1995 | A |
5398872 | Joubran | Mar 1995 | A |
5398977 | Berger et al. | Mar 1995 | A |
5402812 | Moineau et al. | Apr 1995 | A |
5405089 | Heimann et al. | Apr 1995 | A |
5414879 | Hiraishi et al. | May 1995 | A |
5423348 | Jezek et al. | Jun 1995 | A |
5433384 | Chan et al. | Jul 1995 | A |
D361399 | Carbone et al. | Aug 1995 | S |
D361623 | Huen | Aug 1995 | S |
5441075 | Clare | Aug 1995 | A |
5449206 | Lockwood | Sep 1995 | A |
D363360 | Santarsiero | Oct 1995 | S |
5454809 | Janssen | Oct 1995 | A |
5468057 | Megerle et al. | Nov 1995 | A |
D364935 | deBlois | Dec 1995 | S |
D365625 | Bova | Dec 1995 | S |
D365646 | deBlois | Dec 1995 | S |
5476225 | Chan | Dec 1995 | A |
D366309 | Huang | Jan 1996 | S |
D366707 | Kaiser | Jan 1996 | S |
D366708 | Santarsiero | Jan 1996 | S |
D366709 | Szymanski | Jan 1996 | S |
D366710 | Szymanski | Jan 1996 | S |
5481765 | Wang | Jan 1996 | A |
D366948 | Carbone | Feb 1996 | S |
D367315 | Andrus | Feb 1996 | S |
D367333 | Swyst | Feb 1996 | S |
D367696 | Andrus | Mar 1996 | S |
D367934 | Carbone | Mar 1996 | S |
D368146 | Carbone | Mar 1996 | S |
D368317 | Swyst | Mar 1996 | S |
5499767 | Morand | Mar 1996 | A |
D368539 | Carbone et al. | Apr 1996 | S |
D368540 | Santarsiero | Apr 1996 | S |
D368541 | Kaiser et al. | Apr 1996 | S |
D368542 | deBlois et al. | Apr 1996 | S |
D369204 | Andrus | Apr 1996 | S |
D369205 | Andrus | Apr 1996 | S |
5507436 | Ruttenberg | Apr 1996 | A |
D369873 | deBlois et al. | May 1996 | S |
D369874 | Santarsiero | May 1996 | S |
D369875 | Carbone | May 1996 | S |
D370052 | Chan et al. | May 1996 | S |
D370250 | Fawcett et al. | May 1996 | S |
D370277 | Kaiser | May 1996 | S |
D370278 | Nolan | May 1996 | S |
D370279 | deBlois | May 1996 | S |
D370280 | Kaiser | May 1996 | S |
D370281 | Johnstone et al. | May 1996 | S |
5517392 | Rousso et al. | May 1996 | A |
5521803 | Eckert et al. | May 1996 | A |
D370542 | Santarsiero | Jun 1996 | S |
D370735 | deBlois | Jun 1996 | S |
D370987 | Santarsiero | Jun 1996 | S |
D370988 | Santarsiero | Jun 1996 | S |
D371448 | Santarsiero | Jul 1996 | S |
D371618 | Nolan | Jul 1996 | S |
D371619 | Szymanski | Jul 1996 | S |
D371856 | Carbone | Jul 1996 | S |
D372318 | Szymanski | Jul 1996 | S |
D372319 | Carbone | Jul 1996 | S |
5531625 | Zhong | Jul 1996 | A |
5539624 | Dougherty | Jul 1996 | A |
D372548 | Carbone | Aug 1996 | S |
D372998 | Carbone | Aug 1996 | S |
D373210 | Santarsiero | Aug 1996 | S |
5547374 | Coleman | Aug 1996 | A |
D373434 | Nolan | Sep 1996 | S |
D373435 | Nolan | Sep 1996 | S |
D373645 | Johnstone et al. | Sep 1996 | S |
D373646 | Szymanski et al. | Sep 1996 | S |
D373647 | Kaiser | Sep 1996 | S |
D373648 | Kaiser | Sep 1996 | S |
D373649 | Carbone | Sep 1996 | S |
D373651 | Szymanski | Sep 1996 | S |
D373652 | Kaiser | Sep 1996 | S |
5551637 | Lo | Sep 1996 | A |
5552973 | Hsu | Sep 1996 | A |
5558278 | Gallorini | Sep 1996 | A |
D374271 | Fleischmann | Oct 1996 | S |
D374297 | Kaiser | Oct 1996 | S |
D374298 | Swyst | Oct 1996 | S |
D374299 | Carbone | Oct 1996 | S |
D374493 | Szymanski | Oct 1996 | S |
D374494 | Santarsiero | Oct 1996 | S |
D374732 | Kaiser | Oct 1996 | S |
D374733 | Santasiero | Oct 1996 | S |
5560548 | Mueller et al. | Oct 1996 | A |
5567115 | Carbone | Oct 1996 | A |
D375541 | Michaluk | Nov 1996 | S |
5577664 | Heitzman | Nov 1996 | A |
D376217 | Kaiser | Dec 1996 | S |
D376860 | Santarsiero | Dec 1996 | S |
D376861 | Johnstone et al. | Dec 1996 | S |
D376862 | Carbone | Dec 1996 | S |
5605173 | Arnaud | Feb 1997 | A |
D378401 | Neufeld et al. | Mar 1997 | S |
5613638 | Blessing | Mar 1997 | A |
5613639 | Storm et al. | Mar 1997 | A |
5615837 | Roman | Apr 1997 | A |
5624074 | Parisi | Apr 1997 | A |
5624498 | Lee et al. | Apr 1997 | A |
D379212 | Chan | May 1997 | S |
D379404 | Spelts | May 1997 | S |
5632049 | Chen | May 1997 | A |
D381405 | Waidele et al. | Jul 1997 | S |
D381737 | Chan | Jul 1997 | S |
D382936 | Shfaram | Aug 1997 | S |
5653260 | Huber | Aug 1997 | A |
5667146 | Pimentel et al. | Sep 1997 | A |
D385332 | Andrus | Oct 1997 | S |
D385333 | Caroen et al. | Oct 1997 | S |
D385334 | Caroen et al. | Oct 1997 | S |
D385616 | Dow et al. | Oct 1997 | S |
D385947 | Dow et al. | Nov 1997 | S |
D387230 | von Buelow et al. | Dec 1997 | S |
5697557 | Blessing et al. | Dec 1997 | A |
5699964 | Bergmann et al. | Dec 1997 | A |
5702057 | Huber | Dec 1997 | A |
D389558 | Andrus | Jan 1998 | S |
5704080 | Kuhne | Jan 1998 | A |
5707011 | Bosio | Jan 1998 | A |
5718380 | Schorn et al. | Feb 1998 | A |
D392369 | Chan | Mar 1998 | S |
5730361 | Thonnes | Mar 1998 | A |
5730362 | Cordes | Mar 1998 | A |
5730363 | Kress | Mar 1998 | A |
5742961 | Casperson et al. | Apr 1998 | A |
D394490 | Andrus et al. | May 1998 | S |
5746375 | Guo | May 1998 | A |
5749552 | Fan | May 1998 | A |
5749602 | Delaney et al. | May 1998 | A |
D394899 | Caroen et al. | Jun 1998 | S |
D395074 | Neibrook et al. | Jun 1998 | S |
D395075 | Kolada | Jun 1998 | S |
D395142 | Neibrook et al. | Jun 1998 | S |
5764760 | Grandbert et al. | Jun 1998 | A |
5765760 | Kuo | Jun 1998 | A |
5769802 | Wang | Jun 1998 | A |
5772120 | Huber | Jun 1998 | A |
5778939 | Hok-Yin | Jul 1998 | A |
5788157 | Kress | Aug 1998 | A |
D398370 | Purdy | Sep 1998 | S |
5806771 | Loschelder et al. | Sep 1998 | A |
5819791 | Chronister et al. | Oct 1998 | A |
5820574 | Henkin et al. | Oct 1998 | A |
5823431 | Pierce | Oct 1998 | A |
5823442 | Guo | Oct 1998 | A |
5826803 | Cooper | Oct 1998 | A |
5833138 | Crane et al. | Nov 1998 | A |
5839666 | Heimann et al. | Nov 1998 | A |
D402350 | Andrus | Dec 1998 | S |
D403754 | Gottwald | Jan 1999 | S |
D404116 | Bosio | Jan 1999 | S |
5855348 | Fornara | Jan 1999 | A |
5860599 | Lin | Jan 1999 | A |
5862543 | Reynoso et al. | Jan 1999 | A |
5862985 | Neibrook et al. | Jan 1999 | A |
D405502 | Tse | Feb 1999 | S |
5865375 | Hsu | Feb 1999 | A |
5865378 | Hollinshead et al. | Feb 1999 | A |
5873647 | Kurtz et al. | Feb 1999 | A |
D408893 | Tse | Apr 1999 | S |
D409276 | Ratzlaff | May 1999 | S |
D410276 | Ben-Tsur | May 1999 | S |
5918809 | Simmons | Jul 1999 | A |
5918811 | Denham et al. | Jul 1999 | A |
D413157 | Ratzlaff | Aug 1999 | S |
5937905 | Santos | Aug 1999 | A |
5938123 | Heitzman | Aug 1999 | A |
5941462 | Sandor | Aug 1999 | A |
5947388 | Woodruff | Sep 1999 | A |
D415247 | Haverstraw et al. | Oct 1999 | S |
5961046 | Joubran | Oct 1999 | A |
5967417 | Mantel | Oct 1999 | A |
5979776 | Williams | Nov 1999 | A |
5992762 | Wang | Nov 1999 | A |
D418200 | Ben-Tsur | Dec 1999 | S |
5997047 | Pimentel et al. | Dec 1999 | A |
6003165 | Loyd | Dec 1999 | A |
D418902 | Haverstraw et al. | Jan 2000 | S |
D418903 | Haverstraw et al. | Jan 2000 | S |
D418904 | Milrud | Jan 2000 | S |
6016975 | Amaduzzi | Jan 2000 | A |
D421099 | Mullenmeister | Feb 2000 | S |
6021960 | Kehat | Feb 2000 | A |
D422053 | Brenner et al. | Mar 2000 | S |
6042027 | Sandvik | Mar 2000 | A |
6042155 | Lockwood | Mar 2000 | A |
D422336 | Haverstraw et al. | Apr 2000 | S |
D422337 | Chan | Apr 2000 | S |
D423083 | Haug et al. | Apr 2000 | S |
D423110 | Cipkowski | Apr 2000 | S |
D424160 | Haug et al. | May 2000 | S |
D424161 | Haug et al. | May 2000 | S |
D424162 | Haug et al. | May 2000 | S |
D424163 | Haug et al. | May 2000 | S |
D426290 | Haug et al. | Jun 2000 | S |
D427661 | Haverstraw et al. | Jul 2000 | S |
D428110 | Haug et al. | Jul 2000 | S |
D428125 | Chan | Jul 2000 | S |
6085780 | Morris | Jul 2000 | A |
D430267 | Milrud et al. | Aug 2000 | S |
6095801 | Spiewak | Aug 2000 | A |
D430643 | Tse | Sep 2000 | S |
6113002 | Finkbeiner | Sep 2000 | A |
6123272 | Havican et al. | Sep 2000 | A |
6123308 | Faisst | Sep 2000 | A |
D432624 | Chan | Oct 2000 | S |
D432625 | Chan | Oct 2000 | S |
D433096 | Tse | Oct 2000 | S |
D433097 | Tse | Oct 2000 | S |
6126091 | Heitzman | Oct 2000 | A |
6126290 | Veigel | Oct 2000 | A |
D434109 | Ko | Nov 2000 | S |
6164569 | Hollinshead et al. | Dec 2000 | A |
6164570 | Smeltzer | Dec 2000 | A |
D435889 | Ben-Tsur et al. | Jan 2001 | S |
D439305 | Slothower | Mar 2001 | S |
6199580 | Morris | Mar 2001 | B1 |
6202679 | Titus | Mar 2001 | B1 |
D440276 | Slothower | Apr 2001 | S |
D440277 | Slothower | Apr 2001 | S |
D440278 | Slothower | Apr 2001 | S |
D441059 | Fleischmann | Apr 2001 | S |
6209799 | Finkbeiner | Apr 2001 | B1 |
D443025 | Kollmann et al. | May 2001 | S |
D443026 | Kollmann et al. | May 2001 | S |
D443027 | Kollmann et al. | May 2001 | S |
D443029 | Kollmann et al. | May 2001 | S |
6223998 | Heitzman | May 2001 | B1 |
6230984 | Jager | May 2001 | B1 |
6230988 | Chao et al. | May 2001 | B1 |
6230989 | Haverstraw et al. | May 2001 | B1 |
D443335 | Andrus | Jun 2001 | S |
D443336 | Kollmann et al. | Jun 2001 | S |
D443347 | Gottwald | Jun 2001 | S |
6241166 | Overington et al. | Jun 2001 | B1 |
6250572 | Chen | Jun 2001 | B1 |
D444865 | Gottwald | Jul 2001 | S |
D445871 | Fan | Jul 2001 | S |
6254014 | Clearman et al. | Jul 2001 | B1 |
6270278 | Mauro | Aug 2001 | B1 |
6276004 | Bertrand et al. | Aug 2001 | B1 |
6283447 | Fleet | Sep 2001 | B1 |
6286764 | Garvey et al. | Sep 2001 | B1 |
D449673 | Kollmann et al. | Oct 2001 | S |
D450370 | Wales et al. | Nov 2001 | S |
D450805 | Lindholm et al. | Nov 2001 | S |
D450806 | Lindholm et al. | Nov 2001 | S |
D450807 | Lindholm et al. | Nov 2001 | S |
D451169 | Lindholm et al. | Nov 2001 | S |
D451170 | Lindholm et al. | Nov 2001 | S |
D451171 | Lindholm et al. | Nov 2001 | S |
D451172 | Lindholm et al. | Nov 2001 | S |
6321777 | Wu | Nov 2001 | B1 |
6322006 | Guo | Nov 2001 | B1 |
D451583 | Lindholm et al. | Dec 2001 | S |
D451980 | Lindholm et al. | Dec 2001 | S |
D452553 | Lindholm et al. | Dec 2001 | S |
D452725 | Lindholm et al. | Jan 2002 | S |
D452897 | Gillette et al. | Jan 2002 | S |
6336764 | Liu | Jan 2002 | B1 |
6338170 | De Simone | Jan 2002 | B1 |
D453369 | Lobermeier | Feb 2002 | S |
D453370 | Lindholm et al. | Feb 2002 | S |
D453551 | Lindholm et al. | Feb 2002 | S |
6349735 | Gul | Feb 2002 | B2 |
D454617 | Curbbun et al. | Mar 2002 | S |
D454938 | Lord | Mar 2002 | S |
6375342 | Koren et al. | Apr 2002 | B1 |
D457937 | Lindholm et al. | May 2002 | S |
6382531 | Tracy | May 2002 | B1 |
D458348 | Mullenmeister | Jun 2002 | S |
6412711 | Fan | Jul 2002 | B1 |
D461224 | Lobermeier | Aug 2002 | S |
D461878 | Green et al. | Aug 2002 | S |
6450425 | Chen | Sep 2002 | B1 |
6454186 | Haverstraw et al. | Sep 2002 | B2 |
6463658 | Larsson | Oct 2002 | B1 |
6464265 | Mikol | Oct 2002 | B1 |
D465552 | Tse | Nov 2002 | S |
D465553 | Singtoroj | Nov 2002 | S |
6484952 | Koren | Nov 2002 | B2 |
D468800 | Tse | Jan 2003 | S |
D469165 | Lim | Jan 2003 | S |
6502796 | Wales | Jan 2003 | B1 |
6508415 | Wang | Jan 2003 | B2 |
6511001 | Huang | Jan 2003 | B1 |
D470219 | Schweitzer | Feb 2003 | S |
6516070 | Macey | Feb 2003 | B2 |
D471253 | Tse | Mar 2003 | S |
D471953 | Colligan et al. | Mar 2003 | S |
6533194 | Marsh et al. | Mar 2003 | B2 |
6537455 | Farley | Mar 2003 | B2 |
D472958 | Ouyoung | Apr 2003 | S |
6550697 | Lai | Apr 2003 | B2 |
6585174 | Huang | Jul 2003 | B1 |
6595439 | Chen | Jul 2003 | B1 |
6607148 | Marsh et al. | Aug 2003 | B1 |
6611971 | Antoniello et al. | Sep 2003 | B1 |
6637676 | Zieger et al. | Oct 2003 | B2 |
6641057 | Thomas et al. | Nov 2003 | B2 |
D483837 | Fan | Dec 2003 | S |
6659117 | Gilmore | Dec 2003 | B2 |
6659372 | Marsh et al. | Dec 2003 | B2 |
D485887 | Luettgen et al. | Jan 2004 | S |
D486888 | Lobermeier | Feb 2004 | S |
6691338 | Zieger | Feb 2004 | B2 |
6691933 | Bosio | Feb 2004 | B1 |
D487301 | Haug et al. | Mar 2004 | S |
D487498 | Blomstrom | Mar 2004 | S |
6701953 | Agosta | Mar 2004 | B2 |
6715699 | Greenberg et al. | Apr 2004 | B1 |
6719218 | Cool et al. | Apr 2004 | B2 |
D489798 | Hunt | May 2004 | S |
D490498 | Golichowski | May 2004 | S |
6736336 | Wong | May 2004 | B2 |
6739523 | Haverstraw et al. | May 2004 | B2 |
6739527 | Chung | May 2004 | B1 |
D492004 | Haug et al. | Jun 2004 | S |
D492007 | Kollmann et al. | Jun 2004 | S |
6742725 | Fan | Jun 2004 | B1 |
D493208 | Lin | Jul 2004 | S |
D493864 | Haug et al. | Aug 2004 | S |
D494655 | Lin | Aug 2004 | S |
D494661 | Zieger et al. | Aug 2004 | S |
D495027 | Mazzola | Aug 2004 | S |
6776357 | Naito | Aug 2004 | B1 |
6789751 | Fan | Sep 2004 | B1 |
D496987 | Glunk | Oct 2004 | S |
D497974 | Haug et al. | Nov 2004 | S |
D498514 | Haug et al. | Nov 2004 | S |
D500121 | Blomstrom | Dec 2004 | S |
6827039 | Nelson | Dec 2004 | B1 |
D500549 | Blomstrom | Jan 2005 | S |
D501242 | Blomstrom | Jan 2005 | S |
D502760 | Zieger et al. | Mar 2005 | S |
D502761 | Zieger et al. | Mar 2005 | S |
D503211 | Lin | Mar 2005 | S |
D503463 | Hughes et al. | Mar 2005 | S |
6863227 | Wollenberg et al. | Mar 2005 | B2 |
6869030 | Blessing et al. | Mar 2005 | B2 |
D503774 | Zieger | Apr 2005 | S |
D503775 | Zieger | Apr 2005 | S |
D503966 | Zieger | Apr 2005 | S |
6899292 | Titinet | May 2005 | B2 |
D506243 | Wu | Jun 2005 | S |
D507037 | Wu | Jul 2005 | S |
6935581 | Titinet | Aug 2005 | B2 |
D509280 | Bailey et al. | Sep 2005 | S |
D509563 | Bailey et al. | Sep 2005 | S |
D510123 | Tsai | Sep 2005 | S |
D511809 | Haug et al. | Nov 2005 | S |
D512119 | Haug et al. | Nov 2005 | S |
6981661 | Chen | Jan 2006 | B1 |
D516169 | Wu | Feb 2006 | S |
7000854 | Malek et al. | Feb 2006 | B2 |
7004409 | Okubo | Feb 2006 | B2 |
7004410 | Li | Feb 2006 | B2 |
D520109 | Wu | May 2006 | S |
7040554 | Drennow | May 2006 | B2 |
7048210 | Clark | May 2006 | B2 |
7055767 | Ko | Jun 2006 | B1 |
7070125 | Williams et al. | Jul 2006 | B2 |
7077342 | Lee | Jul 2006 | B2 |
D527440 | Macan | Aug 2006 | S |
7093780 | Chung | Aug 2006 | B1 |
7097122 | Farley | Aug 2006 | B1 |
D527790 | Hughes et al. | Sep 2006 | S |
D528631 | Gillette et al. | Sep 2006 | S |
7100845 | Hsieh | Sep 2006 | B1 |
7111795 | Thong | Sep 2006 | B2 |
7111798 | Thomas et al. | Sep 2006 | B2 |
D530389 | Genslak et al. | Oct 2006 | S |
D530392 | Tse | Oct 2006 | S |
D531259 | Hsieh | Oct 2006 | S |
7114666 | Luettgen et al. | Oct 2006 | B2 |
D533253 | Luettgen et al. | Dec 2006 | S |
D534239 | Dingler et al. | Dec 2006 | S |
D535354 | Wu | Jan 2007 | S |
D536060 | Sadler | Jan 2007 | S |
7156325 | Chen | Jan 2007 | B1 |
7182043 | Nelson | Feb 2007 | B1 |
D538391 | Mazzola | Mar 2007 | S |
D540424 | Kirar | Apr 2007 | S |
D540425 | Endo et al. | Apr 2007 | S |
D540426 | Cropelli | Apr 2007 | S |
D540427 | Bouroullec et al. | Apr 2007 | S |
D542391 | Gilbert | May 2007 | S |
D542393 | Haug et al. | May 2007 | S |
D544573 | Dingler et al. | Jun 2007 | S |
7229031 | Schmidt | Jun 2007 | B2 |
7243863 | Glunk | Jul 2007 | B2 |
7246760 | Marty et al. | Jul 2007 | B2 |
D552713 | Rexach | Oct 2007 | S |
7278591 | Clearman et al. | Oct 2007 | B2 |
D556295 | Genord et al. | Nov 2007 | S |
7299510 | Tsai | Nov 2007 | B2 |
D557763 | Schonherr et al. | Dec 2007 | S |
D557764 | Schonherr et al. | Dec 2007 | S |
D557765 | Schonherr et al. | Dec 2007 | S |
7303151 | Wu | Dec 2007 | B2 |
D559357 | Wang et al. | Jan 2008 | S |
D559945 | Patterson et al. | Jan 2008 | S |
D560269 | Tse | Jan 2008 | S |
D562937 | Schonherr et al. | Feb 2008 | S |
D562938 | Blessing | Feb 2008 | S |
D562941 | Pan | Feb 2008 | S |
7331536 | Zhen et al. | Feb 2008 | B1 |
7347388 | Chung | Mar 2008 | B2 |
D565703 | Lammel et al. | Apr 2008 | S |
D567335 | Huang | Apr 2008 | S |
7360723 | Lev | Apr 2008 | B2 |
7364097 | Okuma | Apr 2008 | B2 |
7384007 | Ho | Jun 2008 | B2 |
D577099 | Leber | Sep 2008 | S |
D577793 | Leber | Sep 2008 | S |
7503345 | Paterson et al. | Mar 2009 | B2 |
7520448 | Luettgen et al. | Apr 2009 | B2 |
7537175 | Miura et al. | May 2009 | B2 |
7617990 | Huffman | Nov 2009 | B2 |
7721979 | Mazzola | May 2010 | B2 |
7740186 | Macan et al. | Jun 2010 | B2 |
7770820 | Clearman et al. | Aug 2010 | B2 |
7770822 | Leber | Aug 2010 | B2 |
7789326 | Luettgen et al. | Sep 2010 | B2 |
7832662 | Gallo | Nov 2010 | B2 |
8020787 | Leber | Sep 2011 | B2 |
8020788 | Luettgen et al. | Sep 2011 | B2 |
8109450 | Luettgen et al. | Feb 2012 | B2 |
8132745 | Leber et al. | Mar 2012 | B2 |
8146838 | Luettgen et al. | Apr 2012 | B2 |
8292200 | Macan et al. | Oct 2012 | B2 |
8640973 | Gansebom | Feb 2014 | B2 |
9295997 | Harwanko et al. | Mar 2016 | B2 |
9387493 | Lev | Jul 2016 | B2 |
9399860 | Lev | Jul 2016 | B2 |
20010042797 | Shrigley | Nov 2001 | A1 |
20020109023 | Thomas et al. | Aug 2002 | A1 |
20030042332 | Lai | Mar 2003 | A1 |
20030062426 | Gregory et al. | Apr 2003 | A1 |
20030121993 | Haverstraw et al. | Jul 2003 | A1 |
20040074993 | Thomas et al. | Apr 2004 | A1 |
20040118949 | Marks | Jun 2004 | A1 |
20040217209 | Bui | Nov 2004 | A1 |
20040244105 | Tsai | Dec 2004 | A1 |
20050001072 | Bolus et al. | Jan 2005 | A1 |
20050284967 | Korb et al. | Dec 2005 | A1 |
20060016908 | Chung | Jan 2006 | A1 |
20060016913 | Lo | Jan 2006 | A1 |
20060102747 | Ho | May 2006 | A1 |
20060163391 | Schorn | Jul 2006 | A1 |
20060219822 | Miller et al. | Oct 2006 | A1 |
20070040054 | Farzan | Feb 2007 | A1 |
20070200013 | Hsiao | Aug 2007 | A1 |
20070246577 | Leber | Oct 2007 | A1 |
20070252021 | Cristina | Nov 2007 | A1 |
20070272770 | Leber et al. | Nov 2007 | A1 |
20080073449 | Haynes et al. | Mar 2008 | A1 |
20080083844 | Leber et al. | Apr 2008 | A1 |
20080121293 | Leber et al. | May 2008 | A1 |
20080156897 | Leber | Jul 2008 | A1 |
20080223957 | Schorn | Sep 2008 | A1 |
20090039181 | Auer, Jr. | Feb 2009 | A1 |
20100127096 | Leber | May 2010 | A1 |
20110011953 | Macan et al. | Jan 2011 | A1 |
20110121098 | Luettgen et al. | May 2011 | A1 |
20120222207 | Slothower et al. | Sep 2012 | A1 |
20140252138 | Wischstadt et al. | Sep 2014 | A1 |
20150165452 | Luettgen et al. | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
659510 | Mar 1963 | CA |
2341041 | Aug 1999 | CA |
234284 | Mar 1963 | CH |
200920182881 | Sep 2009 | CN |
201230021930 | Feb 2012 | CN |
201530310992 | Aug 2015 | CN |
352813 | May 1922 | DE |
848627 | Sep 1952 | DE |
854100 | Oct 1952 | DE |
2360534 | Jun 1974 | DE |
2806093 | Aug 1979 | DE |
3107808 | Sep 1982 | DE |
3246327 | Jun 1984 | DE |
3440901 | Jul 1985 | DE |
3706320 | Mar 1988 | DE |
8804236 | Jun 1988 | DE |
4034695 | May 1991 | DE |
19608085 | Sep 1996 | DE |
202005000881 | Mar 2005 | DE |
102006032017 | Jan 2008 | DE |
0167063 | Jun 1985 | EP |
0478999 | Apr 1992 | EP |
0514753 | Nov 1992 | EP |
0435030 | Jul 1993 | EP |
0617644 | Oct 1994 | EP |
0683354 | Nov 1995 | EP |
0687851 | Dec 1995 | EP |
0695907 | Feb 1996 | EP |
0700729 | Mar 1996 | EP |
0719588 | Jul 1996 | EP |
0721082 | Jul 1996 | EP |
0733747 | Sep 1996 | EP |
0808661 | Nov 1997 | EP |
0726811 | Jan 1998 | EP |
2164642 | Oct 2010 | EP |
2260945 | Dec 2010 | EP |
538538 | Jun 1922 | FR |
873808 | Jul 1942 | FR |
1039750 | Oct 1953 | FR |
1098836 | Aug 1955 | FR |
2596492 | Oct 1987 | FR |
2695452 | Mar 1994 | FR |
3314 | Jan 1914 | GB |
10086 | Jan 1894 | GB |
129812 | Jul 1919 | GB |
204600 | Oct 1923 | GB |
634483 | Mar 1950 | GB |
971866 | Oct 1964 | GB |
1111126 | Apr 1968 | GB |
2066074 | Jan 1980 | GB |
2066704 | Jul 1981 | GB |
2068778 | Aug 1981 | GB |
2121319 | Dec 1983 | GB |
2155984 | Oct 1985 | GB |
2156932 | Oct 1985 | GB |
2199771 | Jul 1988 | GB |
2298595 | Nov 1996 | GB |
2337471 | Nov 1999 | GB |
327400 | Jul 1935 | IT |
350359 | Jul 1937 | IT |
563459 | May 1957 | IT |
S63-181459 | Nov 1988 | JP |
H2-78660 | Jun 1990 | JP |
4062238 | Feb 1992 | JP |
4146708 | May 1992 | JP |
8902957 | Jun 1991 | NL |
WO9312894 | Jul 1993 | WO |
WO9325839 | Dec 1993 | WO |
WO9600617 | Jan 1996 | WO |
WO9830336 | Jul 1998 | WO |
WO9959726 | Nov 1999 | WO |
WO0010720 | Mar 2000 | WO |
Entry |
---|
Color Copy, Labeled 1A, Gemlo, available at least as early as Dec. 2, 1998. |
Color Copy, Labeled 1B, Gemlo, available at least as early as Dec. 2, 1998. |
EZ Wash Wand, accessed at least as early as Feb. 2016, http://www.ezwashwand.com. |
WashWands, accessed at least as early as Feb. 2016, http://www.washwand.com. |
Woof Washer, accessed at least as early as Feb. 2016, http://www.woofwasher.com. |
Number | Date | Country | |
---|---|---|---|
20150165452 A1 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
60882898 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13270060 | Oct 2011 | US |
Child | 13872296 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13872296 | Apr 2013 | US |
Child | 14635941 | US | |
Parent | 12870032 | Aug 2010 | US |
Child | 13270060 | US | |
Parent | 11669132 | Jan 2007 | US |
Child | 12870032 | US |