HANDHELD WRAP-DISPENSING TOOL WITH CONSISTENT WRAP FORCE AND RAPID WRAP ROLL REPLACEMENT

Information

  • Patent Application
  • 20250083845
  • Publication Number
    20250083845
  • Date Filed
    September 08, 2023
    a year ago
  • Date Published
    March 13, 2025
    a month ago
  • Inventors
    • Gossett; Jason (Wake Forest, NC, US)
    • Torricelli; Benedict (Kenly, NC, US)
    • Darr; Shawn (Kingsport, TN, US)
  • Original Assignees
    • King Industrial Safety Solutions LLC (Kenly, NC, US)
Abstract
A handheld wrap-dispensing tool for dispensing wrap material from a roll over packages to be securely shipped on a shipping pallet. The tool enables quick and easy changing of the roll, thereby greatly reducing time needed to replace rolls of wrap material. The tool includes a pole having a handle end and a locking end having a retaining pin. A compression spring is mounted along the pole and abutts a lock collar, such that the spring is compressed in accordance with the position of the lock collar along the pole. A bottom cone has a through-slot and a retention notch perpendicular to the through-slot that allows passage of the retaining pin, and then allows rotating the pole so as to seat or unseat the retaining pin in the retention notch to attach or remove the bottom cone from the locking end so as to quickly change the roll of material.
Description
FIELD OF THE INVENTION

This invention relates generally to tools for the application of wrap material, and more particularly to tools that apply wrap material at a controllable and consistent tension.


BACKGROUND OF THE INVENTION

Plastic stretch wrap or shrink wrap is commonly used to secure packages to a pallet for transport or shipping. Wrapping to secure a load is done to prevent pallet collapse, and to prevent packages from being damaged in transit. Using stretch wrap to secure a load keeps the load from shifting on the pallet during transit, which is a major source of damage and financial loss.


Properly applied stretch wrap applies “containment force” to the load on the pallet, i.e., applies an inward force that holds a palletized load together. To apply the required containment force needed to properly stabilize the particular load on the pallet, the stretch wrap is applied in layers by repeatedly wrapping the stretch wrap around the load on the pallet. Each layer applies a “wrap force”, where wrap force is the tension applied to that layer of stretch wrap. Thus, the containment force is equal to the sum of the wrap force of all of the applied layers of stretch wrap.


Proper application of Containment Force is required to ensure the safety and securement of palletized goods during transport. It is known to use large mechanical equipment to wrap packages with the appropriate containment force. However, due to the typically high purchase price of such equipment, as well as due to the high costs of part replacement and repair associated with the large equipment, some companies instead use manual or handheld methods for applying stretch wrap to palletized packages.


Currently, some manual and handheld options do not provide tension-adjustment features, but when they do, those tension adjustment features would allow the user to inconsistently apply the wrap force, potentially resulting in inadequate total containment force. Consequently, known manual and handheld options cannot provide consistently proper containment force, thereby resulting in increased rates of damage to product, as well as to increased safety concerns. Known manual and handheld options also require that the user frequently change rolls of stretch wrap, which costs time, resulting in lowered productivity, and can also result in loss or damage of parts whenever changing rolls of stretch wrap.


SUMMARY OF THE INVENTION

The invention is a handheld portable tool primarily used for dispensing and applying wrap material, such as plastic stretch wrap. The tool incorporates a quick-connect (and quick-disconnect) mechanism for loading rolls of wrap material, and for removing empty rolls from the tool. The quick-connect mechanism provides ease and speed of use, employing a push-down-and-turn action, that saves substantial time as compared with known tools for dispensing and applying wrap material.


The tool also employs a lock collar that can be set at a location along the pole based on the desired containment force, that serves to decrease frequent readjustments of the wrap force, thereby providing a consistent and calibrated containment force. The tool of the invention also can stand upright, and contains all components on just a pole and a bottom cone, which substantially reduces the number of parts, and consequently substantially reduces the frequency of loss of parts.


Since the Handheld Wrap-Dispensing Tool of the invention reduces the time needed to replace rolls of wrap material, and also reduces the frequency of part loss, the tool of the invention provides reduced operational down time.


To reduce the frequency of part loss, the pole of the tool supports all parts, and simply is inserted into a bottom plate prior to use. This results in substantially no missing parts, substantially no out-of-service equipment, and substantially no need for continuous replacement parts.


To understand the reduction in time used to replace rolls or wrap material, a roll of wrap material can be changed out in 6 seconds, versus other wrap tools presently available that take approximately 60 seconds, meaning less down time and consequent operational cost savings. Thus, if a company changes 100 rolls of stretch wrap per day, that's well over 400 work hours saved each year.


Further, the lock collar of the tool of the invention allows owners to consistently achieve a desired containment force, thereby ensuring that the containment force of the wrapped material will protect products loaded on pallets In transit. By contrast, lack of a consistently effective containment force of wrap applied for product securement while in transit has cost the global economy billions each year.


More specifically, the industry estimates cargo loss to cost the global economy $20 billion each year. It is additionally estimated that the cause of nearly half of this loss is due to inadequate load securement.


Also, the wide base of the tool of the invention allows the tool to stand up on the floor, resulting in less trip-and-fall injuries, and providing ease of storage.


Additionally, ergonomic aspects of the long handle of the tool protect the user from strains and sprains.


The wrap tool of the invention provides further benefits and advantages: reduction in cost of wrap due to the ability to calibrate and standardize the amount plastic applied per pallet;


increased customer satisfaction, due to more customers receiving shipments of products in good condition due to prevention of product damage caused by inadequate securement of products to shipping pallets;


reduction in return of damaged Items, resulting from effective securement of products to shipping pallets results in reduced cost of product replacement, reduced cost of manpower to process damaged/returned goods, and reduced shipping costs for returned items; and


decreased insurance costs due to reduced rates of product damage while in transit, and due to less work-related injuries.


A general aspect of the invention is a handheld wrap-dispensing tool for dispensing wrap material from a roll over packages supported on a shipping pallet, also facilitating quick and easy changing of the roll the wrap-dispensing tool includes: a pole having a handle end, and a locking end having a retaining pin; a lock collar adjustably mounted at a position along the pole; a spring mounted along the pole and abutting the lock collar, the spring configured to be compressed in accordance with the position of the lock collar along the pole; a top plate slidably mounted along the pole and abutting the spring, also configured to press against a roll of wrap material when the spring is compressed; and a bottom cone having a through-slot and a retention notch perpendicular to the through-slot, the through-slot configured to allow passage of the retaining pin by pushing the pole towards the bottom cone so as to compress the spring, and then rotating the pole 90 degrees so as to either seat or unseat the retaining pin in the retention notch to respectively attach or remove the bottom cone from the locking end of the pole so as to change the roll of material.


In some embodiments, the lock collar includes a set screw configured to be adjustably secured at the position along the pole.


In some embodiments, the bottom cone has a bottom surface that is configured to create friction between the bottom and the floor so as to prevent rotation of the bottom cone relative to the floor when rotating the pole 90 degrees so as to either seat or unseat the retaining pin in the retention notch to respectively attach or remove the bottom cone from the locking end of the pole so as to change the roll of material.


In some embodiments, the bottom cone is configured to stand upright.


In some embodiments, the bottom cone is configured to have a portion that fits within an end of a roll of wrap material when the spring is compressed.


In some embodiments, the bottom cone is a truncated cone of a height that provides clearance to allow pushing the pole towards the bottom cone so as to compress the spring, and then to allow rotating the pole 90 degrees so as to either seat or unseat the retaining pin in the retention notch.


In some embodiments, the pole is a tube having a length and a diameter each configured to accommodate a plurality of various rolls of wrap material.


In some embodiments, the lock collar is configured to be locked along the pole at a specific position in accordance with the weight and stability of a palletized load, thereby creating and maintaining an amount of spring compression force that results in a repeatable wrap force that can provide a required containment force for the palletized load.


In some embodiments, the top plate is configured to have a portion that fits within an end of a roll of wrap material when the spring is compressed.


In some embodiments, the retaining pin is shorter than the inner diameter of a roll of wrap material.


In some embodiments, the retaining pin is configurable to fit within a roll of wrap material.


In some embodiments, the handle end of the pole is covered by a material configured to enhance grip effectiveness and comfort.





BRIEF DESCRIPTION OF THE DRAWINGS

Many additional features and advantages will become apparent to those skilled in the art upon reading the following description, when considered in conjunction with the accompanying drawings, wherein:



FIG. 1 is an orthographic view of an embodiment of the handheld wrap dispensing tool, showing a handle, an adjustable lock collar, a compression spring, a top plate, a roll of stretch wrap, a bottom cone, and a retaining pin.



FIG. 2A is an orthographic view of the top plate of FIG. 1.



FIG. 2B is a side view of the top plate of FIG. 2A.



FIG. 3A is a bottom right view of the bottom cone of FIG. 1, showing the through slot in perpendicular overlapping relationship with the retention notch.



FIG. 3B is a top right view of the bottom cone of FIG. 3A, showing the through slot for allowing passage of the retaining pin, and the retention notch for receiving the retaining pin after passing through the through slot and rotating 90 degrees.



FIG. 3C is a top front view of the bottom cone of FIG. 3A, showing the through slot for allowing passage of the retaining pin, and the retention notch for receiving the retaining pin after passing through the through slot and rotating 90 degrees.



FIG. 4A is a bottom right view of the bottom cone of FIG. 3A, showing the retaining pin after having passed through the through slot, and before rotating 90 degrees to then be retracted and seated in the retention notch.



FIG. 4B is a bottom view of the bottom cone of FIG. 3C, showing the retaining pin after having passed through the through slot, and before rotating 90 degrees to then be retracted and seated in the retention notch.



FIG. 5 is a front top partly exploded view of the embodiment of the handheld wrap dispensing tool of FIG. 1, showing (for illustrative purposes) the bottom cone separated from the bottom end of the pole having the retaining pin, before the roll of stretch wrap is normally pushed down along the pole by the compression spring via the top plate.



FIG. 6 is a front view of a user pulling up on the handle, after pushing down on the handle, and then rotating 90 degrees so as to allow the retaining pin to pass up through the through slot, so that the handle assembly can be lifted, thereby allowing the compression spring to expand, which pushes the empty stretch wrap roll off of the pole, leaving the empty stretch wrap roll resting on the bottom cone of FIG. 3C.



FIG. 7 is a front view of a user pushing down on the handle of the embodiment of the handheld wrap dispensing tool of FIG. 1 while the tool rests vertically on the floor, thereby compressing the compression spring, which pushes the retaining pin down through the through slot, so that the user can then twist handle assembly 90 degrees so as to seat the retaining pin in the retention notch.



FIG. 8 is a front view of a user applying a second layer of stretch wrap to goods placed on a pallet, after having applied a first layer of stretch wrap, starting at the bottom and working his way up, using the handheld wrap dispensing tool of FIG. 1 in an upright orientation.



FIG. 9 is a front view of a user applying a first layer of stretch wrap to goods placed on a pallet, starting at the top and working his way down, using the handheld wrap dispensing tool of FIG. 1 in an inverted orientation.





DETAILED DESCRIPTION

With reference to FIG. 1, an embodiment 100 is shown of the wrap dispensing tool of the invention wherein a roll of wrapping material 102 has been loaded onto the embodiment 100 such that embodiment 100 is ready for use.


The embodiment 100 includes a pole 104 that extends through an adjustable lock collar 110, a compression spring 112, a tension plate 114, the roll of wrapping material 102, a bottom cone 116, and terminates with a retaining pin 122 at the far end of the pole 104.


The pole 104 of this embodiment 100 is covered by a cushioned grip 106 along a gripping portion of the pole 104 to enhance the effectiveness and comfort of a user's two-handed grip along the pole. The grip 106 terminates above the adjustable lock collar 110. A near end of the spring 112 abuts against the adjustable lock collar 110. A far end of the spring 112 abuts against the tension plate 114, the spring 112 exerting a spring expansion force against the tension plate 114, which in turn presses against the near end of the roll of wrapping material 102, thereby creating sliding friction as the roll of wrapping material rotates to allow material to be pulled off the roll 102 for application to boxes stacked on a pallet, for example.


The sliding friction can occur between the tension plate 114 and the roll of wrapping material 102, as well as between the roll of wrapping material 102 the bottom cone 116. The bottom cone 116 has a central opening 118 that receives the far end of the pole 104. The central opening 118 includes a through slot 124 that allows the retaining pin 122 at the terminal end of the pole 104 to pass through, and then to be seated in a retention notch 126 that is oriented 90 degrees with respect to the through slot 124.


The compression spring 112, which creates sliding friction between the tension plate 114 and the roll of wrapping material 102, as well as between the roll of wrapping material 102 the bottom cone 116, also creates an opposing spring force that resists moving the pole 104 outwardly through the central opening 118. Nevertheless, a user can push the pole 104 against the spring force and through the central opening 118 enough to then rotate the retaining pin 122 relative to the through slot 124 by 90 degrees, so that the user can then allow the spring force to pull the retaining pin 122 into the retention notch 126, thereby securely seating the retaining pin 122 in the retention notch 126.


Referring to both FIGS. 2A and FIG. 2B, the tension plate 114 is shown in detail. The tension plate 114 includes a cover plate 202, and a slightly smaller (in radius) inner plate 204.


The cover plate 202 is an option included with this embodiment 100, and is in direct contact with the compression spring 112 of the embodiment 100. The cover plate 202 radially extends beyond the inner plate 204 in the tilted perspective view of FIG. 2A, and is shown as flat in the side view of FIG. 2B. The difference in radius between the cover plate 202 and inner plate 204 creates a circumferential contact surface 206 on the cover plate 202 which is seen in FIG. 2A. The inner plate 204 serves to stabilize the roll of wrapping material 102 by fitting into the cardboard tube (not shown) that supports the wrapping material 102.


With reference to FIG. 3A, the inner surface of the bottom cone 116 is shown. The outer rim 302 of the bottom cone 116 contacts the floor when the wrap-dispensing tool 100 is placed in an upright standing position. Recessed from the rim 302 of the bottom cone 116 is a flat inner surface 304 which includes the through slot 124 and the retention notch 126, which is oriented 90 degrees (perpendicular) with respect to the through slot 124. The retention notch 126 has a recessed surface 306 upon which the retaining pin 122 rests when it is seated in the retention notch 126, under pressure due to the compression spring 112, which is biased to expand, thereby pulling the retaining pin 122 into the retention notch 126. The through slot 124 has no secondary surface, and is thereby free of obstructions such that the retaining pin 122 of the pole 104 can be passed through the through slot 124 unimpeded.


Referring to FIG. 3B, the outer surface 308 of the bottom cone 116 is shown. A central raised surface 310 is shown which is sized so as to fit into the inner cardboard tube (not shown) of a roll of wrapping material 102. More specifically, the central raised surface 310 is inserted into the inner cardboard tube of the roll of wrapping material 112 so as to stabilize the roll of wrapping material 102 from its bottom, in a way that is analogous to the function of the inner plate 204 of the tension plate 110.


This embodiment 100 is proportioned for industrial cling wrap, such as the wrap used when binding cardboard boxes onto a wooden pallet. Industrial cling wrap has a relatively large inner cardboard tube, such that the retaining pin 122 need not fold or retract to pass through the cardboard tube. To enable the retaining pin 122 to pass through a smaller cardboard tube, the retaining pin 122 can be configured to fold or retract.


With reference to FIG. 3C, the bottom cone 116 is shown, oriented as when it is readied for use, with the rim 302 flat on the ground. The proportions of the bottom cone 116 are readily visible, and the conical tapering of the side wall 312 is readily appreciated. The central opening 118 of the bottom cone 116 is also shown as being continuous with the through slot 124 of the bottom cone 116. The outer surface 308 of the bottom cone 116 does not include a retention notch 126.


It is in this orientation that a roll of wrapping material 102 can be placed upon the bottom cone 116, and the pole 104 can be fed through the roll of wrapping material 102 and through the central opening 118. The height of the outer surface 308 above the floor creates sufficient clearance such that the pole 104 can be pushed down, thereby compressing the compression spring 112, such that the retaining pin 122 can pass through the through slot 124, and then rotate so as to become seated in the retention notch 126 in a twist-and-lock action, the expansion of the compression spring serving to lock the retaining pin 122 into the retention notch 126.


Additionally, the conical tapering of the side wall 312 serves to provide a large-diameter rim 302 of the bottom cone 116, thereby increasing the stability of the embodiment 100 against tipping over.


Referring to FIG. 4A, the pole 104 with the retaining pin 122 is shown after moving through the central opening 118 and the through slot 124, respectively, of the bottom cone 116. FIG. 4A shows the pole 104 loaded with a roll of wrapping material 102 and then being pushed through the bottom cone 116 with sufficient force to compress the spring 112 so that the retaining pin 122 passes through the through slot 124.



FIG. 4B is a bottom view of the same the pole 104 with the retaining pin 122 shown in FIG. 4A, FIG. 4B now showing how the pole 104 and the retaining pin 122 are then rotated 90 degrees before the compression of the spring 112 is released. Upon the release of some of the spring pressure, the retaining pin 122 of the pole 104 will become seated in the retention notch 126.


With reference to FIG. 5, the embodiment 100 is again shown, now positioned upright with the bottom cone 116 detached from the pole 104 and resting with its rim 302 against the floor. To detach the pole 104 from the bottom cone 116, the pole 104 is pushed down towards the bottom cone 116 to move the retaining pin 122 out from the retention notch 126. The pole 104 is then rotated 90 degrees to align the retaining pin 122 with the through slot 124, and is then lifted so that the retaining pin 122 passes up through the through slot 124.


To adjust the compression of the spring 112, and thereby adjust the wrap force of the tool 100, the adjustable lock collar 110 can be loosened and then repositioned along the length of the pole 104. The adjustable lock collar 110 includes an adjustment bolt 502, which must be loosened (using a corresponding Allen key, for example) to loosen the grip of the adjustable lock collar 110 upon the pole 104, and then after moving the adjustable lock collar 110 to a new position along the pole 104, must then be tightened to tighten the grip of the adjustable lock collar upon the pole 104. Thus, to adjust the compression spring force 112, the adjustment bolt 502 of the adjustable lock collar 110 is loosened, the adjustable lock collar 110 is moved to a location along the pole 104 that results in a new desired spring compression force, and then the adjustment bolt 502 is tightened, locking the adjustable lock collar 110 in the position required to maintain the new desired spring compression force of the compression spring 112.


Referring to FIG. 6, the embodiment 100 is shown held upright by a user 600. The bottom plate 116 rests on the floor, and supports a roll of wrapping material 102, the roll of wrapping material 102 shown standing on the bottom plate 116 in a stable upright position before attaching the pole 104. Attachment of the pole 104 to the base plate 116 can be achieved with a simple push-down action against the compression spring 112 to move the retaining pin 122 through the through slot 124, and then rotating the pole 10490 degrees while maintaining downward pressure against the compression spring 112, and then releasing to allow the retaining pin 122 to become seated in the retention notch 126. Although the pole 104 is shown as gripped by the user with two hands along the grip 106, one-handed use is possible as well, especially at lower spring 112 tensions.


With reference to FIG. 7, the embodiment 100 is shown again being held by a user 600. The roll of wrapping material 102 shown again standing on the bottom plate 116 in a stable upright position. To detach the pole 104 from the bottom plate 116, the user 600 must simply push down on the pole 104 against the spring pressure of the compression spring 112, and then rotate the pole by 90 degrees. Then, releasing the spring pressure by allowing the pole 104 to move upward will allow the retaining pin 122 to move through the through slot through slot 124, which then allows the user to lift the pole 104 out of the roll of material.


Referring to FIG. 8, the user 600 is shown using the embodiment 100 to wrap along the lower half of a box 800 supported on a pallet 802. The pole 104 of the embodiment 100 can be walked, waved, passed, or moved around the box 800 as is required by object size and weight. The alignment of dispensed wrapping material 102′ is readily observable such that tangles are avoidable, and the adhered wrapping material 102″ is evenly distributed over the box 800 at the correct tension. The box 800 represents a stack of boxes, and the adhered wrapping material 102″ functions to bind the stock of boxes for safe loading onto, shipping via a truck, a train, or a cargo container, and then unloading from the truck, the train, or the cargo container, for example.


With reference to FIG. 9, the user 600 is shown using the embodiment 100 to wrap the upper end of a larger box 900 which is supported by the pallet 802. The reach of a pole 104 is readily seen as being advantageous in this situation, as well as the versatility possible in the various ways in which the pole 104 can be held. For example, the pole 104 can be held above the box 900 at an angle so as to wrap corners. The dispensed wrapping material 102′ can be dispensed as substantially planar and unwrinkled, the wrapping material 102′ being applied at the prescribed required tension to the box 900, resulting in the adhered wrapping 102″ being similarly flat and unwrinkled.


With reference to FIGS. 1-9, the wrap-dispensing tool 100 requires that the user use certain parameters (set forth below) to set the lock collar 110 at a specific position along the pole 104 to achieve a required containment force appropriate to the weight of the product(s) to be secured to a pallet 802.


The compression spring 112 must have specific parameters to work with all other components of the wrap-dispensing tool 100. Specifically, spring length and spring compression strength, as well spring width, spring material, and edge condition are also important.


For example, a spring with these parameters can be used: Compression Spring Rate: 36.2 lbs./in., Spring Length: 3″ Long, Spring Width Parameters: 1.46″ OD, 1.19″ ID, Wire Diameter: 0.135″, Maximum Load: 71 lbs., Compressed Length at Maximum Load: 1.07″, Material: Zinc-Plated Music-Wire Steel, End Type: closed and ground, such as a compression spring with such parameters as sold by: McMaster-Carr, Elmhurst, IL 60126, Item Number 9657K446.


As one squeezes a compression spring, the spring pushes back to return to its original length. Spring rate is the amount of force required for every inch of compression.


The greater the spring rate, the harder it is to compress the spring. Zinc-plated springs have mild corrosion resistance. Springs with closed and ground ends sit flat, so they won't buckle.


Generally, the compression spring 112 must be wide enough to fit around the pole 104, and the compression spring material must resist metal fatigue to maintain its shape. The function of the compression spring 112 is to apply a selectable amount of expansion (restoring) force after being compressed.


The spring 112 works within a system that considers the size and location of nearly all the other components of the tool 100. Specifically, the parameters of the spring 112 listed above (Rate 36.2 lbs./in., 3″ Long, 1.46″ OD, 1.19″ ID) work in conjunction with the width and position of the lock collar 110, the width and shape of the pole 104, the width and thickness of the tension plate 114, the width and position of the pin 122, as well as many design aspects of the bottom cone 116. A couple brief examples of this are: If the compression force of the spring 112 is decreased, it would require additional compression depth to achieve a similar desired wrap force. This would require the user to push the pole 104 down further, thus requiring the bottom cone 116 to be taller to allow the pin 122 to clear the through slots 124 without having the end of the pole 104 hit the floor.


If the compression force of the pole 104 is increased, it would require less compression to achieve a similar desired wrap force. In this case, the pin 122 may not clear the through slots 124, and as such the through slots 124 would have to be decreased in depth, and/or the retention notches 126 could be adjusted to achieve the desired spring force.


Other factors such as the width of the pole 104 can be adjusted as long as they are done in conjunction with adjusting the spring 112 characteristics and the characteristics of the other components as well.


When compressed, the compression spring 112 presses against the lock collar 110 and against the top plate 114. Since the lock collar 110 is locked to a fixed position along the pole 104, the top plate 114 (which is free to move along the pole 104) receives the force of expansion of the compression spring 112, and in turn presses against the roll 102 of wrap material, which provides calibrated friction to the roll 102 of wrap material as the roll 102 rotates while the wrap material 102′ leaves the roll 102. The force of expansion of the spring 112 also pushes the roll 102 of wrap material against the bottom cone 116, thereby providing additional friction, which contributes to providing the required wrap force.


The pole 104 may be modified along its length in any way to suit its function as a handle, but only up to a few inches before the lock collar 110, so as to not affect the adjustability of the lock collar 110 along the pole 104.


Similar to the top plate 114, the bottom cone 116 receives expansion force transmitted from the compressed spring 112, and thereby provides calibrated friction to the roll 102 of wrap material as it rotates while dispensing wrap material 102′. Together with the top plate 114, the bottom cone 116 provides the rotational friction that results in the required wrap force for each layer of applied wrap material (there are typically multiple layers needed), the wrap force for each layer adding to the eventual total wrap force, also called the “containment force” that maintains the load 800 or 900 safely on the pallet 802.


Required Containment Force (total Wrap Force):

  • Light loads (0-500 LBS): 2 pounds-6 pounds of containment force.
  • Stable mid-weight loads (500 LBS-1,100 LBS): 6 pounds-8 pounds of containment force.
  • Heavy loads (1,100 LBS-1,700 LBS): 8 pounds-17 pounds of containment force.
  • Very unstable heavy loads (1,700 LBS-2,200 LBS): 15 pounds-22 pounds of containment force.


The wrap-dispensing tool 100 provides a push, twist, lock; push, twist, release action that does not change the preset desired tension when replacing stretch wrap rolls 102, and allows the user to replace a roll 102 of material in four steps (push, twist 90° to lock; and push, twist 90° to release), thereby drastically reducing the time needed to replace stretch wrap rolls, i.e., typically less than 10 seconds to replace a roll 102 of wrap material.


A roll 102 of stretch wrap material is held firmly in place between the top plate 114 and the bottom cone 116 using spring pressure applied by a compressed spring 112 that is biased to expand. An inside edge of the top plate 114 and an inside edge of the bottom cone 116 provides stability to the roll 102 as it rotates while dispensing wrap material 102′. Both the top plate 114 and the bottom cone 116 receive expansion force from the compression spring 112, and thereby provide calibrated friction to the wrap roll 102 as it rotates while dispensing wrap material 102′. This calibrated friction in turn provides the desired consistent wrap force that contributes to the total containment force.


When the spring 112 is compressed, once the retaining pin 122 is locked into place within the retention notch 126, with a roll 102 of material placed between the top plate 114 and the bottom cone 116, the spring 112 transmits the force downward upon the top plate 114 and upward on the bottom cone 116, thereby exerting force perpendicularly onto the top and bottom of the roll 102 of material being applied. This force applied perpendicularly at both the top and bottom contact surfaces results in total sliding friction that can be calibrated to provide the required wrap force, which is contributed by each layer of wrap material that add up to the total containment force.


Further, the sliding friction is directly proportional to the perpendicular force applied to the contact surfaces, thereby providing control of wrap force by making slight adjustments to the location of the lock collar 110 along the pole 104 (explained further below). The amount of spring restoring (expansion) force is determined by the amount (in distance) of spring compression, which is determined by the distance between the bottom of the lock collar 110 and the top of the retaining pin 122.


Adjustment of the lock collar 110 is accomplished using an Allen key which allows the lock collar 110 to be set by the user to grip a desired location along the pole 104. The lock collar 110 does not move when a wrap roll is replaced, which ensures consistency of wrap force, even after changing a wrap roll 102.


The user can use certain parameters (set forth below) to set the lock collar in a specific position to achieve a recommended containment force for the weight and stability of the product to be shipped on the pallet. These parameters can be approximated based on a rule of thumb that one pound of containment force is needed for every hundred pounds of total weight of all materials on the pallet. However, the user should regularly monitor the weight of their palletized loads, use a force gauge to verify containment force, and use the tool 100 to calibrate the wrap force as needed.


To determine the required placement of the lock collar 110 along the pole 104 the user will need to follow the guidelines as follows:


1) Determine the typical weight of the product on a pallet ready for transport.


2) Use this weight to determine the recommended containment force.


3) Determine the length of the Roll of Material being applied.


4) Consider the desired number of layers of wrap along with the desired tension/ergonomic force on the user.


5) Add the length of the plastic wrap roll to the appropriate measurement in the tool's optimal operating range. See below for an example of optimal operating range.


As an example of this procedure: If the user determines that the typical weight of their loaded pallet is between 600 lbs and 700 lbs, the recommended containment force is between 6 lbs and 7 lbs.


For example, in one embodiment, the spring can be 3 inches in length and have a compression rate of 36.2 lbs./in., and the bottom cone can be sized and shaped to provide an optimal operating range from 3.5 inches (the highest recommended tension) to 3 ¾ inches (the lowest recommended tension).


The user then determines that the roll of stretch wrap they will use is 20 inches long. Considering the tool's operating range, the owner can set the lock collar 110 at 23 ¾ inches (20-inch roll length +3 ¾ inches) from the base of the pole 104. If they choose to wrap 3 layers, the tool 100 will create a containment force of 6 lbs.


The user may also choose to set the lock collar 110 at a slightly tighter tension of 23 ⅝ inches (20-inch roll length +3 ⅝ inches) from the base of the pole 104. If they choose to wrap three layers, the tool 100 will create a containment force of 7 lbs.


These guidelines regarding the use of the positioning of the locking collar 110 allows the tool 100 to accommodate any length of wrap roll 102.


The tool 100 will provide consistent wrap force once the above guidelines regarding location of the lock collar 110 along the pole 104 has been calibrated to the desired wrap force.


With the lock collar 110 set and locked into place along the pole 104, the tool 100 is ready for repeated use, and will not require adjustment unless the wrap roll length or the weight of the palletized load is changed.


The user can set the lock collar 110 at a specific location along the pole 104 based on certain guidelines, and to lock the lock collar 110 in this position. The weight and stability of their palletized loads determine the wrap force, and therefore determine the location of the lock collar 110 along the pole 104. The tool 100 allows the user to then calibrate the wrap-dispensing tool 100 in such a way that the tool 100 creates and maintains the desired wrap force, and ultimately contributes to the goal of achieving proper containment force.


Also, the tube 104 can be made to be longer or shorter, as long as the tube 104 includes a portion that can serve as a handle.


Because most of the wrap-dispensing tool components are located between two fixed points (lock collar 110 and the retaining pin 122), where only one of those fixed points (lock collar 110) can be moved using a specialized tool (Allen key), the user is able to set a desired wrap force using the lock collar 110, and ensure that the wrap force remains at this desired force consistently, to better ensure a consistent containment force needed for protection of the load on the pallet.


Other modifications and implementations will occur to those skilled in the art without departing from the spirit and the scope of the invention as claimed. Accordingly, the above description is not intended to limit the invention, except as indicated in the following claims.

Claims
  • 1. A handheld wrap-dispensing tool for dispensing wrap material from a roll over packages supported on a shipping pallet, also facilitating quick and easy changing of the roll, the tool comprising: a pole having a handle end, and a locking end having a retaining pin;a lock collar adjustably mounted at a position along the pole;a spring mounted along the pole and abutting the lock collar, the spring configured to be compressed in accordance with the position of the lock collar along the pole;a top plate slidably mounted along the pole and abutting the spring, also configured to press against a roll of wrap material when the spring is compressed;a bottom cone having a through-slot and a retention notch perpendicular to the through-slot, the through-slot configured to allow passage of the retaining pin by pushing the pole towards the bottom cone so as to compress the spring, and then rotating the pole 90 degrees so as to either seat or unseat the retaining pin in the retention notch to respectively attach or remove the bottom cone from the locking end of the pole so as to change the roll of material.
  • 2. The tool of claim 1, wherein the lock collar includes a set screw configured to be adjustably secured at the position along the pole.
  • 3. The tool of claim 1, wherein the bottom cone has a bottom surface that is configured to create friction between the bottom and the floor so as to prevent rotation of the bottom cone relative to the floor when rotating the pole 90 degrees so as to either seat or unseat the retaining pin in the retention notch to respectively attach or remove the bottom cone from the locking end of the pole so as to change the roll of material.
  • 4. The tool of claim 1, wherein the bottom cone is configured to stand upright.
  • 5. The tool of claim 1, wherein the bottom cone is configured to have a portion that fits within an end of a roll of wrap material when the spring is compressed.
  • 6. The tool of claim 1, wherein the bottom cone is a truncated cone of a height that provides clearance to allow pushing the pole towards the bottom cone so as to compress the spring, and then to allow rotating the pole 90 degrees so as to either seat or unseat the retaining pin in the retention notch.
  • 7. The tool of claim 1, wherein the pole is a tube having a length and a diameter each configured to accommodate a plurality of various rolls of wrap material.
  • 8. The tool of claim 1, wherein the lock collar is configured to be locked along the pole at a specific position in accordance with the weight and stability of a palletized load, thereby creating and maintaining an amount of spring compression force that results in a repeatable wrap force that can provide a required containment force for the palletized load.
  • 9. The tool of claim 1, wherein the top plate is configured to have a portion that fits within an end of a roll of wrap material when the spring is compressed.
  • 10. The tool of claim 1, wherein the retaining pin is shorter than the inner diameter of a roll of wrap material.
  • 11. The tool of claim 1, wherein the retaining pin is configurable to fit within a roll of wrap material.
  • 12. The tool of claim 1, wherein the handle end of the pole is covered by a material configured to enhance grip effectiveness and comfort.