The present disclosure relates to surgical devices and/or systems, surgical adapters and their methods of use. More specifically, the present disclosure relates to hand held powered surgical devices, surgical adapters and/or adapter assemblies for use between and for interconnecting the powered, rotating and/or articulating surgical device or handle assembly and an end effector for clamping, cutting and/or stapling tissue.
One type of surgical device is a linear clamping, cutting and stapling device. Such a device may be employed in a surgical procedure to resect a cancerous or anomalous tissue from a gastro-intestinal tract. Conventional linear clamping, cutting and stapling instruments include a pistol grip-styled structure having an elongated shaft and distal portion. The distal portion includes a pair of scissors-styled gripping elements, which clamp the open ends of the colon closed. In this device, one of the two scissors-styled gripping elements, such as the anvil portion, moves or pivots relative to the overall structure, whereas the other gripping element remains fixed relative to the overall structure. The actuation of this scissoring device (the pivoting of the anvil portion) is controlled by a grip trigger maintained in the handle.
In addition to the scissoring device, the distal portion also includes a stapling mechanism. The fixed gripping element of the scissoring mechanism includes a staple cartridge receiving region and a mechanism for driving the staples up through the clamped end of the tissue against the anvil portion, thereby sealing the previously opened end. The scissoring elements may be integrally formed with the shaft or may be detachable such that various scissoring and stapling elements may be interchangeable.
A number of surgical device manufacturers have developed product lines with proprietary drive systems for operating and/or manipulating the surgical device. In many instances the surgical devices include a handle assembly, which is reusable, and a disposable end effector or the like that is selectively connected to the handle assembly prior to use and then disconnected from the end effector following use in order to be disposed of or in some instances sterilized for re-use.
Many of the existing end effectors for use with many of the existing surgical devices and/or handle assemblies are driven by a linear force. For examples, end effectors for performing endo-gastrointestinal anastomosis procedures, end-to-end anastomosis procedures and transverse anastomosis procedures, each typically require a linear driving force in order to be operated. As such, these end effectors are not compatible with surgical devices and/or handle assemblies that use a rotary motion to deliver power or the like.
In order to make the linear driven end effectors compatible with surgical devices and/or handle assemblies that use a rotary motion to deliver power, a need exists for adapters and/or adapter assemblies to interface between and interconnect the linear driven end effectors with the rotary driven surgical devices and/or handle assemblies.
The present disclosure relates to a surgical device comprising a device housing, at last one drive motor, a battery, a circuit board, an end effector, and an adapter assembly. The device housing defines a connecting portion for selectively connecting with the adapter assembly. The at least one drive motor is supported in the device housing and is configured to rotate at least one drive shaft. The battery is disposed in electrical communication with the at least one drive motor. The circuit board is disposed within the housing for controlling power delivered from the battery to the at least one drive motor. The end effector is configured to perform at least one function and includes at least one axially translatable drive member. The adapter assembly is for selectively interconnecting the end effector and the device housing, and includes a knob housing, and at least one drive converter assembly. The knob housing is configured and adapted for selective connection to the device housing and to be in operative communication with each of the at least one rotatable drive shaft. The at least one drive converter assembly is for interconnecting a respective one of the at least one rotatable drive shaft and one of the at least one axially translatable drive member of the end effector. The at least one drive converter assembly converts and transmits a rotation of the rotatable drive shaft to an axial translation of the at least one axially translatable drive member of the end effector. The at least one drive converter assembly includes a first drive converter assembly including a first drive element, a nut, an articulation sleeve, an articulation bearing, and an articulation link. The first drive element is rotatably supported in the knob housing. A proximal end of the first drive element is engagable with the rotatable drive shaft. The nut is threadably connected to a threaded distal portion of the first drive element. A proximal portion of the articulation sleeve is disposed in mechanical cooperation with the nut. The articulation bearing is disposed in mechanical cooperation with a distal portion of the articulation sleeve. A proximal portion of the articulation link is disposed in mechanical cooperation with the articulation bearing. A distal portion of the articulation link is configured for selective engagement with the at least one axially translatable drive member of the end effector. Rotation of the rotatable drive shaft results in rotation of the first drive element. Rotation of the first drive element results in axial translation of the nut, the articulation sleeve, the articulation bearing, the articulation link, and the at least one axially translatable drive member of the end effector.
In disclosed embodiments, the articulation bearing is configured for axial and rotatable movement with respect to the knob housing.
In disclosed embodiments, the distal portion of the articulation sleeve is disposed in mechanically cooperation with a radially inner portion of the articulation bearing. Here, it is disclosed that the proximal portion of the articulation link is disposed in mechanical cooperation with a radially outer portion of the articulation bearing.
In disclosed embodiments, a second drive converter assembly is included and comprises a second drive element, a first gear, a second gear, and a gear ring. The second drive element is rotatably supported in the knob housing. A proximal end of the second drive element is connectable to a second rotatable drive shaft of the surgical device. The first gear is disposed in mechanical cooperation with a distal portion of the second drive element. The second gear is disposed in mechanical cooperation with the first gear. The gear ring is disposed in mechanical cooperation with the second gear and is disposed in mechanical cooperation with the end effector. The gear ring is fixed from rotation with respect to the knob housing. Rotation of the second rotatable drive shaft causes rotation of the first gear, rotation of the first gear causes rotation of the second gear, rotation of the second gear causes rotation of the gear ring, and rotation of the gear ring causes rotation of the end effector. Here, it is disclosed that the knob housing includes a drive coupling housing, which is rotatable with respect to the remainder of the knob housing. Here, it is disclosed that a rotation bearing is included, and the drive coupling housing is rotationally fixed to the rotation bearing. The knob housing is rotatable with respect to the rotation bearing. Here, it is disclosed that the gear ring includes a plurality of teeth disposed around an inner periphery thereof.
In disclosed embodiments, a distal portion of the articulation link includes a slot therein configured to releasably accept a portion of the at least one axially translatable drive member of the end effector. Here, it is disclosed that the slot includes a tapered opening.
The present disclosure also relates to an adapter assembly for selectively interconnecting a surgical end effector and a handle assembly having at least one rotatable drive shaft. The adapter assembly comprises a knob housing, ant at least one drive converter assembly. The knob housing is configured and adapted for selective connection to a handle assembly. The knob housing includes a drive coupling housing. The at least one drive converter assembly is for interconnecting a respective one of the at least one rotatable drive shaft and a portion of a surgical end effector. The at least one drive converter assembly converts and transmits a rotation of the rotatable drive shaft to an axial translation of the at least one axially translatable drive member of the end effector. The at least one drive converter assembly includes a first drive converter assembly including a drive element, a first gear, a second gear, a gear ring and a rotation bearing. The drive element is rotatably supported in the adapter housing. The first gear is disposed in mechanical cooperation with a distal portion of the drive element. The second gear is disposed in mechanical cooperation with the first gear. The gear ring is disposed in mechanical cooperation with the second gear and is disposed in mechanical cooperation with an end effector-engaging portion of the adapter assembly. The gear ring is fixed from rotation with respect to the adapter housing. The drive coupling housing is rotationally fixed to the rotation bearing, and the knob housing is rotatable with respect to the rotation bearing. Rotation of the drive element causes rotation of the first gear; rotation of the first gear causes rotation of the second gear; rotation of the second gear causes rotation of the gear ring; and rotation of the gear ring causes rotation of the end effector-engaging portion of the adapter assembly.
In disclosed embodiments, the gear ring includes a plurality of teeth disposed around an inner periphery thereof.
In disclosed embodiments, the drive coupling housing is rotatable with respect to the remainder of the knob housing.
In disclosed embodiments, a second drive converter assembly is included and comprises a second drive element, a nut, an articulation sleeve, and an articulation link. The second drive element is rotatably supported in the knob housing. The nut is threadably connected to a threaded distal portion of the second drive element. A proximal portion of the articulation sleeve is disposed in mechanical cooperation with the nut. The articulation bearing is disposed in mechanical cooperation with a distal portion of the articulation sleeve. A proximal portion of the articulation link is disposed in mechanical cooperation with the articulation bearing. A distal portion of the articulation link is configured for selective engagement with a portion of an end effector. Rotation of the second drive element results in axial translation of the nut, the articulation sleeve, the articulation bearing and the articulation link. Here, it is disclosed that the articulation bearing is configured for axial and rotatable movement with respect to the knob housing. Here, it is disclosed that distal portion of the articulation sleeve is disposed in mechanically cooperation with a radially inner portion of the articulation bearing. Here, it is disclosed that the proximal portion of the articulation link is disposed in mechanical cooperation with a radially outer portion of the articulation bearing.
Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:
Embodiments of the presently disclosed surgical devices, and adapter assemblies for surgical devices and/or handle assemblies are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the adapter assembly or surgical device, or component thereof, farther from the user, while the term “proximal” refers to that portion of the adapter assembly or surgical device, or component thereof, closer to the user.
A surgical device, in accordance with an embodiment of the present disclosure, is generally designated as 100, and is in the form of a powered hand held electromechanical instrument configured for selective attachment thereto of a plurality of different end effectors that are each configured for actuation and manipulation by the powered hand held electromechanical surgical instrument.
As illustrated in
As illustrated in
Distal and proximal half-sections 110a, 110b are divided along a plane that traverses a longitudinal axis “X” of upper housing portion 108, as seen in
Handle housing 102 includes a gasket 112 extending completely around a rim of distal half-section and/or proximal half-section 110a, 110b and being interposed between distal half-section 110a and proximal half-section 110b. Gasket 112 seals the perimeter of distal half-section 110a and proximal half-section 110b. Gasket 112 functions to establish an air-tight seal between distal half-section 110a and proximal half-section 110b such that circuit board 150 and drive mechanism 160 are protected from sterilization and/or cleaning procedures.
In this manner, the cavity 102a of handle housing 102 is sealed along the perimeter of distal half-section 110a and proximal half-section 110b yet is configured to enable easier, more efficient assembly of circuit board 150 and a drive mechanism 160 in handle housing 102.
Intermediate housing portion 106 of handle housing 102 provides a housing in which circuit board 150 is situated. Circuit board 150 is configured to control the various operations of surgical device 100, as will be set forth in additional detail below.
Lower housing portion 104 of surgical device 100 defines an aperture (not shown) formed in an upper surface thereof and which is located beneath or within intermediate housing portion 106. The aperture of lower housing portion 104 provides a passage through which wires 152 pass to electrically interconnect electrical components (a battery 156, as illustrated in
Handle housing 102 includes a gasket 103 disposed within the aperture of lower housing portion 104 (not shown) thereby plugging or sealing the aperture of lower housing portion 104 while allowing wires 152 to pass therethrough. Gasket 103 functions to establish an air-tight seal between lower housing portion 106 and intermediate housing portion 108 such that circuit board 150 and drive mechanism 160 are protected from sterilization and/or cleaning procedures.
As shown, lower housing portion 104 of handle housing 102 provides a housing in which a rechargeable battery 156, is removably situated. Battery 156 is configured to supply power to any of the electrical components of surgical device 100. Lower housing portion 104 defines a cavity (not shown) into which battery 156 is inserted. Lower housing portion 104 includes a door 105 pivotally connected thereto for closing cavity of lower housing portion 104 and retaining battery 156 therein.
With reference to
Upper housing portion 108 of handle housing 102 provides a housing in which drive mechanism 160 is situated. As illustrated in
The drive mechanism 160 includes a selector gearbox assembly 162 that is located immediately proximal relative to adapter 200. Proximal to the selector gearbox assembly 162 is a function selection module 163 having a first motor 164 that functions to selectively move gear elements within the selector gearbox assembly 162 into engagement with an input drive component 165 having a second motor 166.
As illustrated in
As illustrated in
When adapter 200 is mated to surgical device 100, each of rotatable drive connectors 118, 120, 122 of surgical device 100 couples with a corresponding rotatable connector sleeve 218, 220, 222 of adapter 200. (see
The mating of drive connectors 118, 120, 122 of surgical device 100 with connector sleeves 218, 220, 222 of adapter 200 allows rotational forces to be independently transmitted via each of the three respective connector interfaces. The drive connectors 118, 120, 122 of surgical device 100 are configured to be independently rotated by drive mechanism 160. In this regard, the function selection module 163 of drive mechanism 160 selects which drive connector or connectors 118, 120, 122 of surgical device 100 is to be driven by the input drive component 165 of drive mechanism 160.
Since each of drive connectors 118, 120, 122 of surgical device 100 has a keyed and/or substantially non-rotatable interface with respective connector sleeves 218, 220, 222 of adapter 200, when adapter 200 is coupled to surgical device 100, rotational force(s) are selectively transferred from drive mechanism 160 of surgical device 100 to adapter 200.
The selective rotation of drive connector(s) 118, 120 and/or 122 of surgical device 100 allows surgical device 100 to selectively actuate different functions of end effector 300. As will be discussed in greater detail below, selective and independent rotation of first drive connector 118 of surgical device 100 corresponds to the selective and independent opening and closing of tool assembly 304 of end effector 300, and driving of a stapling/cutting component of tool assembly 304 of end effector 300. Also, the selective and independent rotation of second drive connector 120 of surgical device 100 corresponds to the selective and independent articulation of tool assembly 304 of end effector 300 transverse to longitudinal axis “X” (see
As mentioned above and as illustrated in
As illustrated in
Each one of the control buttons 124, 126 and rocker devices 128, 130 includes a respective magnet (not shown) that is moved by the actuation of an operator. In addition, circuit board 150 includes, for each one of the control buttons 124, 126 and rocker devices 128, 130, respective Hall-effect switches 150a-150d that are actuated by the movement of the magnets in the control buttons 124, 126 and rocker devices 128, 130. In particular, located immediately proximal to the control button 124 is a first Hall-effect switch 150a (see
Also, located immediately proximal to rocker device 128 is a second Hall-effect switch 150b (see
Furthermore, located immediately proximal to control button 126 is a third Hall-effect switch 150c (see
In addition, located immediately proximal to rocker device 130 is a fourth Hall-effect switch 150d (see
As seen in
As illustrated in
Adapter 200 is configured to convert a rotation of either of drive connectors 120 and 122 of surgical device 100 into axial translation useful for operating a drive assembly 360 and an articulation link 366 of end effector 300, as illustrated in
Adapter 200 includes a first drive transmitting/converting assembly for interconnecting third rotatable drive connector 122 of surgical device 100 and a first axially translatable drive member 360 of end effector 300, wherein the first drive transmitting/converting assembly converts and transmits a rotation of third rotatable drive connector 122 of surgical device 100 to an axial translation of the first axially translatable drive assembly 360 of end effector 300 for firing.
Adapter 200 includes a second drive transmitting/converting assembly for interconnecting second rotatable drive connector 120 of surgical device 100 and a second axially translatable drive member 366 of end effector 300, wherein the second drive transmitting/converting assembly converts and transmits a rotation of second rotatable drive connector 120 of surgical device 100 to an axial translation of articulation link 366 of end effector 300 for articulation.
Turning now to
Knob housing 202 is configured and adapted to connect to connecting portion 108a of upper housing portion 108 of distal half-section 110a of surgical device 100.
As seen in
As seen in
With particular reference to
In particular, first, second and third biasing members 224, 226 and 228 function to bias respective connector sleeves 218, 220 and 222 in a proximal direction. In this manner, during assembly of adapter 200 to surgical device 100, if first, second and/or third connector sleeves 218, 220 and/or 222 is/are misaligned with the drive connectors 118, 120, 122 of surgical device 100, first, second and/or third biasing member(s) 224, 226 and/or 228 are compressed. Thus, when drive mechanism 160 of surgical device 100 is engaged, drive connectors 118, 120, 122 of surgical device 100 will rotate and first, second and/or third biasing member(s) 224, 226 and/or 228 will cause respective first, second and/or third connector sleeve(s) 218, 220 and/or 222 to slide back proximally, effectively coupling drive connectors 118, 120, 122 of surgical device 100 to first, second and/or third proximal drive shaft(s) 212, 214 and 216 of proximal drive coupling assembly 210.
Upon calibration of surgical device 100, each of drive connectors 118, 120, 122 of surgical device 100 is rotated and the bias on connector sleeve(s) 218, 220 and 222 properly seats connector sleeve(s) 218, 220 and 222 over the respective drive connectors 118, 120, 122 of surgical device 100 when the proper alignment is reached.
Adapter 200, as seen in
As seen in
First drive transmitting/converting assembly 240 further includes a drive coupling nut 244 rotatably coupled to threaded distal end portion 242b of first distal drive shaft 242, and which is slidably disposed within outer tube 206. Drive coupling nut 244 is keyed to an inner housing tube 206a of outer tube 206 so as to be prevented from rotation as first distal drive shaft 242 is rotated. In this manner, as first distal drive shaft 242 is rotated, drive coupling nut 244 is translated longitudinally through and/or along inner housing tube 206a of outer tube 206.
First drive transmitting/converting assembly 240 further includes a distal drive member 248 that is mechanically engaged with drive coupling nut 244, such that axial movement of drive coupling nut 244 results in a corresponding amount of axial movement of distal drive member 248. More particularly, distal end of coupling nut 244 includes at least one inwardly depending projection 245 that engages at least one corresponding groove 249 disposed on a proximal portion of the distal drive member 248 (see
In operation, as first rotatable proximal drive shaft 212 is rotated, due to a rotation of first connector sleeve 218, as a result of the rotation of the first respective drive connector 118 of surgical device 100, first distal drive shaft 242 rotates. As first distal drive shaft 242 is rotated, drive coupling nut 244 is caused to be translated axially along first distal drive shaft 242. As drive coupling nut 244 is caused to be translated axially along first distal drive shaft 242, distal drive member 248 is caused to be translated axially relative to inner housing tube 206a of outer tube 206. As distal drive member 248 is translated axially, with connection member 247 connected thereto and engaged with drive member 374 of drive assembly 360 of end effector 300, distal drive member 248 causes concomitant axial translation of drive member 374 of end effector 300 to effectuate a closure of tool assembly 304 and a firing of tool assembly 304 of end effector 300.
With reference to
Distal end portion 216b of proximal drive shaft 216 is threadably engaged with a nut 252. Nut 252 is disposed in mechanical cooperation with a proximal portion 254a of an articulation sleeve 254. For example, nut 252 extends through a recess 255 within articulation sleeve 254. A distal portion 254b of articulation sleeve 254 is disposed in mechanical cooperation (e.g., attached or coupled to) with an articulation bearing 261, and in particular with an inner sleeve 262 of articulation bearing 261. An outer sleeve 264 of articulation bearing 261 is mechanically coupled to a proximal portion 258a of articulation bar 258. A distal portion 258b of articulation bar 258 includes a slot 272 therein, which is configured to accept a portion (e.g., a flag, articulation link 366, etc.) of loading unit 300. Further, slot 272 includes a tapered entry section 274, which is configured to reduce the clearance between loading unit 300 and articulation bar 258, thus facilitating alignment and/or engagement therebetween.
With further regard to articulation bearing 261, articulation bearing 261 is both rotatable and longitudinally translatable. Additionally, it is envisioned that articulation bearing 261 allows for free, unimpeded rotational movement of loading unit 300 when its jaw members 306, 308 are in an approximated position and/or when jaw members 306, 308 are articulated. Further, articulation bearing 261 reduces the amount of friction that is typically associated with rotation of articulated and/or approximated jaw members, as articulated and/or approximated jaw members generally generate significant loads on the rotational and/or articulation systems.
In operation, as drive shaft 216 is rotated due to a rotation of second connector sleeve 222, as a result of the rotation of the second drive connector 120 of surgical device 100, nut 252 is caused to be translated axially along threaded distal end portion 216b of proximal drive shaft 216, which in turn causes articulation sleeve 254 to be axially translated relative to knob housing 202. As articulation sleeve 254 is translated axially, articulation bearing 261 is caused to be translated axially. Accordingly, as articulation bearing 261 is translated axially, articulation bar 258 is caused to axially translate, which causes concomitant axial translation of an articulation link 366 of end effector 300 to effectuate an articulation of tool assembly 304.
As seen in
With further regard to rotation bearing 410, rotation bearing 410 is non-rotatable with respect to drive coupling housing 210a, and is both rotatable and longitudinally translatable with respect to knob housing 202. Additionally, it is envisioned that rotation bearing 410 allows for free, unimpeded rotational movement of loading unit 300 when its jaw members 306, 308 are in an approximated position and/or when jaw members are articulated. Further, rotation bearing 410 reduces the amount of friction that is typically associated with rotation of articulated and/or approximated jaw members, as articulated and/or approximated jaw members generally generate significant loads on the rotational and/or articulation systems.
Rotation ring gear 420 is disposed distally of rotation bearing 410 and is non-rotatable with respect to knob housing 202 (e.g., due to protrusions 421 of ring gear 420 being captured by corresponding recesses in knob housing 202). Rotation ring gear 420 includes a plurality of teeth 422 disposed around an inner circumference thereof. Idler gear 430 is rotatable about a pin 434, and includes a plurality of teeth 432 disposed around an outer circumference thereof, which are configured and positioned to engage teeth 422 of rotation ring gear 420. Spur gear 440 includes a plurality of teeth 442 disposed around an outer circumference thereof, which are configured and positioned to engage teeth 432 of idler gear 430. Additionally, spur gear 440 is attached to second rotatable proximal drive shaft 214.
In operation, rotation of second drive connector 120 of surgical device 100 causes second connector sleeve 220 and drive shaft 214 to rotate. Rotation of drive shaft 214 causes spur gear 440 to rotate. Rotation of spur gear 440 results in rotation of idler gear 430, which causes ring gear 420 to likewise rotate. Since ring gear 420 is non-rotatable with respect to knob housing 202, rotation of ring gear 420 causes knob housing 202 to rotate. Further, due to the engagement between knob housing 202 and tube coupler 406, rotation of knob housing 202 causes tube coupler 406, tube 206, housing tip 402, and distal coupling assembly 230 to rotate about longitudinal axis “A-A” defined by adapter 200 (see
With reference to
In operation, in order to lock the position and/or orientation of distal drive member 248, a user moves lock button 282 from a distal position to a proximal position, thereby causing lock out 286 to move proximally such that a distal face 286a of lock out 286 moves out of contact with camming member 288, which causes camming member 288 to cam into recess 249 of distal drive member 248. In this manner, distal drive member 248 is prevented from distal and/or proximal movement. When lock button 282 is moved from the proximal position to the distal position, distal end 284a of actuation bar 284 moves distally into lock out 286, against the bias of biasing member 289, to force camming member 288 to out of recess 249, thereby allowing unimpeded axial translation and radial movement of distal drive member 248. When drive member 248 has translated to initiate closure of tool assembly 304, lock button 282 cannot be actuated and the end effector 300 cannot be removed until tool assembly 304 is reopened.
As seen in
When a button of surgical device is activated by the user, the software checks predefined conditions. If conditions are met, the software controls the motors and delivers mechanical drive to the attached surgical stapler, which can then open, close, rotate, articulate or fire depending on the function of the pressed button. The software also provides feedback to the user by turning colored lights on or off in a defined manner to indicate the status of surgical device 100, adapter 200 and/or end effector 300.
A high level electrical architectural view of the system is displayed below in Schematic “A” and shows the connections to the various hardware and software interfaces. Inputs from presses of buttons 124, 126 and from motor encoders of the drive shaft are shown on the left side of Schematic “A”. The microcontroller contains the device software that operates surgical device 100, adapter 200 and/or end effector 300. The microcontroller receives inputs from and sends outputs to a MicroLAN, an Ultra ID chip, a Battery ID chip, and Adaptor ID chips. The MicroLAN, the Ultra ID chip, the Battery ID chip, and the Adaptor ID chips control surgical device 100, adapter 200 and/or end effector 300 as follows:
The right side of the schematic illustrated in
As illustrated in
End effector 300 includes a proximal body portion 302 and a tool assembly 304. Proximal body portion 302 is releasably attached to a distal coupling 230 of adapter 200 and tool assembly 304 is pivotally attached to a distal end of proximal body portion 302. Tool assembly 304 includes an anvil assembly 306 and a cartridge assembly 308. Cartridge assembly 308 is pivotal in relation to anvil assembly 306 and is movable between an open or unclamped position and a closed or clamped position for insertion through a cannula of a trocar.
Proximal body portion 302 includes at least a drive assembly 360 and an articulation link 366.
Referring to
When drive assembly 360 is advanced distally within tool assembly 304, an upper beam of clamping member 365 moves within a channel defined between anvil plate 312 and anvil cover 310 and a lower beam moves over the exterior surface of carrier 316 to close tool assembly 304 and fire staples therefrom.
Proximal body portion 302 of end effector 300 includes an articulation link 366 having a hooked proximal end 366a which extends from a proximal end of end effector 300. Hooked proximal end 366a of articulation link 366 engages coupling hook 258c of drive bar 258 of adapter 200 when end effector 300 is secured to distal housing 232 of adapter 200. When drive bar 258 of adapter 200 is advanced or retracted as described above, articulation link 366 of end effector 300 is advanced or retracted within end effector 300 to pivot tool assembly 304 in relation to a distal end of proximal body portion 302.
As illustrated in
Reference may be made to U.S. Patent Publication No. 2009/0314821, filed on Aug. 31, 2009, entitled “TOOL ASSEMBLY FOR A SURGICAL STAPLING DEVICE” for a detailed discussion of the construction and operation of end effector 300.
It will be understood that various modifications may be made to the embodiments of the presently disclosed adapter assemblies. For example, the battery 156 may be replaced with alternate sources of electrical power such as line voltage (either AC or DC) or a fuel cell. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.
This application is a continuation of U.S. patent application Ser. No. 16/773,798, filed Jan. 27, 2020, which is a continuation of U.S. patent application Ser. No. 15/451,472 filed Mar. 7, 2017, now U.S. Pat. No. 10,542,984, which is a continuation of U.S. patent application Ser. No. 13/875,571, filed May 2, 2013, now U.S. Pat. No. 9,597,104, which claims the benefit of and priority to, U.S. Provisional Patent Application No. 61/654,191, filed Jun. 1, 2012. The entire contents of each of the foregoing applications are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2777340 | Hettwer et al. | Jan 1957 | A |
2957353 | Babacz | Oct 1960 | A |
3111328 | Di Rito et al. | Nov 1963 | A |
3695058 | Keith, Jr. | Oct 1972 | A |
3734515 | Dudek | May 1973 | A |
3759336 | Marcovitz et al. | Sep 1973 | A |
4162399 | Hudson | Jul 1979 | A |
4606343 | Conta et al. | Aug 1986 | A |
4705038 | Sjostrom et al. | Nov 1987 | A |
4722685 | de Estrada et al. | Feb 1988 | A |
4823807 | Russell et al. | Apr 1989 | A |
4874181 | Hsu | Oct 1989 | A |
5129118 | Walmesley | Jul 1992 | A |
5129570 | Schulze et al. | Jul 1992 | A |
5152744 | Krause et al. | Oct 1992 | A |
5301061 | Nakada et al. | Apr 1994 | A |
5312023 | Green et al. | May 1994 | A |
5326013 | Green et al. | Jul 1994 | A |
5350355 | Sklar | Sep 1994 | A |
5383874 | Jackson et al. | Jan 1995 | A |
5383880 | Hooven | Jan 1995 | A |
5389098 | Tsuruta et al. | Feb 1995 | A |
5395033 | Byrne et al. | Mar 1995 | A |
5400267 | Denen et al. | Mar 1995 | A |
5411508 | Bessler et al. | May 1995 | A |
5413267 | Solyntjes et al. | May 1995 | A |
5427087 | Ito et al. | Jun 1995 | A |
5467911 | Tsuruta et al. | Nov 1995 | A |
5476379 | Disel | Dec 1995 | A |
5487499 | Sorrentino et al. | Jan 1996 | A |
5518163 | Hooven | May 1996 | A |
5518164 | Hooven | May 1996 | A |
5526822 | Burbank et al. | Jun 1996 | A |
5529235 | Boiarski et al. | Jun 1996 | A |
5535934 | Boiarski et al. | Jul 1996 | A |
5535937 | Boiarski et al. | Jul 1996 | A |
5540375 | Bolanos et al. | Jul 1996 | A |
5540706 | Aust et al. | Jul 1996 | A |
5542594 | McKean et al. | Aug 1996 | A |
5549637 | Crainich | Aug 1996 | A |
5553675 | Pitzen et al. | Sep 1996 | A |
5562239 | Boiarski et al. | Oct 1996 | A |
5564615 | Bishop et al. | Oct 1996 | A |
5609560 | Ichikawa et al. | Mar 1997 | A |
5632432 | Schulze et al. | May 1997 | A |
5653374 | Young et al. | Aug 1997 | A |
5658300 | Bito et al. | Aug 1997 | A |
5667517 | Hooven | Sep 1997 | A |
5693042 | Boiarski et al. | Dec 1997 | A |
5704534 | Huitema et al. | Jan 1998 | A |
5713505 | Huitema | Feb 1998 | A |
5762603 | Thompson | Jun 1998 | A |
5779130 | Alesi et al. | Jul 1998 | A |
5782396 | Mastri et al. | Jul 1998 | A |
5782397 | Koukline | Jul 1998 | A |
5820009 | Melling et al. | Oct 1998 | A |
5863159 | Lasko | Jan 1999 | A |
5865361 | Milliman et al. | Feb 1999 | A |
5908427 | McKean et al. | Jun 1999 | A |
5954259 | Viola et al. | Sep 1999 | A |
5964774 | McKean et al. | Oct 1999 | A |
5993454 | Longo | Nov 1999 | A |
6010054 | Johnson et al. | Jan 2000 | A |
6017354 | Culp et al. | Jan 2000 | A |
6032849 | Mastri et al. | Mar 2000 | A |
6045560 | McKean et al. | Apr 2000 | A |
6090123 | Culp et al. | Jul 2000 | A |
6126651 | Mayer | Oct 2000 | A |
6129547 | Cise et al. | Oct 2000 | A |
6165169 | Panescu et al. | Dec 2000 | A |
6171316 | Kovac et al. | Jan 2001 | B1 |
6239732 | Cusey | May 2001 | B1 |
6241139 | Milliman et al. | Jun 2001 | B1 |
6264086 | McGuckin, Jr. | Jul 2001 | B1 |
6264087 | Whitman | Jul 2001 | B1 |
6302311 | Adams et al. | Oct 2001 | B1 |
6315184 | Whitman | Nov 2001 | B1 |
6321855 | Barnes | Nov 2001 | B1 |
6329778 | Culp et al. | Dec 2001 | B1 |
6343731 | Adams et al. | Feb 2002 | B1 |
6348061 | Whitman | Feb 2002 | B1 |
6368324 | Dinger et al. | Apr 2002 | B1 |
6371909 | Hoeg et al. | Apr 2002 | B1 |
6434507 | Clayton et al. | Aug 2002 | B1 |
6443973 | Whitman | Sep 2002 | B1 |
6461372 | Jensen et al. | Oct 2002 | B1 |
6488197 | Whitman | Dec 2002 | B1 |
6491201 | Whitman | Dec 2002 | B1 |
6533157 | Whitman | Mar 2003 | B1 |
6537280 | Dinger et al. | Mar 2003 | B2 |
6610066 | Dinger et al. | Aug 2003 | B2 |
6611793 | Burnside et al. | Aug 2003 | B1 |
6645218 | Cassidy et al. | Nov 2003 | B1 |
6654999 | Stoddard et al. | Dec 2003 | B2 |
6698643 | Whitman | Mar 2004 | B2 |
6699177 | Wang et al. | Mar 2004 | B1 |
6716233 | Whitman | Apr 2004 | B1 |
6743240 | Smith et al. | Jun 2004 | B2 |
6783533 | Green et al. | Aug 2004 | B2 |
6792390 | Burnside et al. | Sep 2004 | B1 |
6793652 | Whitman et al. | Sep 2004 | B1 |
6817508 | Racenet et al. | Nov 2004 | B1 |
6830174 | Hillstead et al. | Dec 2004 | B2 |
6846308 | Whitman et al. | Jan 2005 | B2 |
6846309 | Whitman et al. | Jan 2005 | B2 |
6849071 | Whitman et al. | Feb 2005 | B2 |
6905057 | Swayze et al. | Jun 2005 | B2 |
6959852 | Shelton, IV et al. | Nov 2005 | B2 |
6964363 | Wales et al. | Nov 2005 | B2 |
6981628 | Wales | Jan 2006 | B2 |
6981941 | Whitman et al. | Jan 2006 | B2 |
6986451 | Mastri et al. | Jan 2006 | B1 |
6988649 | Shelton, IV et al. | Jan 2006 | B2 |
7032798 | Whitman et al. | Apr 2006 | B2 |
RE39152 | Aust et al. | Jun 2006 | E |
7055731 | Shelton, IV et al. | Jun 2006 | B2 |
7059508 | Shelton, IV et al. | Jun 2006 | B2 |
7077856 | Whitman | Jul 2006 | B2 |
7111769 | Wales et al. | Sep 2006 | B2 |
7122029 | Koop et al. | Oct 2006 | B2 |
7140528 | Shelton, IV | Nov 2006 | B2 |
7143923 | Shelton, IV et al. | Dec 2006 | B2 |
7143925 | Shelton, IV et al. | Dec 2006 | B2 |
7143926 | Shelton, IV et al. | Dec 2006 | B2 |
7147138 | Shelton, IV | Dec 2006 | B2 |
7172104 | Scirica et al. | Feb 2007 | B2 |
7225964 | Mastri et al. | Jun 2007 | B2 |
7238021 | Johnson | Jul 2007 | B1 |
7246734 | Shelton, IV | Jul 2007 | B2 |
7328828 | Ortiz et al. | Feb 2008 | B2 |
7364061 | Swayze et al. | Apr 2008 | B2 |
7380695 | Doll et al. | Jun 2008 | B2 |
7380696 | Shelton, IV et al. | Jun 2008 | B2 |
7404508 | Smith et al. | Jul 2008 | B2 |
7407078 | Shelton, IV et al. | Aug 2008 | B2 |
7416101 | Shelton, IV et al. | Aug 2008 | B2 |
7419080 | Smith et al. | Sep 2008 | B2 |
7422139 | Shelton, IV et al. | Sep 2008 | B2 |
7431189 | Shelton, IV et al. | Oct 2008 | B2 |
7441684 | Shelton, IV et al. | Oct 2008 | B2 |
7448525 | Shelton, IV et al. | Nov 2008 | B2 |
7464846 | Shelton, IV et al. | Dec 2008 | B2 |
7464847 | Viola et al. | Dec 2008 | B2 |
7464849 | Shelton, IV et al. | Dec 2008 | B2 |
7481347 | Roy | Jan 2009 | B2 |
7481824 | Boudreaux et al. | Jan 2009 | B2 |
7487899 | Shelton, IV et al. | Feb 2009 | B2 |
7549564 | Boudreaux | Jun 2009 | B2 |
7565993 | Milliman et al. | Jul 2009 | B2 |
7568603 | Shelton, IV et al. | Aug 2009 | B2 |
7575144 | Ortiz et al. | Aug 2009 | B2 |
7588175 | Timm et al. | Sep 2009 | B2 |
7588176 | Timm et al. | Sep 2009 | B2 |
7637409 | Marczyk | Dec 2009 | B2 |
7641093 | Doll et al. | Jan 2010 | B2 |
7644848 | Swayze et al. | Jan 2010 | B2 |
7670334 | Hueil et al. | Mar 2010 | B2 |
7673780 | Shelton, IV et al. | Mar 2010 | B2 |
7699835 | Lee et al. | Apr 2010 | B2 |
7721931 | Shelton, IV et al. | May 2010 | B2 |
7738971 | Swayze et al. | Jun 2010 | B2 |
7740159 | Shelton, IV et al. | Jun 2010 | B2 |
7743960 | Whitman et al. | Jun 2010 | B2 |
7758613 | Whitman | Jul 2010 | B2 |
7766210 | Shelton, IV et al. | Aug 2010 | B2 |
7770773 | Whitman et al. | Aug 2010 | B2 |
7770775 | Shelton, IV et al. | Aug 2010 | B2 |
7793812 | Moore et al. | Sep 2010 | B2 |
7799039 | Shelton, IV et al. | Sep 2010 | B2 |
7802712 | Milliman et al. | Sep 2010 | B2 |
7803151 | Whitman | Sep 2010 | B2 |
7819896 | Racenet | Oct 2010 | B2 |
7822458 | Webster, III et al. | Oct 2010 | B2 |
7845534 | Viola et al. | Dec 2010 | B2 |
7845537 | Shelton, IV et al. | Dec 2010 | B2 |
7857185 | Swayze et al. | Dec 2010 | B2 |
7870989 | Viola et al. | Jan 2011 | B2 |
7905897 | Whitman et al. | Mar 2011 | B2 |
7918230 | Whitman et al. | Apr 2011 | B2 |
7922061 | Shelton, IV et al. | Apr 2011 | B2 |
7922719 | Ralph et al. | Apr 2011 | B2 |
7947034 | Whitman | May 2011 | B2 |
7951071 | Whitman et al. | May 2011 | B2 |
7954682 | Giordano et al. | Jun 2011 | B2 |
7959051 | Smith et al. | Jun 2011 | B2 |
7963433 | Whitman et al. | Jun 2011 | B2 |
7967178 | Scirica et al. | Jun 2011 | B2 |
7967179 | Olson et al. | Jun 2011 | B2 |
7992758 | Whitman et al. | Aug 2011 | B2 |
8016178 | Olson et al. | Sep 2011 | B2 |
8016855 | Whitman et al. | Sep 2011 | B2 |
8020743 | Shelton, IV | Sep 2011 | B2 |
8025199 | Whitman et al. | Sep 2011 | B2 |
8035487 | Malackowski | Oct 2011 | B2 |
8052024 | Viola et al. | Nov 2011 | B2 |
8056787 | Boudreaux et al. | Nov 2011 | B2 |
8114118 | Knodel et al. | Feb 2012 | B2 |
8132705 | Viola et al. | Mar 2012 | B2 |
8152516 | Harvey et al. | Apr 2012 | B2 |
8157150 | Viola et al. | Apr 2012 | B2 |
8157151 | Ingmanson et al. | Apr 2012 | B2 |
8182494 | Yencho et al. | May 2012 | B1 |
8186555 | Shelton, IV et al. | May 2012 | B2 |
8186587 | Zmood et al. | May 2012 | B2 |
8220367 | Hsu | Jul 2012 | B2 |
8235273 | Olson et al. | Aug 2012 | B2 |
8241322 | Whitman et al. | Aug 2012 | B2 |
8272554 | Whitman et al. | Sep 2012 | B2 |
8292150 | Bryant | Oct 2012 | B2 |
8292888 | Whitman | Oct 2012 | B2 |
8303581 | Arts et al. | Nov 2012 | B2 |
8342379 | Whitman et al. | Jan 2013 | B2 |
8348855 | Hillely et al. | Jan 2013 | B2 |
8353440 | Whitman et al. | Jan 2013 | B2 |
8357144 | Whitman et al. | Jan 2013 | B2 |
8365633 | Simaan et al. | Feb 2013 | B2 |
8365972 | Aranyi et al. | Feb 2013 | B2 |
8371492 | Aranyi et al. | Feb 2013 | B2 |
8372057 | Cude et al. | Feb 2013 | B2 |
8391957 | Carlson et al. | Mar 2013 | B2 |
8424739 | Racenet et al. | Apr 2013 | B2 |
8454585 | Whitman | Jun 2013 | B2 |
8505802 | Viola et al. | Aug 2013 | B2 |
8517241 | Nicholas et al. | Aug 2013 | B2 |
8551076 | Duval et al. | Oct 2013 | B2 |
8561871 | Rajappa et al. | Oct 2013 | B2 |
8623000 | Humayun et al. | Jan 2014 | B2 |
8632463 | Drinan et al. | Jan 2014 | B2 |
8647258 | Aranyi et al. | Feb 2014 | B2 |
8657174 | Yates et al. | Feb 2014 | B2 |
8657177 | Scirica et al. | Feb 2014 | B2 |
8672206 | Aranyi et al. | Mar 2014 | B2 |
8696552 | Whitman | Apr 2014 | B2 |
8708213 | Shelton, IV et al. | Apr 2014 | B2 |
8752749 | Moore et al. | Jun 2014 | B2 |
8758391 | Swayze et al. | Jun 2014 | B2 |
8806973 | Ross et al. | Aug 2014 | B2 |
8851355 | Aranyi et al. | Oct 2014 | B2 |
8858571 | Shelton, IV et al. | Oct 2014 | B2 |
8875972 | Weisenburgh, II et al. | Nov 2014 | B2 |
8893946 | Boudreaux et al. | Nov 2014 | B2 |
8899462 | Kostrzewski et al. | Dec 2014 | B2 |
8939344 | Olson et al. | Jan 2015 | B2 |
8960519 | Whitman et al. | Feb 2015 | B2 |
8961396 | Azarbarzin et al. | Feb 2015 | B2 |
8967443 | McCuen | Mar 2015 | B2 |
8968276 | Zemlok et al. | Mar 2015 | B2 |
8968337 | Whitfield et al. | Mar 2015 | B2 |
8992422 | Spivey et al. | Mar 2015 | B2 |
9064653 | Prest et al. | Jun 2015 | B2 |
9113875 | Viola et al. | Aug 2015 | B2 |
9216013 | Scirica et al. | Dec 2015 | B2 |
9282961 | Whitman et al. | Mar 2016 | B2 |
9282963 | Bryant | Mar 2016 | B2 |
9295522 | Kostrzewski | Mar 2016 | B2 |
9307986 | Hall et al. | Apr 2016 | B2 |
9597104 | Nicholas et al. | Mar 2017 | B2 |
20020049454 | Whitman et al. | Apr 2002 | A1 |
20020165541 | Whitman | Nov 2002 | A1 |
20030038938 | Jung et al. | Feb 2003 | A1 |
20030165794 | Matoba | Sep 2003 | A1 |
20040111012 | Whitman | Jun 2004 | A1 |
20040133189 | Sakurai | Jul 2004 | A1 |
20040176751 | Weitzner et al. | Sep 2004 | A1 |
20050103819 | Racenet et al. | May 2005 | A1 |
20050131442 | Yachia et al. | Jun 2005 | A1 |
20060142656 | Malackowski et al. | Jun 2006 | A1 |
20060142740 | Sherman et al. | Jun 2006 | A1 |
20060278680 | Viola et al. | Dec 2006 | A1 |
20070023476 | Whitman et al. | Feb 2007 | A1 |
20070023477 | Whitman et al. | Feb 2007 | A1 |
20070029363 | Popov | Feb 2007 | A1 |
20070055219 | Whitman et al. | Mar 2007 | A1 |
20070084897 | Shelton et al. | Apr 2007 | A1 |
20070102472 | Shelton | May 2007 | A1 |
20070152014 | Gillum et al. | Jul 2007 | A1 |
20070175949 | Shelton et al. | Aug 2007 | A1 |
20070175950 | Shelton et al. | Aug 2007 | A1 |
20070175951 | Shelton et al. | Aug 2007 | A1 |
20070175955 | Shelton et al. | Aug 2007 | A1 |
20070175961 | Shelton et al. | Aug 2007 | A1 |
20080029570 | Shelton et al. | Feb 2008 | A1 |
20080029573 | Shelton et al. | Feb 2008 | A1 |
20080029574 | Shelton et al. | Feb 2008 | A1 |
20080029575 | Shelton et al. | Feb 2008 | A1 |
20080058801 | Taylor et al. | Mar 2008 | A1 |
20080109012 | Falco et al. | May 2008 | A1 |
20080110958 | McKenna et al. | May 2008 | A1 |
20080167736 | Swayze et al. | Jul 2008 | A1 |
20080185419 | Smith et al. | Aug 2008 | A1 |
20080188841 | Tomasello et al. | Aug 2008 | A1 |
20080197167 | Viola et al. | Aug 2008 | A1 |
20080208195 | Shores et al. | Aug 2008 | A1 |
20080237296 | Boudreaux et al. | Oct 2008 | A1 |
20080249551 | Sunaoshi et al. | Oct 2008 | A1 |
20080251561 | Eades et al. | Oct 2008 | A1 |
20080255413 | Zemlok et al. | Oct 2008 | A1 |
20080255607 | Zemlok | Oct 2008 | A1 |
20080262654 | Omori et al. | Oct 2008 | A1 |
20080308603 | Shelton et al. | Dec 2008 | A1 |
20090090763 | Zemlok et al. | Apr 2009 | A1 |
20090099876 | Whitman | Apr 2009 | A1 |
20090138006 | Bales et al. | May 2009 | A1 |
20090171147 | Lee et al. | Jul 2009 | A1 |
20090182193 | Whitman et al. | Jul 2009 | A1 |
20090209990 | Yates et al. | Aug 2009 | A1 |
20090254094 | Knapp et al. | Oct 2009 | A1 |
20100069942 | Shelton, IV | Mar 2010 | A1 |
20100193568 | Scheib et al. | Aug 2010 | A1 |
20100211053 | Ross et al. | Aug 2010 | A1 |
20100225073 | Porter et al. | Sep 2010 | A1 |
20110006101 | Hall et al. | Jan 2011 | A1 |
20110017801 | Zemlok et al. | Jan 2011 | A1 |
20110071508 | Duval et al. | Mar 2011 | A1 |
20110077673 | Grubac et al. | Mar 2011 | A1 |
20110121049 | Malinouskas et al. | May 2011 | A1 |
20110125138 | Malinouskas et al. | May 2011 | A1 |
20110139851 | McCuen | Jun 2011 | A1 |
20110155783 | Rajappa et al. | Jun 2011 | A1 |
20110155786 | Shelton, IV | Jun 2011 | A1 |
20110172648 | Jeong | Jul 2011 | A1 |
20110174099 | Ross et al. | Jul 2011 | A1 |
20110204119 | McCuen | Aug 2011 | A1 |
20110218522 | Whitman | Sep 2011 | A1 |
20110253765 | Nicholas et al. | Oct 2011 | A1 |
20110276057 | Conlon et al. | Nov 2011 | A1 |
20110290854 | Timm et al. | Dec 2011 | A1 |
20110295242 | Spivey et al. | Dec 2011 | A1 |
20110295269 | Swensgard et al. | Dec 2011 | A1 |
20120000962 | Racenet et al. | Jan 2012 | A1 |
20120074199 | Olson et al. | Mar 2012 | A1 |
20120089131 | Zemlok et al. | Apr 2012 | A1 |
20120104071 | Bryant | May 2012 | A1 |
20120116368 | Viola | May 2012 | A1 |
20120143002 | Aranyi et al. | Jun 2012 | A1 |
20120172924 | Allen, IV | Jul 2012 | A1 |
20120223121 | Viola et al. | Sep 2012 | A1 |
20120245428 | Smith et al. | Sep 2012 | A1 |
20120253329 | Zemlok et al. | Oct 2012 | A1 |
20120310220 | Malkowski et al. | Dec 2012 | A1 |
20120323226 | Chowaniec et al. | Dec 2012 | A1 |
20120330285 | Hartoumbekis et al. | Dec 2012 | A1 |
20130018361 | Bryant | Jan 2013 | A1 |
20130093149 | Saur et al. | Apr 2013 | A1 |
20130098966 | Kostrzewski et al. | Apr 2013 | A1 |
20130098968 | Aranyi et al. | Apr 2013 | A1 |
20130098969 | Scirica et al. | Apr 2013 | A1 |
20130181035 | Milliman | Jul 2013 | A1 |
20130184704 | Beardsley et al. | Jul 2013 | A1 |
20130214025 | Zemlok et al. | Aug 2013 | A1 |
20130240596 | Whitman | Sep 2013 | A1 |
20130274722 | Kostrzewski et al. | Oct 2013 | A1 |
20130282052 | Aranyi et al. | Oct 2013 | A1 |
20130292451 | Viola et al. | Nov 2013 | A1 |
20130313304 | Shelton, IV et al. | Nov 2013 | A1 |
20130317486 | Nicholas et al. | Nov 2013 | A1 |
20130319706 | Nicholas et al. | Dec 2013 | A1 |
20130324978 | Nicholas et al. | Dec 2013 | A1 |
20130324979 | Nicholas et al. | Dec 2013 | A1 |
20130334281 | Williams | Dec 2013 | A1 |
20140012236 | Williams et al. | Jan 2014 | A1 |
20140012237 | Pribanic et al. | Jan 2014 | A1 |
20140012289 | Snow et al. | Jan 2014 | A1 |
20140025046 | Williams et al. | Jan 2014 | A1 |
20140110455 | Ingmanson et al. | Apr 2014 | A1 |
20140207125 | Applegate et al. | Jul 2014 | A1 |
20140207182 | Zergiebel et al. | Jul 2014 | A1 |
20140236173 | Scirica et al. | Aug 2014 | A1 |
20140236174 | Williams et al. | Aug 2014 | A1 |
20140276932 | Williams et al. | Sep 2014 | A1 |
20140299647 | Scirica et al. | Oct 2014 | A1 |
20140303668 | Nicholas et al. | Oct 2014 | A1 |
20140358129 | Zergiebel et al. | Dec 2014 | A1 |
20140361068 | Aranyi et al. | Dec 2014 | A1 |
20140373652 | Zergiebel et al. | Dec 2014 | A1 |
20150048144 | Whitman | Feb 2015 | A1 |
20150076205 | Zergiebel | Mar 2015 | A1 |
20150080912 | Sapre | Mar 2015 | A1 |
20150157321 | Zergiebel et al. | Jun 2015 | A1 |
20150164502 | Richard et al. | Jun 2015 | A1 |
20150272577 | Zemlok et al. | Oct 2015 | A1 |
20150297199 | Nicholas et al. | Oct 2015 | A1 |
20150303996 | Calderoni | Oct 2015 | A1 |
20150320420 | Penna et al. | Nov 2015 | A1 |
20150327850 | Kostrzewski | Nov 2015 | A1 |
20150342601 | Williams et al. | Dec 2015 | A1 |
20150342603 | Zergiebel et al. | Dec 2015 | A1 |
20150374366 | Zergiebel et al. | Dec 2015 | A1 |
20150374370 | Zergiebel et al. | Dec 2015 | A1 |
20150374371 | Richard et al. | Dec 2015 | A1 |
20150374372 | Zergiebel et al. | Dec 2015 | A1 |
20150374449 | Chowaniec et al. | Dec 2015 | A1 |
20150380187 | Zergiebel et al. | Dec 2015 | A1 |
20160095585 | Zergiebel et al. | Apr 2016 | A1 |
20160095596 | Scirica et al. | Apr 2016 | A1 |
20160106406 | Cabrera et al. | Apr 2016 | A1 |
20160113648 | Zergiebel et al. | Apr 2016 | A1 |
20160113649 | Zergiebel et al. | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
2008229795 | Apr 2009 | AU |
2451558 | Jan 2003 | CA |
101856251 | Oct 2010 | CN |
101953793 | Jan 2011 | CN |
102247182 | Nov 2011 | CN |
102008053842 | May 2010 | DE |
0634144 | Jan 1995 | EP |
0648476 | Apr 1995 | EP |
0686374 | Dec 1995 | EP |
0705571 | Apr 1996 | EP |
1690502 | Aug 2006 | EP |
1723913 | Nov 2006 | EP |
1736112 | Dec 2006 | EP |
1759652 | Mar 2007 | EP |
1769754 | Apr 2007 | EP |
1772105 | Apr 2007 | EP |
1813199 | Aug 2007 | EP |
1813203 | Aug 2007 | EP |
1813211 | Aug 2007 | EP |
1908412 | Apr 2008 | EP |
1917929 | May 2008 | EP |
1943954 | Jul 2008 | EP |
1943956 | Jul 2008 | EP |
1943958 | Jul 2008 | EP |
1943976 | Jul 2008 | EP |
1952769 | Aug 2008 | EP |
2005898 | Dec 2008 | EP |
2027819 | Feb 2009 | EP |
2044890 | Apr 2009 | EP |
2055243 | May 2009 | EP |
2090247 | Aug 2009 | EP |
2098170 | Sep 2009 | EP |
2100561 | Sep 2009 | EP |
2100562 | Sep 2009 | EP |
2165664 | Mar 2010 | EP |
2236098 | Oct 2010 | EP |
2245994 | Nov 2010 | EP |
2263568 | Dec 2010 | EP |
2272443 | Jan 2011 | EP |
2316345 | May 2011 | EP |
2324776 | May 2011 | EP |
2329773 | Jun 2011 | EP |
2333509 | Jun 2011 | EP |
2377471 | Oct 2011 | EP |
2377472 | Oct 2011 | EP |
2446834 | May 2012 | EP |
2462878 | Jun 2012 | EP |
2462880 | Jun 2012 | EP |
2491872 | Aug 2012 | EP |
2586382 | May 2013 | EP |
2606834 | Jun 2013 | EP |
2668910 | Dec 2013 | EP |
2676615 | Dec 2013 | EP |
2815705 | Dec 2014 | EP |
2333509 | Feb 2010 | ES |
2861574 | May 2005 | FR |
08038488 | Feb 1996 | JP |
2005125075 | May 2005 | JP |
2011115594 | Jun 2011 | JP |
2011125721 | Jun 2011 | JP |
2011189136 | Sep 2011 | JP |
20120022521 | Mar 2012 | KR |
9915086 | Apr 1999 | WO |
0072760 | Dec 2000 | WO |
0072765 | Dec 2000 | WO |
03000138 | Jan 2003 | WO |
03007769 | Jan 2003 | WO |
03026511 | Apr 2003 | WO |
03030743 | Apr 2003 | WO |
03065916 | Aug 2003 | WO |
03077769 | Sep 2003 | WO |
03090630 | Nov 2003 | WO |
2004107989 | Dec 2004 | WO |
2006042210 | Apr 2006 | WO |
2007016290 | Feb 2007 | WO |
2007026354 | Mar 2007 | WO |
2007026354 | Mar 2007 | WO |
2007137304 | Nov 2007 | WO |
2008131362 | Oct 2008 | WO |
2008133956 | Nov 2008 | WO |
2009039506 | Mar 2009 | WO |
2007014355 | Apr 2009 | WO |
2009132359 | Oct 2009 | WO |
2009143092 | Nov 2009 | WO |
2009149234 | Dec 2009 | WO |
2011108840 | Sep 2011 | WO |
2012040984 | Apr 2012 | WO |
2012040984 | Apr 2012 | WO |
2012061640 | May 2012 | WO |
Entry |
---|
International Search Report corresponding to PCT/US2005/027266, completed May 30, 2008 and mailed Jun. 18, 2008; (2 pp.). |
Extended European Search Report corresponding to EP 08 25 3184.9, completed Feb. 12, 2009 and mailed Feb. 27, 2009; (3 pp.). |
Extended European Search Report corresponding to EP 10 25 0228.3, completed May 20, 2010 and mailed Jun. 1, 2010; (6 pp.). |
Extended European Search Report corresponding to EP 10 25 2037.6, completed Mar. 1, 2011 and mailed Mar. 9, 2011; (3 pp.). |
Extended European Search Report corresponding to EP 10 25 1968.3, completed on Jul. 4, 2011 and mailed Jul. 14, 2011; (12 pp.). |
Extended European Search Report corresponding to EP 11 15 2266.0, completed Jul. 15, 2011 and mailed Jul. 28, 2011; (3 pp.). |
Extended European Search Report corresponding to EP 11 25 0462.6, completed Jul. 20, 2011 and mailed Jul. 28, 2011; (6 pp.). |
Extended European Search Report corresponding to EP 11 25 0771.0, completed Feb. 7, 2012 and mailed Feb. 17, 2012; (3 pp.). |
Extended European Search Report corresponding to EP 06 78 8914.7, completed May 3, 2012 and mailed May 11, 2012; (8 pp.). |
Partial European Search Report corresponding to EP 12 18 6177.7, completed Jan. 30, 2013 and mailed Feb. 12, 2013; (6 pp.). |
Extended European Search Report corresponding to EP 08 25 2703.7, completed Oct. 23, 2008 and mailed Oct. 31, 2008; (7 pp.). |
Extended European Search Report corresponding to EP No. 13 16 3033.7, completed Jun. 27, 2013 and mailed Jul. 15, 2013; (8 pp). |
Extended European Search Report corresponding to EP No. 11 17 8021.9, mailed Jun. 4, 2013; (3 pp). |
Extended European Search Report corresponding to EP No. 12 18 6177.7, completed Aug. 14, 2013 and mailed Aug. 23, 2013; (8 pp). |
Partial European Search Report corresponding to EP No. 13 17 2400.7, completed Sep. 18, 2013 and mailed Oct. 1, 2013; (7 pp). |
Partial European Search Report corresponding to EP No. 13 17 1742.3, completed Sep. 17, 2013 and mailed Sep. 25, 2013; (8 pp). |
Extended European Search Report corresponding to EP No. 13 17 5475.6, completed Sep. 23, 2013 and mailed Oct. 1, 2013; (8 pp). |
Extended European Search Report corresponding to EP No. 13 17 5478.0, completed Sep. 24, 2013 and mailed Oct. 2, 2013; (6 pp). |
Extended European Search Report corresponding to EP No. 08 25 2703.7, completed Oct. 23, 2008 and mailed Oct. 31, 2008; (7 pp). |
Extended European Search Report corresponding to EP No. 13 17 5479.8, completed Sep. 27, 2013 and mailed Oct. 10, 2013; (7 pp). |
Partial Extended European Search Report corresponding to EP 13 17 5477.2, completed Oct. 7, 2013 and mailed Oct. 15, 2013; (7 pp). |
European search Report from Appl. No. 13177163.6 dated Nov. 15, 2013. (8 pp). |
Extended European Search Report from EP Application No. 13172400.7 dated Jan. 21, 2014. |
Extended European Search Report from EP Application No. 13189026.1 dated Jan. 31, 2014. |
The extended European Search Report from Application No. EP 13177163.6 dated Feb. 6, 2014. |
Extended European Search Report from Application No. EP 13175477.2 dated Feb. 6, 2014. |
Extended European Search Report from Application No. EP 13169998.5 dated Feb. 24, 2014. |
Extended European Search Report corresponding to EP 13176805.3, dated Nov. 4, 2013. |
Extended European Search Report from Application No. EP 13171742.3 dated Jan. 3, 2014. |
Extended European Search Report from Application No. EP 13177163.6 dated Feb. 6, 2014. |
Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015. |
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016. |
Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016. |
Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015. |
Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015. |
Australian Examination Report No. 1 corresponding to International Application No. AU 2014204542 dated Jan. 7, 2016. |
Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016. |
European Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015. |
European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016. |
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015. |
Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015. |
Partial European Search Report corresponding to International Application No. EP 15 19 0643.5 dated Feb. 26, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016. |
Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 17 3807.7 dated Nov. 24, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016. |
Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015. |
European Office Action corresponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015. |
Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016. |
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, mailed Dec. 21, 2015. |
Chinese Office Action dated May 5, 2016 for application No. 2013102176333. |
Extended European Search Report for Application No. 13169995.1 dated May 18, 2016. |
Chinese Office Action dated May 30, 2016, issued in Chinese Application No. 201310217662. |
European Search Report dated May 31, 2016, issued in European Application No. 13169993.6. |
Australian Examination Report dated Oct. 24, 2016, issued in Australian Application No. 2013205875. |
Australian Office Action dated Nov. 2, 2016, issued in Australian Application No. 2013205870. |
Chinese Office Action dated Jan. 16, 2017, issued in CN Application No. 201310217633. |
Japanese Office Action dated Feb. 14, 2017, issued in JP Appln. No. 2013-115433. |
Japanese Office Action dated Mar. 28, 2017, issued in JP Application No. 2013112658. |
International Search Report corresponding to PCT/US2005/027266, completed May 30, 2008 and dated Jun. 18, 2008; (2 pp.). |
Extended European Search Report corresponding to EP 08 25 3184.9, completed Feb. 12, 2009 and dated Feb. 27, 2009; (3 pp.). |
Extended European Search Report corresponding to EP 10 25 0228.3, completed May 20, 2010 and dated Jun. 1, 2010; (6 pp.). |
Extended European Search Report corresponding to EP 10 25 2037.6, completed Mar. 1, 2011 and dated Mar. 9, 2011; (3 pp.). |
Extended European Search Report corresponding to EP 10 25 1968.3, completed on Jul. 4, 2011 and dated Jul. 14, 2011; (12 pp.). |
Extended European Search Report corresponding to EP 11 15 2266.0, completed Jul. 15, 2011 and dated Jul. 28, 2011; (3 pp.). |
Extended European Search Report corresponding to EP 11 25 0462.6, completed Jul. 20, 2011 and dated Jul. 28, 2011; (6 pp.). |
Extended European Search Report corresponding to EP 11 25 0771.0, completed Feb. 7, 2012 and dated Feb. 17, 2012; (3 pp.). |
Extended European Search Report corresponding to EP 06 78 8914.7, completed May 3, 2012 and dated May 11, 2012; (8 pp.). |
Partial European Search Report corresponding to EP 12 18 6177.7, completed Jan. 30, 2013 and dated Feb. 12, 2013; 6 pp.). |
Extended European Search Report corresponding to EP No. 11 17 8021.9, dated Jun. 4, 2013; (3 pp). |
Extended European Search Report corresponding to EP No. 13 16 3033.7, completed Jun. 27, 2013 and dated Jul. 15. 2013; (8 pp). |
Extended European Search Report corresponding to EP No. 12 18 6177.7, completed Aug. 14, 2013 and dated Aug. 23, 2013; (8 pp). |
Partial European Search Report corresponding to EP No. 13 17 1742.3, completed Sep. 17, 2013 and dated Sep. 25, 2013; (8 pp). |
Partial European Search Report corresponding to EP No. 13 17 2400.7, completed Sep. 18, 2013 and dated Oct. 1, 2013; (7 pp). |
Extended European Search Report corresponding to EP No. 13 17 5475.6, completed Sep. 23, 2013 and dated Oct. 1, 2013; (8 pp). |
Extended European Search Report corresponding to EP No. 13 17 5478.0, completed Sep. 24, 2013 and dated Oct. 2, 2013; (6 pp). |
Extended European Search Report corresponding to EP No. 13 17 5479.8, completed Sep. 27, 2013 and dated Oct. 10, 2013; (7 pp). |
Partial Extended European Search Report corresponding to EP 13 17 5477.2, completed Oct. 7, 2013 and dated Oct. 15, 2013; (7 pp). |
Extended European Search Report corresponding to EP No. 08 25 2703.7, completed Oct. 23, 2008 and dated Oct. 31, 2008; (7 pp). |
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, dated Dec. 21, 2015. |
Extended European Search Report dated Oct. 14, 2019 issued in corresponding EP Appln. No. 19178144.2. |
Australian Patent Examination Report No. 1, dated Jan. 7, 2016, corresponding to Australian Patent Application No. 2014204542; 4 pages. |
Extended European Search Report corresponding to EP 08 25 2703.7, completed Oct. 23, 2008 and dated Oct. 31, 2008; (7 pp.). |
Number | Date | Country | |
---|---|---|---|
20220022870 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
61654191 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16773798 | Jan 2020 | US |
Child | 17386156 | US | |
Parent | 15451472 | Mar 2017 | US |
Child | 16773798 | US | |
Parent | 13875571 | May 2013 | US |
Child | 15451472 | US |