Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use

Information

  • Patent Grant
  • 12053180
  • Patent Number
    12,053,180
  • Date Filed
    Tuesday, July 27, 2021
    3 years ago
  • Date Issued
    Tuesday, August 6, 2024
    2 months ago
Abstract
The present disclosure relates to a surgical device including an adapter assembly for selectively interconnecting an end effector and the device housing. The adapter assembly includes at least one drive converter assembly that converts and transmits a rotation of the rotatable drive shaft to an axial translation of at least one axially translatable drive member of the end effector. A first drive converter assembly includes a first drive element, a nut, an articulation sleeve, an articulation bearing, and an articulation link. Rotation of the rotatable drive shaft results in rotation of the first drive element. Rotation of the first drive element results in axial translation of the nut, the articulation sleeve, the articulation bearing, the articulation link, and the at least one axially translatable drive member of the end effector.
Description
BACKGROUND
1. Technical Field

The present disclosure relates to surgical devices and/or systems, surgical adapters and their methods of use. More specifically, the present disclosure relates to hand held powered surgical devices, surgical adapters and/or adapter assemblies for use between and for interconnecting the powered, rotating and/or articulating surgical device or handle assembly and an end effector for clamping, cutting and/or stapling tissue.


2. Background of Related Art

One type of surgical device is a linear clamping, cutting and stapling device. Such a device may be employed in a surgical procedure to resect a cancerous or anomalous tissue from a gastro-intestinal tract. Conventional linear clamping, cutting and stapling instruments include a pistol grip-styled structure having an elongated shaft and distal portion. The distal portion includes a pair of scissors-styled gripping elements, which clamp the open ends of the colon closed. In this device, one of the two scissors-styled gripping elements, such as the anvil portion, moves or pivots relative to the overall structure, whereas the other gripping element remains fixed relative to the overall structure. The actuation of this scissoring device (the pivoting of the anvil portion) is controlled by a grip trigger maintained in the handle.


In addition to the scissoring device, the distal portion also includes a stapling mechanism. The fixed gripping element of the scissoring mechanism includes a staple cartridge receiving region and a mechanism for driving the staples up through the clamped end of the tissue against the anvil portion, thereby sealing the previously opened end. The scissoring elements may be integrally formed with the shaft or may be detachable such that various scissoring and stapling elements may be interchangeable.


A number of surgical device manufacturers have developed product lines with proprietary drive systems for operating and/or manipulating the surgical device. In many instances the surgical devices include a handle assembly, which is reusable, and a disposable end effector or the like that is selectively connected to the handle assembly prior to use and then disconnected from the end effector following use in order to be disposed of or in some instances sterilized for re-use.


Many of the existing end effectors for use with many of the existing surgical devices and/or handle assemblies are driven by a linear force. For examples, end effectors for performing endo-gastrointestinal anastomosis procedures, end-to-end anastomosis procedures and transverse anastomosis procedures, each typically require a linear driving force in order to be operated. As such, these end effectors are not compatible with surgical devices and/or handle assemblies that use a rotary motion to deliver power or the like.


In order to make the linear driven end effectors compatible with surgical devices and/or handle assemblies that use a rotary motion to deliver power, a need exists for adapters and/or adapter assemblies to interface between and interconnect the linear driven end effectors with the rotary driven surgical devices and/or handle assemblies.


SUMMARY

The present disclosure relates to a surgical device comprising a device housing, at last one drive motor, a battery, a circuit board, an end effector, and an adapter assembly. The device housing defines a connecting portion for selectively connecting with the adapter assembly. The at least one drive motor is supported in the device housing and is configured to rotate at least one drive shaft. The battery is disposed in electrical communication with the at least one drive motor. The circuit board is disposed within the housing for controlling power delivered from the battery to the at least one drive motor. The end effector is configured to perform at least one function and includes at least one axially translatable drive member. The adapter assembly is for selectively interconnecting the end effector and the device housing, and includes a knob housing, and at least one drive converter assembly. The knob housing is configured and adapted for selective connection to the device housing and to be in operative communication with each of the at least one rotatable drive shaft. The at least one drive converter assembly is for interconnecting a respective one of the at least one rotatable drive shaft and one of the at least one axially translatable drive member of the end effector. The at least one drive converter assembly converts and transmits a rotation of the rotatable drive shaft to an axial translation of the at least one axially translatable drive member of the end effector. The at least one drive converter assembly includes a first drive converter assembly including a first drive element, a nut, an articulation sleeve, an articulation bearing, and an articulation link. The first drive element is rotatably supported in the knob housing. A proximal end of the first drive element is engagable with the rotatable drive shaft. The nut is threadably connected to a threaded distal portion of the first drive element. A proximal portion of the articulation sleeve is disposed in mechanical cooperation with the nut. The articulation bearing is disposed in mechanical cooperation with a distal portion of the articulation sleeve. A proximal portion of the articulation link is disposed in mechanical cooperation with the articulation bearing. A distal portion of the articulation link is configured for selective engagement with the at least one axially translatable drive member of the end effector. Rotation of the rotatable drive shaft results in rotation of the first drive element. Rotation of the first drive element results in axial translation of the nut, the articulation sleeve, the articulation bearing, the articulation link, and the at least one axially translatable drive member of the end effector.


In disclosed embodiments, the articulation bearing is configured for axial and rotatable movement with respect to the knob housing.


In disclosed embodiments, the distal portion of the articulation sleeve is disposed in mechanically cooperation with a radially inner portion of the articulation bearing. Here, it is disclosed that the proximal portion of the articulation link is disposed in mechanical cooperation with a radially outer portion of the articulation bearing.


In disclosed embodiments, a second drive converter assembly is included and comprises a second drive element, a first gear, a second gear, and a gear ring. The second drive element is rotatably supported in the knob housing. A proximal end of the second drive element is connectable to a second rotatable drive shaft of the surgical device. The first gear is disposed in mechanical cooperation with a distal portion of the second drive element. The second gear is disposed in mechanical cooperation with the first gear. The gear ring is disposed in mechanical cooperation with the second gear and is disposed in mechanical cooperation with the end effector. The gear ring is fixed from rotation with respect to the knob housing. Rotation of the second rotatable drive shaft causes rotation of the first gear, rotation of the first gear causes rotation of the second gear, rotation of the second gear causes rotation of the gear ring, and rotation of the gear ring causes rotation of the end effector. Here, it is disclosed that the knob housing includes a drive coupling housing, which is rotatable with respect to the remainder of the knob housing. Here, it is disclosed that a rotation bearing is included, and the drive coupling housing is rotationally fixed to the rotation bearing. The knob housing is rotatable with respect to the rotation bearing. Here, it is disclosed that the gear ring includes a plurality of teeth disposed around an inner periphery thereof.


In disclosed embodiments, a distal portion of the articulation link includes a slot therein configured to releasably accept a portion of the at least one axially translatable drive member of the end effector. Here, it is disclosed that the slot includes a tapered opening.


The present disclosure also relates to an adapter assembly for selectively interconnecting a surgical end effector and a handle assembly having at least one rotatable drive shaft. The adapter assembly comprises a knob housing, ant at least one drive converter assembly. The knob housing is configured and adapted for selective connection to a handle assembly. The knob housing includes a drive coupling housing. The at least one drive converter assembly is for interconnecting a respective one of the at least one rotatable drive shaft and a portion of a surgical end effector. The at least one drive converter assembly converts and transmits a rotation of the rotatable drive shaft to an axial translation of the at least one axially translatable drive member of the end effector. The at least one drive converter assembly includes a first drive converter assembly including a drive element, a first gear, a second gear, a gear ring and a rotation bearing. The drive element is rotatably supported in the adapter housing. The first gear is disposed in mechanical cooperation with a distal portion of the drive element. The second gear is disposed in mechanical cooperation with the first gear. The gear ring is disposed in mechanical cooperation with the second gear and is disposed in mechanical cooperation with an end effector-engaging portion of the adapter assembly. The gear ring is fixed from rotation with respect to the adapter housing. The drive coupling housing is rotationally fixed to the rotation bearing, and the knob housing is rotatable with respect to the rotation bearing. Rotation of the drive element causes rotation of the first gear; rotation of the first gear causes rotation of the second gear; rotation of the second gear causes rotation of the gear ring; and rotation of the gear ring causes rotation of the end effector-engaging portion of the adapter assembly.


In disclosed embodiments, the gear ring includes a plurality of teeth disposed around an inner periphery thereof.


In disclosed embodiments, the drive coupling housing is rotatable with respect to the remainder of the knob housing.


In disclosed embodiments, a second drive converter assembly is included and comprises a second drive element, a nut, an articulation sleeve, and an articulation link. The second drive element is rotatably supported in the knob housing. The nut is threadably connected to a threaded distal portion of the second drive element. A proximal portion of the articulation sleeve is disposed in mechanical cooperation with the nut. The articulation bearing is disposed in mechanical cooperation with a distal portion of the articulation sleeve. A proximal portion of the articulation link is disposed in mechanical cooperation with the articulation bearing. A distal portion of the articulation link is configured for selective engagement with a portion of an end effector. Rotation of the second drive element results in axial translation of the nut, the articulation sleeve, the articulation bearing and the articulation link. Here, it is disclosed that the articulation bearing is configured for axial and rotatable movement with respect to the knob housing. Here, it is disclosed that distal portion of the articulation sleeve is disposed in mechanically cooperation with a radially inner portion of the articulation bearing. Here, it is disclosed that the proximal portion of the articulation link is disposed in mechanical cooperation with a radially outer portion of the articulation bearing.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure are described herein with reference to the accompanying drawings, wherein:



FIG. 1 is a perspective view, with parts separated, of a surgical device and adapter, in accordance with an embodiment of the present disclosure, illustrating a connection thereof with an end effector;



FIG. 2 is a perspective view of the surgical device of FIG. 1;



FIG. 3 is a perspective view, with parts separated, of the surgical device of FIGS. 1 and 2;



FIG. 4 is a perspective view of a battery for use in the surgical device of FIGS. 1-3;



FIG. 5 is a perspective view of the surgical device of FIGS. 1-3, with a housing thereof removed;



FIG. 6 is a perspective view of the connecting ends of each of the surgical device and the adapter, illustrating a connection therebetween;



FIG. 7 is a cross-sectional view of the surgical device of FIGS. 1-3, as taken through 7-7 of FIG. 2;



FIG. 8 is a cross-sectional view of the surgical device of FIGS. 1-3, as taken through 8-8 of FIG. 2;



FIG. 9 is a perspective view, with parts separated, of a trigger housing of the surgical device of FIGS. 1-3;



FIG. 10 is a perspective view of the adapter of FIG. 1;



FIG. 11 is a cross-sectional view of the adapter of FIGS. 1 and 10, as taken through 11-11 of FIG. 10;



FIG. 12 is an enlarged view of the indicated area of detail of FIG. 11;



FIG. 13 is an enlarged view of the indicated area of detail of FIG. 11;



FIG. 14 is a perspective view, with some parts omitted, of the adapter and a portion of a loading unit;



FIG. 15 is an enlarged view of the indicated area of detail of FIG. 14;



FIG. 16 is an enlarged view of the indicated area of detail of FIG. 14;



FIG. 17 is a perspective view of the distal end of the adapter engaged with a loading unit;



FIGS. 18 and 19 are perspective views of portions of the adapter with parts omitted;



FIG. 20. is a cross-sectional view of the adapter of FIGS. 1 and 10, as taken through 20-20 of FIG. 10;



FIG. 21 is an enlarged view of the indicated area of detail of FIG. 20;



FIG. 22 is an enlarged view of the indicated area of detail of FIG. 20;



FIG. 23 is a perspective view of a distal portion of the adapter;



FIG. 24 is a cut-away perspective view looking distally at the distal portion of the adapter as shown in FIG. 23;



FIG. 25 is a perspective view of a portion of the adapter with parts omitted;



FIG. 26 is a perspective view, with parts separated, of an exemplary end effector for use with the surgical device and the adapter of the present disclosure; and



FIG. 27 is a schematic illustration of the outputs to the LEDs; selection of motor (to select clamping/cutting, rotation or articulation); and selection of the drive motors to perform a function selected.





DETAILED DESCRIPTION OF EMBODIMENTS

Embodiments of the presently disclosed surgical devices, and adapter assemblies for surgical devices and/or handle assemblies are described in detail with reference to the drawings, in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein the term “distal” refers to that portion of the adapter assembly or surgical device, or component thereof, farther from the user, while the term “proximal” refers to that portion of the adapter assembly or surgical device, or component thereof, closer to the user.


A surgical device, in accordance with an embodiment of the present disclosure, is generally designated as 100, and is in the form of a powered hand held electromechanical instrument configured for selective attachment thereto of a plurality of different end effectors that are each configured for actuation and manipulation by the powered hand held electromechanical surgical instrument.


As illustrated in FIG. 1, surgical device 100 is configured for selective connection with an adapter 200, and, in turn, adapter 200 is configured for selective connection with an end effector or single use loading unit 300.


As illustrated in FIGS. 1-3, surgical device 100 includes a handle housing 102 having a lower housing portion 104, an intermediate housing portion 106 extending from and/or supported on lower housing portion 104, and an upper housing portion 108 extending from and/or supported on intermediate housing portion 106. Intermediate housing portion 106 and upper housing portion 108 are separated into a distal half-section 110a that is integrally formed with and extending from the lower portion 104, and a proximal half-section 110b connectable to distal half-section 110a by a plurality of fasteners. When joined, distal and proximal half-sections 110a, 110b define a handle housing 102 having a cavity 102a therein in which a circuit board 150 and a drive mechanism 160 is situated.


Distal and proximal half-sections 110a, 110b are divided along a plane that traverses a longitudinal axis “X” of upper housing portion 108, as seen in FIG. 3.


Handle housing 102 includes a gasket 112 extending completely around a rim of distal half-section and/or proximal half-section 110a, 110b and being interposed between distal half-section 110a and proximal half-section 110b. Gasket 112 seals the perimeter of distal half-section 110a and proximal half-section 110b. Gasket 112 functions to establish an air-tight seal between distal half-section 110a and proximal half-section 110b such that circuit board 150 and drive mechanism 160 are protected from sterilization and/or cleaning procedures.


In this manner, the cavity 102a of handle housing 102 is sealed along the perimeter of distal half-section 110a and proximal half-section 110b yet is configured to enable easier, more efficient assembly of circuit board 150 and a drive mechanism 160 in handle housing 102.


Intermediate housing portion 106 of handle housing 102 provides a housing in which circuit board 150 is situated. Circuit board 150 is configured to control the various operations of surgical device 100, as will be set forth in additional detail below.


Lower housing portion 104 of surgical device 100 defines an aperture (not shown) formed in an upper surface thereof and which is located beneath or within intermediate housing portion 106. The aperture of lower housing portion 104 provides a passage through which wires 152 pass to electrically interconnect electrical components (a battery 156, as illustrated in FIG. 4, a circuit board 154, as illustrated in FIG. 3, etc.) situated in lower housing portion 104 with electrical components (circuit board 150, drive mechanism 160, etc.) situated in intermediate housing portion 106 and/or upper housing portion 108.


Handle housing 102 includes a gasket 103 disposed within the aperture of lower housing portion 104 (not shown) thereby plugging or sealing the aperture of lower housing portion 104 while allowing wires 152 to pass therethrough. Gasket 103 functions to establish an air-tight seal between lower housing portion 106 and intermediate housing portion 108 such that circuit board 150 and drive mechanism 160 are protected from sterilization and/or cleaning procedures.


As shown, lower housing portion 104 of handle housing 102 provides a housing in which a rechargeable battery 156, is removably situated. Battery 156 is configured to supply power to any of the electrical components of surgical device 100. Lower housing portion 104 defines a cavity (not shown) into which battery 156 is inserted. Lower housing portion 104 includes a door 105 pivotally connected thereto for closing cavity of lower housing portion 104 and retaining battery 156 therein.


With reference to FIGS. 3 and 5, distal half-section 110a of upper housing portion 108 defines a nose or connecting portion 108a. A nose cone 114 is supported on nose portion 108a of upper housing portion 108. Nose cone 114 is fabricated from a transparent material. An illumination member 116 is disposed within nose cone 114 such that illumination member 116 is visible therethrough. Illumination member 116 is in the form of a light emitting diode printed circuit board (LED PCB). Illumination member 116 is configured to illuminate multiple colors with a specific color pattern being associated with a unique discrete event.


Upper housing portion 108 of handle housing 102 provides a housing in which drive mechanism 160 is situated. As illustrated in FIG. 5, drive mechanism 160 is configured to drive shafts and/or gear components in order to perform the various operations of surgical device 100. In particular, drive mechanism 160 is configured to drive shafts and/or gear components in order to selectively move tool assembly 304 of end effector 300 (see FIGS. 1 and 20) relative to proximal body portion 302 of end effector 300, to rotate end effector 300 about a longitudinal axis “X” (see FIG. 3) relative to handle housing 102, to move anvil assembly 306 relative to cartridge assembly 308 of end effector 300, and/or to fire a stapling and cutting cartridge within cartridge assembly 308 of end effector 300.


The drive mechanism 160 includes a selector gearbox assembly 162 that is located immediately proximal relative to adapter 200. Proximal to the selector gearbox assembly 162 is a function selection module 163 having a first motor 164 that functions to selectively move gear elements within the selector gearbox assembly 162 into engagement with an input drive component 165 having a second motor 166.


As illustrated in FIGS. 1-4, and as mentioned above, distal half-section 110a of upper housing portion 108 defines a connecting portion 108a configured to accept a corresponding drive coupling assembly 210 of adapter 200.


As illustrated in FIGS. 6-8, connecting portion 108a of surgical device 100 has a cylindrical recess 108b that receives a drive coupling assembly 210 of adapter 200 when adapter 200 is mated to surgical device 100. Connecting portion 108a houses three rotatable drive connectors 118, 120, 122.


When adapter 200 is mated to surgical device 100, each of rotatable drive connectors 118, 120, 122 of surgical device 100 couples with a corresponding rotatable connector sleeve 218, 220, 222 of adapter 200. (see FIG. 6). In this regard, the interface between corresponding first drive connector 118 and first connector sleeve 218, the interface between corresponding second drive connector 120 and second connector sleeve 220, and the interface between corresponding third drive connector 122 and third connector sleeve 222 are keyed such that rotation of each of drive connectors 118, 120, 122 of surgical device 100 causes a corresponding rotation of the corresponding connector sleeve 218, 220, 222 of adapter 200.


The mating of drive connectors 118, 120, 122 of surgical device 100 with connector sleeves 218, 220, 222 of adapter 200 allows rotational forces to be independently transmitted via each of the three respective connector interfaces. The drive connectors 118, 120, 122 of surgical device 100 are configured to be independently rotated by drive mechanism 160. In this regard, the function selection module 163 of drive mechanism 160 selects which drive connector or connectors 118, 120, 122 of surgical device 100 is to be driven by the input drive component 165 of drive mechanism 160.


Since each of drive connectors 118, 120, 122 of surgical device 100 has a keyed and/or substantially non-rotatable interface with respective connector sleeves 218, 220, 222 of adapter 200, when adapter 200 is coupled to surgical device 100, rotational force(s) are selectively transferred from drive mechanism 160 of surgical device 100 to adapter 200.


The selective rotation of drive connector(s) 118, 120 and/or 122 of surgical device 100 allows surgical device 100 to selectively actuate different functions of end effector 300. As will be discussed in greater detail below, selective and independent rotation of first drive connector 118 of surgical device 100 corresponds to the selective and independent opening and closing of tool assembly 304 of end effector 300, and driving of a stapling/cutting component of tool assembly 304 of end effector 300. Also, the selective and independent rotation of second drive connector 120 of surgical device 100 corresponds to the selective and independent articulation of tool assembly 304 of end effector 300 transverse to longitudinal axis “X” (see FIG. 3). Additionally, the selective and independent rotation of third drive connector 122 of surgical device 100 corresponds to the selective and independent rotation of end effector 300 about longitudinal axis “X” (see FIG. 3) relative to handle housing 102 of surgical device 100.


As mentioned above and as illustrated in FIGS. 5 and 8, drive mechanism 160 includes a selector gearbox assembly 162; a function selection module 163, located proximal to the selector gearbox assembly 162, that functions to selectively move gear elements within the selector gearbox assembly 162 into engagement with second motor 166. Thus, drive mechanism 160 selectively drives one of drive connectors 118, 120, 122 of surgical device 100 at a given time.


As illustrated in FIGS. 1-3 and FIG. 9, handle housing 102 supports a trigger housing 107 on a distal surface or side of intermediate housing portion 108. Trigger housing 107, in cooperation with intermediate housing portion 108, supports a pair of finger-actuated control buttons 124, 126 and rocker devices 128, 130. In particular, trigger housing 107 defines an upper aperture 124a for slidably receiving a first control button 124, and a lower aperture 126b for slidably receiving a second control button 126.


Each one of the control buttons 124, 126 and rocker devices 128, 130 includes a respective magnet (not shown) that is moved by the actuation of an operator. In addition, circuit board 150 includes, for each one of the control buttons 124, 126 and rocker devices 128, 130, respective Hall-effect switches 150a-150d that are actuated by the movement of the magnets in the control buttons 124, 126 and rocker devices 128, 130. In particular, located immediately proximal to the control button 124 is a first Hall-effect switch 150a (see FIGS. 3 and 7) that is actuated upon the movement of a magnet within the control button 124 upon the operator actuating control button 124. The actuation of first Hall-effect switch 150a, corresponding to control button 124, causes circuit board 150 to provide appropriate signals to function selection module 163 and input drive component 165 of the drive mechanism 160 to close a tool assembly 304 of end effector 300 and/or to fire a stapling/cutting cartridge within tool assembly 304 of end effector 300.


Also, located immediately proximal to rocker device 128 is a second Hall-effect switch 150b (see FIGS. 3 and 7) that is actuated upon the movement of a magnet (not shown) within rocker device 128 upon the operator actuating rocker device 128. The actuation of second Hall-effect switch 150b, corresponding to rocker device 128, causes circuit board 150 to provide appropriate signals to function selection module 163 and input drive component 165 of drive mechanism 160 to articulate tool assembly 304 relative to body portion 302 of end effector 300. Advantageously, movement of rocker device 128 in a first direction causes tool assembly 304 to articulate relative to body portion 302 in a first direction, while movement of rocker device 128 in an opposite, e.g., second, direction causes tool assembly 304 to articulate relative to body portion 302 in an opposite, e.g., second, direction.


Furthermore, located immediately proximal to control button 126 is a third Hall-effect switch 150c (see FIGS. 3 and 7) that is actuated upon the movement of a magnet (not shown) within control button 126 upon the operator actuating control button 126. The actuation of third Hall-effect switch 150c, corresponding to control button 126, causes circuit board 150 to provide appropriate signals to function selection module 163 and input drive component 165 of drive mechanism 160 to open tool assembly 304 of end effector 300.


In addition, located immediately proximal to rocker device 130 is a fourth Hall-effect switch 150d (see FIGS. 3 and 7) that is actuated upon the movement of a magnet (not shown) within rocker device 130 upon the operator actuating rocker device 130. The actuation of fourth Hall-effect switch 150d, corresponding to rocker device 130, causes circuit board 150 to provide appropriate signals to function selection module 163 and input drive component 165 of drive mechanism 160 to rotate end effector 300 relative to handle housing 102 surgical device 100. Specifically, movement of rocker device 130 in a first direction causes end effector 300 to rotate relative to handle housing 102 in a first direction, while movement of rocker device 130 in an opposite, e.g., second, direction causes end effector 300 to rotate relative to handle housing 102 in an opposite, e.g., second, direction.


As seen in FIGS. 1-3, surgical device 100 includes a fire button or safety switch 132 supported between intermediate housing portion 108 and upper housing portion, and situated above trigger housing 107. In use, tool assembly 304 of end effector 300 is actuated between opened and closed conditions as needed and/or desired. In order to fire end effector 300, to expel fasteners therefrom when tool assembly 304 of end effector 300 is in a closed condition, safety switch 132 is depressed thereby instructing surgical device 100 that end effector 300 is ready to expel fasteners therefrom.


As illustrated in FIGS. 1 and 10-25, surgical device 100 is configured for selective connection with adapter 200, and, in turn, adapter 200 is configured for selective connection with end effector 300.


Adapter 200 is configured to convert a rotation of either of drive connectors 120 and 122 of surgical device 100 into axial translation useful for operating a drive assembly 360 and an articulation link 366 of end effector 300, as illustrated in FIG. 26 and as will be discussed in greater detail below.


Adapter 200 includes a first drive transmitting/converting assembly for interconnecting third rotatable drive connector 122 of surgical device 100 and a first axially translatable drive member 360 of end effector 300, wherein the first drive transmitting/converting assembly converts and transmits a rotation of third rotatable drive connector 122 of surgical device 100 to an axial translation of the first axially translatable drive assembly 360 of end effector 300 for firing.


Adapter 200 includes a second drive transmitting/converting assembly for interconnecting second rotatable drive connector 120 of surgical device 100 and a second axially translatable drive member 366 of end effector 300, wherein the second drive transmitting/converting assembly converts and transmits a rotation of second rotatable drive connector 120 of surgical device 100 to an axial translation of articulation link 366 of end effector 300 for articulation.


Turning now to FIG. 10, adapter 200 includes a knob housing 202 and an outer tube 206 extending from a distal end of knob housing 202. Knob housing 202 and outer tube 206 are configured and dimensioned to house the components of adapter 200. Outer tube 206 is dimensioned for endoscopic insertion, in particular, that outer tube is passable through a typical trocar port, cannula or the like. Knob housing 202 is dimensioned to not enter the trocar port, cannula of the like.


Knob housing 202 is configured and adapted to connect to connecting portion 108a of upper housing portion 108 of distal half-section 110a of surgical device 100.


As seen in FIGS. 10, 11 and 14 adapter 200 includes a surgical device drive coupling assembly 210 at a proximal end thereof and an end effector coupling assembly 230 at a distal end thereof. Drive coupling assembly 210 includes a drive coupling housing 210a rotatably supported, at least partially, in knob housing 202. Drive coupling assembly 210 rotatably supports a first rotatable proximal drive shaft or element 212, a second rotatable proximal drive shaft or element 214, and a third rotatable proximal drive shaft or element 216 therein (see FIG. 15, for example).


As seen in FIG. 19, drive coupling housing 210a is configured to rotatably support first, second and third connector sleeves 218, 220 and 222, respectively. Each of connector sleeves 218, 220, 222 is configured to mate with respective first, second and third drive connectors 118, 120, 122 of surgical device 100, as described above. Each of connector sleeves 218, 220, 222 is further configured to mate with a proximal end of respective first, second and third proximal drive shafts or elements 212, 214, 216.


With particular reference to FIGS. 19 and 22, proximal drive coupling assembly 210 includes a first, a second and a third biasing member 224, 226 and 228 disposed distally of respective first, second and third connector sleeves 218, 220, 222. Each of biasing members 224, 226 and 228 is disposed about respective first, second and third rotatable proximal drive shaft 212, 214 and 216. Biasing members 224, 226 and 228 act on respective connector sleeves 218, 220 and 222 to help maintain connector sleeves 218, 220 and 222 engaged with the distal end of respective drive rotatable drive connectors 118, 120, 122 of surgical device 100 when adapter 200 is connected to surgical device 100.


In particular, first, second and third biasing members 224, 226 and 228 function to bias respective connector sleeves 218, 220 and 222 in a proximal direction. In this manner, during assembly of adapter 200 to surgical device 100, if first, second and/or third connector sleeves 218, 220 and/or 222 is/are misaligned with the drive connectors 118, 120, 122 of surgical device 100, first, second and/or third biasing member(s) 224, 226 and/or 228 are compressed. Thus, when drive mechanism 160 of surgical device 100 is engaged, drive connectors 118, 120, 122 of surgical device 100 will rotate and first, second and/or third biasing member(s) 224, 226 and/or 228 will cause respective first, second and/or third connector sleeve(s) 218, 220 and/or 222 to slide back proximally, effectively coupling drive connectors 118, 120, 122 of surgical device 100 to first, second and/or third proximal drive shaft(s) 212, 214 and 216 of proximal drive coupling assembly 210.


Upon calibration of surgical device 100, each of drive connectors 118, 120, 122 of surgical device 100 is rotated and the bias on connector sleeve(s) 218, 220 and 222 properly seats connector sleeve(s) 218, 220 and 222 over the respective drive connectors 118, 120, 122 of surgical device 100 when the proper alignment is reached.


Adapter 200, as seen in FIGS. 11, 14 and 20, includes a first, a second and a third drive transmitting/converting assembly 240, 250, 260, respectively, disposed within handle housing 202 and outer tube 206. Each drive transmitting/converting assembly 240, 250, 260 is configured and adapted to transmit or convert a rotation of a first, second and third drive connector 118, 120, 122 of surgical device 100 into axial translation of a distal drive member 248 and drive bar (or articulation bar) 258 of adapter 200, to effectuate closing, opening, articulating and firing of end effector 300; or a rotation of ring gear 266 of adapter 200, to effectuate rotation of handle housing 202 of adapter 200.


As seen in FIGS. 11-13, first drive transmitting/converting assembly 240 includes a first distal drive shaft 242 rotatably supported within housing 202 and outer tube 206. A proximal end portion 242a of first distal drive shaft 242 extends distally from first proximal drive shaft 212. First distal drive shaft 242 further includes a threaded portion 242b having a threaded outer profile or surface.


First drive transmitting/converting assembly 240 further includes a drive coupling nut 244 rotatably coupled to threaded distal end portion 242b of first distal drive shaft 242, and which is slidably disposed within outer tube 206. Drive coupling nut 244 is keyed to an inner housing tube 206a of outer tube 206 so as to be prevented from rotation as first distal drive shaft 242 is rotated. In this manner, as first distal drive shaft 242 is rotated, drive coupling nut 244 is translated longitudinally through and/or along inner housing tube 206a of outer tube 206.


First drive transmitting/converting assembly 240 further includes a distal drive member 248 that is mechanically engaged with drive coupling nut 244, such that axial movement of drive coupling nut 244 results in a corresponding amount of axial movement of distal drive member 248. More particularly, distal end of coupling nut 244 includes at least one inwardly depending projection 245 that engages at least one corresponding groove 249 disposed on a proximal portion of the distal drive member 248 (see FIG. 11). The distal end portion of distal drive member 248 supports a connection member 247 configured and dimensioned for selective engagement with drive member 374 of drive assembly 360 of end effector 300.


In operation, as first rotatable proximal drive shaft 212 is rotated, due to a rotation of first connector sleeve 218, as a result of the rotation of the first respective drive connector 118 of surgical device 100, first distal drive shaft 242 rotates. As first distal drive shaft 242 is rotated, drive coupling nut 244 is caused to be translated axially along first distal drive shaft 242. As drive coupling nut 244 is caused to be translated axially along first distal drive shaft 242, distal drive member 248 is caused to be translated axially relative to inner housing tube 206a of outer tube 206. As distal drive member 248 is translated axially, with connection member 247 connected thereto and engaged with drive member 374 of drive assembly 360 of end effector 300, distal drive member 248 causes concomitant axial translation of drive member 374 of end effector 300 to effectuate a closure of tool assembly 304 and a firing of tool assembly 304 of end effector 300.


With reference to FIGS. 13-22, second drive converter assembly 250 of adapter 200 includes second rotatable proximal drive shaft 216 rotatably supported within drive coupling assembly 210. Second rotatable proximal drive shaft 216 includes a non-circular or shaped proximal end portion configured for connection with second connector or coupler 222 which is connected to respective second connector 120 of surgical device 100. Second rotatable proximal drive shaft 216 further includes a distal end portion 216b having a threaded outer profile or surface.


Distal end portion 216b of proximal drive shaft 216 is threadably engaged with a nut 252. Nut 252 is disposed in mechanical cooperation with a proximal portion 254a of an articulation sleeve 254. For example, nut 252 extends through a recess 255 within articulation sleeve 254. A distal portion 254b of articulation sleeve 254 is disposed in mechanical cooperation (e.g., attached or coupled to) with an articulation bearing 261, and in particular with an inner sleeve 262 of articulation bearing 261. An outer sleeve 264 of articulation bearing 261 is mechanically coupled to a proximal portion 258a of articulation bar 258. A distal portion 258b of articulation bar 258 includes a slot 272 therein, which is configured to accept a portion (e.g., a flag, articulation link 366, etc.) of loading unit 300. Further, slot 272 includes a tapered entry section 274, which is configured to reduce the clearance between loading unit 300 and articulation bar 258, thus facilitating alignment and/or engagement therebetween.


With further regard to articulation bearing 261, articulation bearing 261 is both rotatable and longitudinally translatable. Additionally, it is envisioned that articulation bearing 261 allows for free, unimpeded rotational movement of loading unit 300 when its jaw members 306, 308 are in an approximated position and/or when jaw members 306, 308 are articulated. Further, articulation bearing 261 reduces the amount of friction that is typically associated with rotation of articulated and/or approximated jaw members, as articulated and/or approximated jaw members generally generate significant loads on the rotational and/or articulation systems.


In operation, as drive shaft 216 is rotated due to a rotation of second connector sleeve 222, as a result of the rotation of the second drive connector 120 of surgical device 100, nut 252 is caused to be translated axially along threaded distal end portion 216b of proximal drive shaft 216, which in turn causes articulation sleeve 254 to be axially translated relative to knob housing 202. As articulation sleeve 254 is translated axially, articulation bearing 261 is caused to be translated axially. Accordingly, as articulation bearing 261 is translated axially, articulation bar 258 is caused to axially translate, which causes concomitant axial translation of an articulation link 366 of end effector 300 to effectuate an articulation of tool assembly 304.


As seen in FIGS. 20-25 and as mentioned above, adapter 200 includes a third drive transmitting/converting assembly 260 supported in knob housing 202. Third drive transmitting/converting assembly 260 includes a tube assembly 400, a rotation bearing 410, a rotation ring gear 420, an idler gear 430 and a spur gear 440. Tube assembly 400 includes a housing tip 402, a tube 206 and a tube coupler 406. Housing tip 402 is distally disposed adjacent connection member 247. Tube coupler 406 is disposed adjacent a proximal end of tube assembly 400. Tube 206 extends between housing tip 402 and tube coupler 406. As shown in FIG. 24, tube coupler 406 is mechanically coupled adjacent distal ends of upper and lower portions handle or knob housing 202. The proximal portion of knob housing 202 is positioned around rotation bearing 410, which allows rotation therebetween.


With further regard to rotation bearing 410, rotation bearing 410 is non-rotatable with respect to drive coupling housing 210a, and is both rotatable and longitudinally translatable with respect to knob housing 202. Additionally, it is envisioned that rotation bearing 410 allows for free, unimpeded rotational movement of loading unit 300 when its jaw members 306, 308 are in an approximated position and/or when jaw members are articulated. Further, rotation bearing 410 reduces the amount of friction that is typically associated with rotation of articulated and/or approximated jaw members, as articulated and/or approximated jaw members generally generate significant loads on the rotational and/or articulation systems.


Rotation ring gear 420 is disposed distally of rotation bearing 410 and is non-rotatable with respect to knob housing 202 (e.g., due to protrusions 421 of ring gear 420 being captured by corresponding recesses in knob housing 202). Rotation ring gear 420 includes a plurality of teeth 422 disposed around an inner circumference thereof. Idler gear 430 is rotatable about a pin 434, and includes a plurality of teeth 432 disposed around an outer circumference thereof, which are configured and positioned to engage teeth 422 of rotation ring gear 420. Spur gear 440 includes a plurality of teeth 442 disposed around an outer circumference thereof, which are configured and positioned to engage teeth 432 of idler gear 430. Additionally, spur gear 440 is attached to second rotatable proximal drive shaft 214.


In operation, rotation of second drive connector 120 of surgical device 100 causes second connector sleeve 220 and drive shaft 214 to rotate. Rotation of drive shaft 214 causes spur gear 440 to rotate. Rotation of spur gear 440 results in rotation of idler gear 430, which causes ring gear 420 to likewise rotate. Since ring gear 420 is non-rotatable with respect to knob housing 202, rotation of ring gear 420 causes knob housing 202 to rotate. Further, due to the engagement between knob housing 202 and tube coupler 406, rotation of knob housing 202 causes tube coupler 406, tube 206, housing tip 402, and distal coupling assembly 230 to rotate about longitudinal axis “A-A” defined by adapter 200 (see FIG. 1). As distal coupling assembly 230 is rotated, end effector 300, that is connected to distal coupling assembly 230, is also caused to be rotated about longitudinal axis of adapter 200


With reference to FIGS. 21 and 22, adapter 200 further includes a lock mechanism 280 for fixing the axial position and radial orientation of distal drive member 248. Lock mechanism 280 includes a button 282 slidably supported on knob housing 202. Lock button 282 is connected to an actuation bar 284 that extends longitudinally through outer tube 206. Actuation bar 284 is interposed between outer tube 206 and inner housing tube 206a. Actuation bar 284 moves upon a movement of lock button 282. Upon a predetermined amount of movement of lock button 282, a distal end 284a of actuation bar 284 moves into contact with lock out 286, which causes lock out 286 to cam a camming member 288 from a recess 249 in distal drive member 248. When camming member 288 is in engagement with recess 249 (e.g., at least partially within recess 249), the engagement between camming member 288 and distal drive member 248 effectively locks the axial and rotational position of end effector 300 that is engaged with connection member 247.


In operation, in order to lock the position and/or orientation of distal drive member 248, a user moves lock button 282 from a distal position to a proximal position, thereby causing lock out 286 to move proximally such that a distal face 286a of lock out 286 moves out of contact with camming member 288, which causes camming member 288 to cam into recess 249 of distal drive member 248. In this manner, distal drive member 248 is prevented from distal and/or proximal movement. When lock button 282 is moved from the proximal position to the distal position, distal end 284a of actuation bar 284 moves distally into lock out 286, against the bias of biasing member 289, to force camming member 288 to out of recess 249, thereby allowing unimpeded axial translation and radial movement of distal drive member 248. When drive member 248 has translated to initiate closure of tool assembly 304, lock button 282 cannot be actuated and the end effector 300 cannot be removed until tool assembly 304 is reopened.


As seen in FIG. 6 adapter 200 includes a pair of electrical contact pins 290a, 290b for electrical connection to a corresponding electrical plug 190a, 190b disposed in connecting portion 108a of surgical device 100. Electrical contacts 290a, 290b serve to allow for calibration and communication of life-cycle information to circuit board 150 of surgical device 100 via electrical plugs 190a, 190b that are electrically connected to circuit board 150. Adapter 200 further includes a circuit board supported in knob housing 202 and which is in electrical communication with electrical contact pins 290a, 290b.


When a button of surgical device is activated by the user, the software checks predefined conditions. If conditions are met, the software controls the motors and delivers mechanical drive to the attached surgical stapler, which can then open, close, rotate, articulate or fire depending on the function of the pressed button. The software also provides feedback to the user by turning colored lights on or off in a defined manner to indicate the status of surgical device 100, adapter 200 and/or end effector 300.


A high level electrical architectural view of the system is displayed below in Schematic “A” and shows the connections to the various hardware and software interfaces. Inputs from presses of buttons 124, 126 and from motor encoders of the drive shaft are shown on the left side of Schematic “A”. The microcontroller contains the device software that operates surgical device 100, adapter 200 and/or end effector 300. The microcontroller receives inputs from and sends outputs to a MicroLAN, an Ultra ID chip, a Battery ID chip, and Adaptor ID chips. The MicroLAN, the Ultra ID chip, the Battery ID chip, and the Adaptor ID chips control surgical device 100, adapter 200 and/or end effector 300 as follows:

    • MicroLAN—Serial 1-wire bus communication to read/write system component ID information.
    • Ultra ID chip—identifies surgical device 100 and records usage information.
    • Battery ID chip—identifies the Battery 156 and records usage information.
    • Adaptor ID chip—identifies the type of adapter 200, records the presence of an end effector 300, and records usage information.


The right side of the schematic illustrated in FIG. 27 indicates outputs to the LEDs; selection of motor (to select clamping/cutting, rotation or articulation); and selection of the drive motors to perform the function selected.


As illustrated in FIGS. 1 and 26, the end effector is designated as 300. End effector 300 is configured and dimensioned for endoscopic insertion through a cannula, trocar or the like. In particular, in the embodiment illustrated in FIGS. 1 and 26, end effector 300 may pass through a cannula or trocar when end effector 300 is in a closed condition.


End effector 300 includes a proximal body portion 302 and a tool assembly 304. Proximal body portion 302 is releasably attached to a distal coupling 230 of adapter 200 and tool assembly 304 is pivotally attached to a distal end of proximal body portion 302. Tool assembly 304 includes an anvil assembly 306 and a cartridge assembly 308. Cartridge assembly 308 is pivotal in relation to anvil assembly 306 and is movable between an open or unclamped position and a closed or clamped position for insertion through a cannula of a trocar.


Proximal body portion 302 includes at least a drive assembly 360 and an articulation link 366.


Referring to FIG. 26, drive assembly 360 includes a flexible drive beam 364 having a distal end which is secured to a dynamic clamping member 365, and a proximal engagement section 368. Engagement section 368 includes a stepped portion defining a shoulder 370. A proximal end of engagement section 368 includes diametrically opposed inwardly extending fingers 372. Fingers 372 engage a hollow drive member 374 to fixedly secure drive member 374 to the proximal end of beam 364. Drive member 374 defines a proximal porthole 376 which receives connection member 247 of drive tube 246 of first drive converter assembly 240 of adapter 200 when end effector 300 is attached to distal coupling 230 of adapter 200.


When drive assembly 360 is advanced distally within tool assembly 304, an upper beam of clamping member 365 moves within a channel defined between anvil plate 312 and anvil cover 310 and a lower beam moves over the exterior surface of carrier 316 to close tool assembly 304 and fire staples therefrom.


Proximal body portion 302 of end effector 300 includes an articulation link 366 having a hooked proximal end 366a which extends from a proximal end of end effector 300. Hooked proximal end 366a of articulation link 366 engages coupling hook 258c of drive bar 258 of adapter 200 when end effector 300 is secured to distal housing 232 of adapter 200. When drive bar 258 of adapter 200 is advanced or retracted as described above, articulation link 366 of end effector 300 is advanced or retracted within end effector 300 to pivot tool assembly 304 in relation to a distal end of proximal body portion 302.


As illustrated in FIG. 26, cartridge assembly 308 of tool assembly 304 includes a staple cartridge 305 supportable in carrier 316. Staple cartridge 305 defines a central longitudinal slot 305a, and three linear rows of staple retention slots 305b positioned on each side of longitudinal slot 305a. Each of staple retention slots 305b receives a single staple 307 and a portion of a staple pusher 309. During operation of surgical device 100, drive assembly 360 abuts an actuation sled and pushes actuation sled through cartridge 305. As the actuation sled moves through cartridge 305, cam wedges of the actuation sled sequentially engage staple pushers 309 to move staple pushers 309 vertically within staple retention slots 305b and sequentially eject a single staple 307 therefrom for formation against anvil plate 312.


Reference may be made to U.S. Patent Publication No. 2009/0314821, filed on Aug. 31, 2009, entitled “TOOL ASSEMBLY FOR A SURGICAL STAPLING DEVICE” for a detailed discussion of the construction and operation of end effector 300.


It will be understood that various modifications may be made to the embodiments of the presently disclosed adapter assemblies. For example, the battery 156 may be replaced with alternate sources of electrical power such as line voltage (either AC or DC) or a fuel cell. Therefore, the above description should not be construed as limiting, but merely as exemplifications of embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the present disclosure.

Claims
  • 1. An adapter assembly comprising: an outer tube housing defining a longitudinal axis and configured to releasably couple to a handle assembly;a drive shaft rotatably supported in the outer tube housing and parallel to the longitudinal axis, the drive shaft having a distal portion and a proximal portion configured to engage a drive connector of the handle assembly;a nut connected to the distal portion of the drive shaft such that rotation of the drive shaft translates the nut in a direction parallel to the longitudinal axis;a distal drive member having a distal portion configured to engage a drive link of a loading unit and a proximal portion coupled to the nut and configured to translate in response to translation of the nut; anda lock mechanism configured to secure axial position and radial orientation of the distal drive member.
  • 2. The adapter assembly according to claim 1, wherein the nut is threadably coupled to the distal portion of the drive shaft.
  • 3. The adapter assembly according to claim 1, wherein the distal drive member includes a recess and the lock mechanism includes a camming member configured to engage the recess.
  • 4. The adapter assembly according to claim 3, further comprising a knob housing coupled to a proximal end of the outer tube housing.
  • 5. The adapter assembly according to claim 4, wherein the lock mechanism further includes a button slidably supported on the knob housing.
  • 6. The adapter assembly according to claim 5, wherein the lock mechanism further includes an actuation bar extending through the outer tube housing.
  • 7. The adapter assembly according to claim 6, wherein the actuation bar is mechanically engaged to the button such that the actuation bar is movable in response to movement of the button.
  • 8. The adapter assembly according to claim 7, wherein the lock mechanism further includes a lockout configured to engage the camming member and mechanically engaged to the actuation bar.
  • 9. The adapter assembly according to claim 8, wherein the actuation bar is configured to move the camming member to engage or disengage the recess.
  • 10. The adapter assembly according to claim 9, wherein movement of the actuation bar to a locked configuration causes the lockout to disengage the camming member and the camming member to engages the recess thereby preventing longitudinal movement of the distal drive member.
  • 11. The adapter assembly according to claim 10, wherein movement of the actuation bar to an unlocked configuration causes the lockout to engage the camming member and the camming member to disengage the recess thereby allowing for longitudinal movement of the distal drive member.
  • 12. The adapter assembly according to claim 11, wherein the actuation bar is movable in a proximal direction into the locked configuration and is movable in a distal direction into the unlocked configuration.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/773,798, filed Jan. 27, 2020, which is a continuation of U.S. patent application Ser. No. 15/451,472 filed Mar. 7, 2017, now U.S. Pat. No. 10,542,984, which is a continuation of U.S. patent application Ser. No. 13/875,571, filed May 2, 2013, now U.S. Pat. No. 9,597,104, which claims the benefit of and priority to, U.S. Provisional Patent Application No. 61/654,191, filed Jun. 1, 2012. The entire contents of each of the foregoing applications are hereby incorporated by reference herein.

US Referenced Citations (398)
Number Name Date Kind
2777340 Hettwer et al. Jan 1957 A
2957353 Babacz Oct 1960 A
3111328 Di Rito et al. Nov 1963 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3759336 Marcovitz et al. Sep 1973 A
4162399 Hudson Jul 1979 A
4606343 Conta et al. Aug 1986 A
4705038 Sjostrom et al. Nov 1987 A
4722685 de Estrada et al. Feb 1988 A
4823807 Russell et al. Apr 1989 A
4874181 Hsu Oct 1989 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5301061 Nakada et al. Apr 1994 A
5312023 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350355 Sklar Sep 1994 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5427087 Ito et al. Jun 1995 A
5467911 Tsuruta et al. Nov 1995 A
5476379 Disel Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5518163 Hooven May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5609560 Ichikawa et al. Mar 1997 A
5632432 Schulze et al. May 1997 A
5653374 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5667517 Hooven Sep 1997 A
5693042 Boiarski et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5762603 Thompson Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5820009 Melling et al. Oct 1998 A
5863159 Lasko Jan 1999 A
5865361 Milliman et al. Feb 1999 A
5908427 McKean et al. Jun 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5993454 Longo Nov 1999 A
6010054 Johnson et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6090123 Culp et al. Jul 2000 A
6126651 Mayer Oct 2000 A
6129547 Cise et al. Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6171316 Kovac et al. Jan 2001 B1
6239732 Cusey May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6329778 Culp et al. Dec 2001 B1
6343731 Adams et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6368324 Dinger et al. Apr 2002 B1
6371909 Hoeg et al. Apr 2002 B1
6434507 Clayton et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6461372 Jensen et al. Oct 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6645218 Cassidy et al. Nov 2003 B1
6654999 Stoddard et al. Dec 2003 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716233 Whitman Apr 2004 B1
6743240 Smith et al. Jun 2004 B2
6783533 Green et al. Aug 2004 B2
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6830174 Hillstead et al. Dec 2004 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6905057 Swayze et al. Jun 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
RE39152 Aust et al. Jun 2006 E
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7111769 Wales et al. Sep 2006 B2
7122029 Koop et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7172104 Scirica et al. Feb 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238021 Johnson Jul 2007 B1
7246734 Shelton, IV Jul 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549564 Boudreaux Jun 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7670334 Hueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7699835 Lee et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7819896 Racenet Oct 2010 B2
7822458 Webster, III et al. Oct 2010 B2
7845534 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7870989 Viola et al. Jan 2011 B2
7905897 Whitman et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7947034 Whitman May 2011 B2
7951071 Whitman et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8016178 Olson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8035487 Malackowski Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8114118 Knodel et al. Feb 2012 B2
8132705 Viola et al. Mar 2012 B2
8152516 Harvey et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8186587 Zmood et al. May 2012 B2
8220367 Hsu Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8272554 Whitman et al. Sep 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8303581 Arts et al. Nov 2012 B2
8342379 Whitman et al. Jan 2013 B2
8348855 Hillely et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8365633 Simaan et al. Feb 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8424739 Racenet et al. Apr 2013 B2
8454585 Whitman Jun 2013 B2
8505802 Viola et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8551076 Duval et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8623000 Humayun et al. Jan 2014 B2
8632463 Drinan et al. Jan 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8696552 Whitman Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8752749 Moore et al. Jun 2014 B2
8758391 Swayze et al. Jun 2014 B2
8806973 Ross et al. Aug 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8939344 Olson et al. Jan 2015 B2
8960519 Whitman et al. Feb 2015 B2
8961396 Azarbarzin et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9064653 Prest et al. Jun 2015 B2
9113875 Viola et al. Aug 2015 B2
9216013 Scirica et al. Dec 2015 B2
9282961 Whitman et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9307986 Hall et al. Apr 2016 B2
9597104 Nicholas et al. Mar 2017 B2
20020049454 Whitman et al. Apr 2002 A1
20020165541 Whitman Nov 2002 A1
20030038938 Jung et al. Feb 2003 A1
20030165794 Matoba Sep 2003 A1
20040111012 Whitman Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20050103819 Racenet et al. May 2005 A1
20050131442 Yachia et al. Jun 2005 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142740 Sherman et al. Jun 2006 A1
20060278680 Viola et al. Dec 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070055219 Whitman et al. Mar 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070175961 Shelton et al. Aug 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080188841 Tomasello et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080249551 Sunaoshi et al. Oct 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090138006 Bales et al. May 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20100069942 Shelton, IV Mar 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100211053 Ross et al. Aug 2010 A1
20100225073 Porter et al. Sep 2010 A1
20110006101 Hall et al. Jan 2011 A1
20110017801 Zemlok et al. Jan 2011 A1
20110071508 Duval et al. Mar 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110172648 Jeong Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110204119 McCuen Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110253765 Nicholas et al. Oct 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120074199 Olson et al. Mar 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120104071 Bryant May 2012 A1
20120116368 Viola May 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120245428 Smith et al. Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120330285 Hartoumbekis et al. Dec 2012 A1
20130018361 Bryant Jan 2013 A1
20130093149 Saur et al. Apr 2013 A1
20130098966 Kostrzewski et al. Apr 2013 A1
20130098968 Aranyi et al. Apr 2013 A1
20130098969 Scirica et al. Apr 2013 A1
20130181035 Milliman Jul 2013 A1
20130184704 Beardsley et al. Jul 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130240596 Whitman Sep 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130292451 Viola et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130317486 Nicholas et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324978 Nicholas et al. Dec 2013 A1
20130324979 Nicholas et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140012236 Williams et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207182 Zergiebel et al. Jul 2014 A1
20140236173 Scirica et al. Aug 2014 A1
20140236174 Williams et al. Aug 2014 A1
20140276932 Williams et al. Sep 2014 A1
20140299647 Scirica et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140358129 Zergiebel et al. Dec 2014 A1
20140361068 Aranyi et al. Dec 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150048144 Whitman Feb 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150272577 Zemlok et al. Oct 2015 A1
20150297199 Nicholas et al. Oct 2015 A1
20150303996 Calderoni Oct 2015 A1
20150320420 Penna et al. Nov 2015 A1
20150327850 Kostrzewski Nov 2015 A1
20150342601 Williams et al. Dec 2015 A1
20150342603 Zergiebel et al. Dec 2015 A1
20150374366 Zergiebel et al. Dec 2015 A1
20150374370 Zergiebel et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160095596 Scirica et al. Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
Foreign Referenced Citations (89)
Number Date Country
2008229795 Apr 2009 AU
2451558 Jan 2003 CA
101856251 Oct 2010 CN
101953793 Jan 2011 CN
102247182 Nov 2011 CN
102008053842 May 2010 DE
0634144 Jan 1995 EP
0648476 Apr 1995 EP
0686374 Dec 1995 EP
0705571 Apr 1996 EP
1690502 Aug 2006 EP
1723913 Nov 2006 EP
1736112 Dec 2006 EP
1759652 Mar 2007 EP
1769754 Apr 2007 EP
1772105 Apr 2007 EP
1813199 Aug 2007 EP
1813203 Aug 2007 EP
1813211 Aug 2007 EP
1908412 Apr 2008 EP
1917929 May 2008 EP
1943954 Jul 2008 EP
1943956 Jul 2008 EP
1943958 Jul 2008 EP
1943976 Jul 2008 EP
1952769 Aug 2008 EP
2005898 Dec 2008 EP
2027819 Feb 2009 EP
2044890 Apr 2009 EP
2055243 May 2009 EP
2090247 Aug 2009 EP
2098170 Sep 2009 EP
2100561 Sep 2009 EP
2100562 Sep 2009 EP
2165664 Mar 2010 EP
2236098 Oct 2010 EP
2245994 Nov 2010 EP
2263568 Dec 2010 EP
2272443 Jan 2011 EP
2316345 May 2011 EP
2324776 May 2011 EP
2329773 Jun 2011 EP
2333509 Jun 2011 EP
2377471 Oct 2011 EP
2377472 Oct 2011 EP
2446834 May 2012 EP
2462878 Jun 2012 EP
2462880 Jun 2012 EP
2491872 Aug 2012 EP
2586382 May 2013 EP
2606834 Jun 2013 EP
2668910 Dec 2013 EP
2676615 Dec 2013 EP
2815705 Dec 2014 EP
2333509 Feb 2010 ES
2861574 May 2005 FR
08038488 Feb 1996 JP
2005125075 May 2005 JP
2011115594 Jun 2011 JP
2011125721 Jun 2011 JP
2011189136 Sep 2011 JP
20120022521 Mar 2012 KR
9915086 Apr 1999 WO
0072760 Dec 2000 WO
0072765 Dec 2000 WO
03000138 Jan 2003 WO
03007769 Jan 2003 WO
03026511 Apr 2003 WO
03030743 Apr 2003 WO
03065916 Aug 2003 WO
03077769 Sep 2003 WO
03090630 Nov 2003 WO
2004107989 Dec 2004 WO
2006042210 Apr 2006 WO
2007016290 Feb 2007 WO
2007026354 Mar 2007 WO
2007026354 Mar 2007 WO
2007137304 Nov 2007 WO
2008131362 Oct 2008 WO
2008133956 Nov 2008 WO
2009039506 Mar 2009 WO
2007014355 Apr 2009 WO
2009132359 Oct 2009 WO
2009143092 Nov 2009 WO
2009149234 Dec 2009 WO
2011108840 Sep 2011 WO
2012040984 Apr 2012 WO
2012040984 Apr 2012 WO
2012061640 May 2012 WO
Non-Patent Literature Citations (88)
Entry
International Search Report corresponding to PCT/US2005/027266, completed May 30, 2008 and mailed Jun. 18, 2008; (2 pp.).
Extended European Search Report corresponding to EP 08 25 3184.9, completed Feb. 12, 2009 and mailed Feb. 27, 2009; (3 pp.).
Extended European Search Report corresponding to EP 10 25 0228.3, completed May 20, 2010 and mailed Jun. 1, 2010; (6 pp.).
Extended European Search Report corresponding to EP 10 25 2037.6, completed Mar. 1, 2011 and mailed Mar. 9, 2011; (3 pp.).
Extended European Search Report corresponding to EP 10 25 1968.3, completed on Jul. 4, 2011 and mailed Jul. 14, 2011; (12 pp.).
Extended European Search Report corresponding to EP 11 15 2266.0, completed Jul. 15, 2011 and mailed Jul. 28, 2011; (3 pp.).
Extended European Search Report corresponding to EP 11 25 0462.6, completed Jul. 20, 2011 and mailed Jul. 28, 2011; (6 pp.).
Extended European Search Report corresponding to EP 11 25 0771.0, completed Feb. 7, 2012 and mailed Feb. 17, 2012; (3 pp.).
Extended European Search Report corresponding to EP 06 78 8914.7, completed May 3, 2012 and mailed May 11, 2012; (8 pp.).
Partial European Search Report corresponding to EP 12 18 6177.7, completed Jan. 30, 2013 and mailed Feb. 12, 2013; (6 pp.).
Extended European Search Report corresponding to EP 08 25 2703.7, completed Oct. 23, 2008 and mailed Oct. 31, 2008; (7 pp.).
Extended European Search Report corresponding to EP No. 13 16 3033.7, completed Jun. 27, 2013 and mailed Jul. 15, 2013; (8 pp).
Extended European Search Report corresponding to EP No. 11 17 8021.9, mailed Jun. 4, 2013; (3 pp).
Extended European Search Report corresponding to EP No. 12 18 6177.7, completed Aug. 14, 2013 and mailed Aug. 23, 2013; (8 pp).
Partial European Search Report corresponding to EP No. 13 17 2400.7, completed Sep. 18, 2013 and mailed Oct. 1, 2013; (7 pp).
Partial European Search Report corresponding to EP No. 13 17 1742.3, completed Sep. 17, 2013 and mailed Sep. 25, 2013; (8 pp).
Extended European Search Report corresponding to EP No. 13 17 5475.6, completed Sep. 23, 2013 and mailed Oct. 1, 2013; (8 pp).
Extended European Search Report corresponding to EP No. 13 17 5478.0, completed Sep. 24, 2013 and mailed Oct. 2, 2013; (6 pp).
Extended European Search Report corresponding to EP No. 08 25 2703.7, completed Oct. 23, 2008 and mailed Oct. 31, 2008; (7 pp).
Extended European Search Report corresponding to EP No. 13 17 5479.8, completed Sep. 27, 2013 and mailed Oct. 10, 2013; (7 pp).
Partial Extended European Search Report corresponding to EP 13 17 5477.2, completed Oct. 7, 2013 and mailed Oct. 15, 2013; (7 pp).
European search Report from Appl. No. 13177163.6 dated Nov. 15, 2013. (8 pp).
Extended European Search Report from EP Application No. 13172400.7 dated Jan. 21, 2014.
Extended European Search Report from EP Application No. 13189026.1 dated Jan. 31, 2014.
The extended European Search Report from Application No. EP 13177163.6 dated Feb. 6, 2014.
Extended European Search Report from Application No. EP 13175477.2 dated Feb. 6, 2014.
Extended European Search Report from Application No. EP 13169998.5 dated Feb. 24, 2014.
Extended European Search Report corresponding to EP 13176805.3, dated Nov. 4, 2013.
Extended European Search Report from Application No. EP 13171742.3 dated Jan. 3, 2014.
Extended European Search Report from Application No. EP 13177163.6 dated Feb. 6, 2014.
Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016.
Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016.
Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2014204542 dated Jan. 7, 2016.
Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016.
European Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015.
European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015.
Partial European Search Report corresponding to International Application No. EP 15 19 0643.5 dated Feb. 26, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3807.7 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015.
European Office Action corresponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016.
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, mailed Dec. 21, 2015.
Chinese Office Action dated May 5, 2016 for application No. 2013102176333.
Extended European Search Report for Application No. 13169995.1 dated May 18, 2016.
Chinese Office Action dated May 30, 2016, issued in Chinese Application No. 201310217662.
European Search Report dated May 31, 2016, issued in European Application No. 13169993.6.
Australian Examination Report dated Oct. 24, 2016, issued in Australian Application No. 2013205875.
Australian Office Action dated Nov. 2, 2016, issued in Australian Application No. 2013205870.
Chinese Office Action dated Jan. 16, 2017, issued in CN Application No. 201310217633.
Japanese Office Action dated Feb. 14, 2017, issued in JP Appln. No. 2013-115433.
Japanese Office Action dated Mar. 28, 2017, issued in JP Application No. 2013112658.
International Search Report corresponding to PCT/US2005/027266, completed May 30, 2008 and dated Jun. 18, 2008; (2 pp.).
Extended European Search Report corresponding to EP 08 25 3184.9, completed Feb. 12, 2009 and dated Feb. 27, 2009; (3 pp.).
Extended European Search Report corresponding to EP 10 25 0228.3, completed May 20, 2010 and dated Jun. 1, 2010; (6 pp.).
Extended European Search Report corresponding to EP 10 25 2037.6, completed Mar. 1, 2011 and dated Mar. 9, 2011; (3 pp.).
Extended European Search Report corresponding to EP 10 25 1968.3, completed on Jul. 4, 2011 and dated Jul. 14, 2011; (12 pp.).
Extended European Search Report corresponding to EP 11 15 2266.0, completed Jul. 15, 2011 and dated Jul. 28, 2011; (3 pp.).
Extended European Search Report corresponding to EP 11 25 0462.6, completed Jul. 20, 2011 and dated Jul. 28, 2011; (6 pp.).
Extended European Search Report corresponding to EP 11 25 0771.0, completed Feb. 7, 2012 and dated Feb. 17, 2012; (3 pp.).
Extended European Search Report corresponding to EP 06 78 8914.7, completed May 3, 2012 and dated May 11, 2012; (8 pp.).
Partial European Search Report corresponding to EP 12 18 6177.7, completed Jan. 30, 2013 and dated Feb. 12, 2013; 6 pp.).
Extended European Search Report corresponding to EP No. 11 17 8021.9, dated Jun. 4, 2013; (3 pp).
Extended European Search Report corresponding to EP No. 13 16 3033.7, completed Jun. 27, 2013 and dated Jul. 15. 2013; (8 pp).
Extended European Search Report corresponding to EP No. 12 18 6177.7, completed Aug. 14, 2013 and dated Aug. 23, 2013; (8 pp).
Partial European Search Report corresponding to EP No. 13 17 1742.3, completed Sep. 17, 2013 and dated Sep. 25, 2013; (8 pp).
Partial European Search Report corresponding to EP No. 13 17 2400.7, completed Sep. 18, 2013 and dated Oct. 1, 2013; (7 pp).
Extended European Search Report corresponding to EP No. 13 17 5475.6, completed Sep. 23, 2013 and dated Oct. 1, 2013; (8 pp).
Extended European Search Report corresponding to EP No. 13 17 5478.0, completed Sep. 24, 2013 and dated Oct. 2, 2013; (6 pp).
Extended European Search Report corresponding to EP No. 13 17 5479.8, completed Sep. 27, 2013 and dated Oct. 10, 2013; (7 pp).
Partial Extended European Search Report corresponding to EP 13 17 5477.2, completed Oct. 7, 2013 and dated Oct. 15, 2013; (7 pp).
Extended European Search Report corresponding to EP No. 08 25 2703.7, completed Oct. 23, 2008 and dated Oct. 31, 2008; (7 pp).
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, dated Dec. 21, 2015.
Extended European Search Report dated Oct. 14, 2019 issued in corresponding EP Appln. No. 19178144.2.
Australian Patent Examination Report No. 1, dated Jan. 7, 2016, corresponding to Australian Patent Application No. 2014204542; 4 pages.
Extended European Search Report corresponding to EP 08 25 2703.7, completed Oct. 23, 2008 and dated Oct. 31, 2008; (7 pp.).
Related Publications (1)
Number Date Country
20220022870 A1 Jan 2022 US
Provisional Applications (1)
Number Date Country
61654191 Jun 2012 US
Continuations (3)
Number Date Country
Parent 16773798 Jan 2020 US
Child 17386156 US
Parent 15451472 Mar 2017 US
Child 16773798 US
Parent 13875571 May 2013 US
Child 15451472 US