This invention relates generally to the field of cleaning products and more particularly to suction cleaning products such as vacuum cleaners. Most particularly this invention relates to portable hand held accessories that may be used in association with a built-in central vacuum cleaner system.
Central vacuum systems are known and are used quite successfully as efficient cleaning tools for indoor spaces. Consequently such systems are becoming more popular with consumers and they have been installed in many homes and buildings especially in North America. Typically a central vacuum system includes a remote vacuum motor with a large debris or dust collecting receptacle which can be periodically dismounted and emptied. The vacuum motor and receptacle are typically located in a garage, basement or other remote location where the noise of the vacuum motor will not be too disturbing. A network of suction carrying pipes is connected to the suction side of the vacuum motor and the piping network extends through the walls or floors of the building to various rooms in the house or building. Attached at the ends of the pipes is a mounting plate which is typically affixed to a stud and located behind the drywall. A wall valve, mounted on the front of the drywall completes the inlet assembly. Typically an extension of the wall valve is inserted into the mounting plate, creating a sealed vacuum connection. The wall valve usually includes a hinged door that can be opened to allow access to a suction opening into which a user can insert a hose cuff to connect a vacuum hose to the vacuum system. The inlet valves allow a flexible hose to be temporarily connected to the piping network and thus provide a cleaner access to the suction through the inlet valve. To use the vacuum system, a user takes the flexible vacuum hose, having an insertion cuff on one end and a suction wand at the other end, and lifts open a flap door and plugs an insertion cuff end of the flexible hose into the central vacuum inlet valve. This may complete a low voltage circuit, which turns on the remote central vacuum motor creating suction first through the pipe network and then through the flexible hose and wand. The wand may then be applied to dust and debris within reach of the hose to remove the same from the indoor space. To preserve the suction power at any inlet valve that is in use, the other inlet valves must remain sealed. So the flap doors are usually provided with a flexible or foam seal so that they are closed to air flow when in the closed position. A spring may also be used to help keep the flap door in an air sealing position.
Other vacuum devices are also known and used including canister vacuums, which are dragged from room to room and which also include a flexible hose with a wand for use in local dust and debris removal. Also known are small handheld units for removing a small amount of debris from a specific area, such as crumbs or the like from kitchen counters which simply use a nozzle on the end of a solid or rigid body having an incorporated dirt receiving receptacle for debris collection. Such hand held units are convenient when a small cleaning task is at hand and it is too awkward to get out the large and often cumbersome hose. In such canister and handheld units typically any on-board dust receptacle is made removable so that when it is filled by the suction created in the device it may be removed and emptied. In the hand held device the suction may be created by a small onboard vacuum motor powered for example by an onboard rechargeable battery.
These hand held devices typically include a handle suitable to be gripped by one hand and have a trigger switch associated with the handle to start or stop the vacuum motor. While these handheld devices are convenient to use the debris chamber is, by necessity small and must be emptied frequently. Emptying the debris chamber typically involves detaching a dirt collecting receptacle from the device.
The small sized removable receptacle is not the best solution. In the first place it can be awkward to use, as it must be detached, transported to a larger garbage disposal device and then dumped upside down and shaken to be emptied. Usually the filter material is on the main part of the unit and when the receptacle is removed dirt and debris have a tendency to fall off the filter material which is awkward and annoying. As well there is a risk of fine dust being liberated from the open receptacle as it is being carried about and emptied, as well as a risk of spilling the contents.
An easier way to remove the dust and debris collected in the receptacle of the hand held unit is desired which does not permit the dust or debris to be potentially accidentally liberated as it is being emptied from the container in the very space from which it has just been removed. As well, there is no reliable way to determine how full the receptacle is, apart from shaking the unit to see if it makes noise and so there is a tendency not to empty the removable receptacle every time the hand held device is used. In a case where wet or organic material is sucked into the receptacle there is a risk that the dirt or debris will sit for a long enough period of time to become consolidated, plugged or even malodorous. Therefore it is also desirable to develop a device where such a chain of events can be avoided and the removable dirt receiving receptacle can be reliably and easily kept free of dirt and debris.
These prior art hand held vacuum devices often come with an associated holder which can be mounted to a wall or left lying on a countertop for example. The holder may include an electrical plug connector to connect the holder to an adjacent conventional electrical receptacle. Suitable electrical contacts are included in the handheld unit and the holder to permit the holder to be electrically connected to the vacuum unit when they are combined. In this way, the rechargeable batteries in the handheld vacuum can be recharged when the device is placed in the holder. However, the holder can be awkward and take up space. It must be located adjacent to an outlet and specially mounted to the wall or take up counter space. A more streamlined and efficient design would be preferred, where the hand held unit could still be reliably recharged.
What is desired is a convenient way to store and empty such small handheld vacuum suction units.
The present invention is directed to a cleaning system comprising a small handheld vacuum cleaning unit and a docking assembly for the unit, that permits the hand held unit to be connected to a central vacuum system, for both storage and automatic debris receptacle emptying. Most preferably, such a connection would permit the debris or dust receptacle to be emptied by the suction created by the central vacuum system. In this way the dirt collecting receptacle of the hand held unit need not be detached from the hand held unit eliminating the chance of an accidental spilling of the collected dirt and debris. The present invention comprehends that the dust receptacle could be made either integral with or removable from the handheld unit. The docking station is configured to apply suction supplied by the central vacuum system to the receptacle portion of the hand held device while the receptacle is still attached to the unit to prevent the risk of dust or debris being accidentally spilled. Furthermore the present invention comprehends that the placement of the hand held unit in the storage position in the docking assembly of the present invention mounted, for example, to a conventional mounting plate will permit the receptacle to be emptied, via the full power of the central vacuum suction, thus avoiding the chance of a build up over time or consolidation of un-removed debris in the hand held unit dirt collecting receptacle. In some embodiments the emptying can be automatic, occurring every time the hand held unit is returned to the docking station, and in other embodiments the unit can be emptied on the command of the user through a switch or the like.
In cleaning use, the handheld unit of the present invention is used in a conventional way, with an on-board vacuum motor powered by a battery creating suction to remove debris from a local area by the user moving the hand held unit across or over such debris. The vacuum motor can be controlled by a finger activated trigger on the handle in the normal manner and the unit can be used until the debris is removed or the receptacle is full. Then the hand held unit is placed for storage in a convenient docking assembly which is mounted to an inlet on a central vacuum system. The docking assembly in combination with the hand held device provides a vacuum connection to the central vacuum system. An electrical connection to initiate suction from the central vacuum system is also made, for example, through a switch or other connection to a controller connected to an existing low voltage circuit on the central vacuum system. The central vacuum system may be activated automatically and then shut off after a predetermined time, or it may be selectively activated by the user, by means of a trigger switch or the like. The present invention optionally comprehends having an electrical connection to a regular voltage power circuit for recharging the handheld unit's batteries. In the alternative it can be connected to the household electrical circuit in a normal manner. In one preferred embodiment therefore the handheld unit is emptied when it is first placed in the docking assembly and the battery is recharged while it continues to be mounted in the docking assembly. Of course as will be appreciated by those skilled in the art, once the receptacle is emptied the unit must be sealed to vacuum, to avoid a loss of suction in the remainder of the central vacuum system when the unit is plugged into the inlet valve. Thus, the docking assembly of the present invention provides a seal against loss of suction when the hand held unit is removed from the docking assembly and is being used, provides suction through the hand held when the dirt receptacle is to be emptied and the hand held unit is in the docking assembly and seals against suction loss again after the receptacle has been emptied while it is still in the docking assembly. In this way, a user can access other outlets on a central vacuum system in the normal way through the use of a conventional hose and wand. In a preferred embodiment a hose cuff receiving suction outlet, with a hinged door or cover, is formed as part of the docking assembly.
According to a first aspect of the invention there is provided a hand held vacuum cleaner comprising:
a handle;
a vacuum motor;
a battery means for powering the vacuum motor;
a vacuum inlet;
a debris receptacle for receiving debris sucked through said inlet by said vacuum motor; and
an outlet associated with said receptacle to permit said handheld vacuum cleaner to be emptied when connected to a central vacuum system.
According to a second aspect of the present invention there is provided a docking assembly for a hand held vacuum cleaner comprising:
a body having a front, a back and an airtight passageway;
a vacuum connection sized and shaped to seal to an inlet on a central vacuum system, said vacuum connection being connected to said passageway;
a hand held vacuum cleaner receiving cradle on said front to receive and hold said hand held vacuum cleaner in said docking assembly;
an intake port for engaging an outlet of said hand held vacuum cleaner, said intake port being connected to said passageway in said body;
a valve member for sealing and unsealing said intake port from said passageway; and
a switch for activating said valve member, wherein said hand held vacuum cleaner can be connected to a central vacuum cleaning system.
According to a further aspect of the present invention there is provided a cleaning apparatus comprising:
a hand held vacuum cleaner comprising:
and a docking assembly for said hand held vacuum cleaner said docking assembly comprising:
wherein said hand held vacuum cleaner can be connected to a central vacuum cleaning system.
In a further embodiment the hand held vacuum cleaner includes an electrical connector for operatively connecting the rechargeable batteries to a suitable source of electricity.
In a further embodiment the central vacuum connector includes a valve to close the connection to the debris receptacle when the central vacuum system is in use but the hand held unit is not.
The unit 10 has a body which is comprised of two main components, namely, the suction end 18 containing dirt receiving receptacle 19 and the motor end 20. In the prior art the dirt receiving receptacle 19 is a component which is easily separable, to facilitate emptying the debris from the unit 10, and while a removable receptacle is comprehended by the present invention removability is not required as set out in more detail below. However a removable receptacle is preferred to permit blockage removal and maintenance/access.
The motor end 20 has the handle 12, a source of suction, such as a vacuum motor 22 or the like and a power source, such as one or more rechargeable batteries 24, to power the suction motor 22. Most preferably the batteries 24 are rechargeable batteries that can be recharged through an electrical connection through contacts to an electrical charging circuit as explained in more detail below. Such fan and battery combinations are well known in the art and thus are not described in any more detail herein.
Now, turning to the suction end 18, it will be understood that the suction, created by the fan when activated, draws air in through the inlet nozzle 14. There are provided one or more inlet baffles 26 downstream of the nozzle 14 to retain dirt and debris 28 that may be sucked into the suction end through the nozzle. An air passageway 30 extends from the nozzle to the fan 22 and then past the fan 22 to vents 32 beside the handle 12. Located across the air passageway 30 is a filter media 34 which traps the dirt and debris 28 in the suction end of the unit 10 in a debris receptacle 19. The filter media 34 can be made from any suitable material such as paper fibre cloth, plastic fibre mesh or the like and essentially defines one end of the debris receptacle 19. The key functional requirement of the filter material is that it can allow air to pass through while at the same time trapping the dirt and debris. An ideal filter material will also resist becoming clogged with dust and dirt so as to impede the air flow. In other words the filter media cannot be so restrictive to the air flow so as to reduce the suction provided by the fan to an amount which prevents the unit 10 from picking up more debris via air suction through the nozzle 14.
Included in the suction component 18 is an outlet door 40. Most preferably the outlet door 40 is in the form of a moveable element that in its normal or rest position is closed against air flow past the outlet door, but in its active or in use position may be opened to provide an outlet on an airflow path through the receptacle as explained in more detail below. As will be understood by those skilled in the art the outlet door 40 must be sealed against air loss when the hand held unit is being used to suck up debris or it will create a loss of suction power and make the device less effective. To this end a spring 39 may be used to urge the door into sealing engagement with a perimeter seal 41 positioned around the edge of the outlet door 40.
Also shown on the hand held unit 10 is a keyway block 42 having a keyway 43 for securing the hand held unit to the docking assembly 11 and electrical contacts 44 for recharging the on board batteries of the hand held unit 10. A trigger switch 45 is located adjacent to the handle 12 for turning the hand held unit 10 on and off when in use. The keyway block 42 may be removably mounted into the hand held unit 10.
As shown in the
Beginning at a top 64 of the docking assembly 11 there is shown an electronics compartment 66 in which is housed a circuit board 68. The circuit board 68 acts as a controller as explained in more detail below and is connected to electrical contacts 70, a switch 72 and an actuator 74. The electrical contacts 70 are for charging the hand held vacuum cleaning unit when the unit is placed within the docking assembly 11. As such the contacts 70 are sized and shaped to engage and contact with the electrical contacts 44 on the hand held unit 10 when the hand held unit 10 is secured within the docking assembly 11. The switch 72 is in the nature of a push button contact switch which is tripped when the hand held unit 10 is placed within the docking assembly 11. As described below with respect to the emptying of the hand held unit 10 it is useful to know when the unit is first returned to the docking assembly 11. As can now be understood although the contact switch 72 is one way to determine that the hand held unit 10 has been returned to the docking station 11 the present invention comprehends that various other means to detect the presence of the hand held unit can also be used without departing from the spirit of the invention. For example the contact of the electrical contacts of the recharging circuit will be identifiable as a new load on the electrical circuit and so this could be used as a trigger signal by the controller. Also various forms of noncontact sensors could be used, such as magnetic, optical or other sensors or the like. What is comprehended by the present invention is to be able to identify when the hand held unit 10 is first being returned to the docking station 11 and thus may need to have the debris or dust receptacle emptied through the central vacuum connection.
The actuator 74 can be any form of actuator that can move a valve member 76, for example, by means of arm 77, into and out of a sealing position, and for example the actuator can be an electronically controlled solenoid. As shown in
The passageway 78 is formed in the docking assembly and extends from an intake port 82 through the docking assembly 11 to the spigot outlet connector 62. The intake port 82 is formed as a protrusion that extends outwardly from the front face of the docking assembly 11 and is sized and shaped to push the outlet door 40 of the hand held unit 10 inwardly and therefore open against the outlet door spring when the hand held unit 10 is placed in the docking assembly 11. An intake port seal 84 is provided extending around the intake port 82 and is sized and shaped to seal against the body of the hand held unit 10 around the outlet door 40 to form an airtight connection between the handheld unit 10 and the passageway 78 of the docking assembly 11 at that location. As can now be understood when the intake port 82 has opened up the outlet door 40 and the seal has been made against the body of the hand held unit 10 around the outlet door 40 application of suction to the passageway 78 will create suction within the dirt receiving receptacle of the hand held unit.
Located below the intake port seal 84 is a further contact seal 87 for the intake nozzle of the hand held unit 10. This seal 87 is also formed of a flexible compressible material such as a rubber which can be compressed into sealing engagement with the open nozzle upon the nozzle being inserted into the lower cradle 89 of the docking assembly 11. Most preferably the contact seal 87 is contoured to match the contours of the end of the intake nozzle to facilitate forming a good seal. A good seal is desired to maximize the reverse flow of suction through the hand held as explained in more detail below.
Also shown in
As shown in
As can now be appreciated, when the hand held unit is in use, it will gather up debris and dirt into the receptacle 35 in a conventional manner. Then when it is either too full to be useful anymore or the person using it has determined that enough dirt and debris has been collected, it can be re-mounted into the docking assembly 11 which remains substantially permanently connected to the central vacuum system through the inlet valve described above.
An aspect of the present invention is the shaping and positioning of the intake port at adjacent to the debris receptacle when the unit is placed in the central vacuum inlet valve. As such it will now be appreciated that the preferred orientation of the device is to be mounted with the receptacle below the handle portion. As well the filter media and baffles can be configured in a way to cause the dust and debris to collect at or near the outlet door. In this way the debris within the debris receptacle can be easily removed by the central vacuum suction.
A further aspect of the present invention is the timing of the suction and control of the central vacuum motor. When the vacuum is initiated a large suction force is created within the receptacle to remove dust and debris. Most preferably the suction created is sufficient to cause air to flow backward through the filter media to help clean the media thoroughly. In this way there is no longer a build up of dust in the media which otherwise impedes the smooth performance of the hand held unit and reduces its efficiency. However this cleaning and removal step will be completed very quickly, owing to the usual small size of the hand held device in general and of the dirt receptacle in particular. Therefore the present invention comprehends that the central vacuum will shut off within a few minutes of it starting, such as when the device is first inserted into the docking valve. While this can be accomplished by a number of different means, such as a manual switch, an automatic shut off is also comprehended, such as by way of a timed shut off. Essentially a timer can be used to identify the time required to empty the receptacle and then to cause the low voltage circuit connection to be broken and to extend the valve 76 into a sealing position.
As will be understood by those skilled in the art various modifications and alterations are possible to the invention without departing from the spirit of the invention as defined by the broad scope of the appended claims. While some of these variations have been discussed above, others will be apparent to those skilled in the art based on the foregoing detailed description. For example while the drawings show a contact type of switch to detect the presence of the hand held vacuum cleaner in the docking assembly, other electronic switches or detectors can be used to detect the presence of the hand held unit.
Number | Date | Country | Kind |
---|---|---|---|
2833555 | Nov 2013 | CA | national |
This application is a continuation of U.S. application Ser. No. 14/329,239, filed Jul. 11, 2014, which claims the benefit of Canadian Patent Application No. 2833555, filed Nov. 18, 2013, the entire contents of all of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4641392 | Huisma | Feb 1987 | A |
6076226 | Reed | Jun 2000 | A |
6094775 | Behmer | Aug 2000 | A |
6327741 | Reed | Dec 2001 | B1 |
6481049 | Berfield | Nov 2002 | B1 |
7386916 | Bone | Jun 2008 | B2 |
7958597 | Frantzen | Jun 2011 | B2 |
8001650 | Trotter | Aug 2011 | B2 |
8069529 | Groff et al. | Dec 2011 | B2 |
20020124343 | Reed | Sep 2002 | A1 |
20050183229 | Uehigashi | Aug 2005 | A1 |
20070157415 | Lee et al. | Jul 2007 | A1 |
20070157420 | Lee et al. | Jul 2007 | A1 |
20070271724 | Hakan et al. | Nov 2007 | A1 |
20080052846 | Kapoor et al. | Mar 2008 | A1 |
20090049640 | Lee et al. | Feb 2009 | A1 |
20100011529 | Won et al. | Jan 2010 | A1 |
20110119860 | Marcil et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
10 2008 061 439 | Jul 2009 | DE |
10 2010 038 095 | Apr 2012 | DE |
1 243 218 | Sep 2002 | EP |
1 504 710 | Feb 2005 | EP |
9720492 | Jun 1997 | WO |
Entry |
---|
International Search Report for PCT/CA2014/000805, dated Jan. 30, 2015. |
Written Opinion of the International Searching Authority for International Application No. PCT/CA2014/000805, dated Jan. 30, 2015. |
Number | Date | Country | |
---|---|---|---|
20160106284 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14329239 | Jul 2014 | US |
Child | 14980862 | US |