Many locks for sliding doors, for example, patio doors, utilize both a fixed handle for moving the door and a pivotable thumbturn or other actuation device for locking and/or latching the door. Often, a fixed handle and a pivotable thumbturn are used to move and lock the door, respectively. In many such assemblies, the position of the thumbturn and, accordingly, the latch or lock element, may be difficult to ascertain. In such cases, an operator may believe the door to be locked when it is actually not so. Additionally, thumbturns are often small (so as to not detract from door aesthetics) and may be difficult for an operator to manipulate. This may be especially true in the case of a disabled operator who may have difficulty grasping, pinching, or rotating the thumbturn. To address this, the Americans with Disabilities Act (ADA) requires that an ADA-compliant door must be able to be opened and closed with less than five pounds of force applied to the locking element actuator (that is, the thumbturn). Lengthening an arm on the thumbturn may increase the moment applied to the thumbturn, but a longer arm can be unsightly, and may interfere with the handle of the door.
In one aspect, the technology relates to a lock actuation assembly including: an escutcheon; a handle comprising a first end pivotably connected to the escutcheon at an interface; a link arm pivotably mounted in the escutcheon, the link arm comprising a first end; a projection engaged with the first end of the handle and the first end of the link arm; and a cam located in the escutcheon, wherein the cam is rotatably engaged with a second end of the link arm, the cam comprising a tailpiece adapted for engagement with a locking mechanism. In an embodiment, the interface has an interface axis and the tailpiece has a tailpiece axis, wherein the cam pivots about the tailpiece axis, and wherein the interface axis and the tailpiece axis are parallel. In another embodiment, the handle is pivotable between a first handle position and a second handle position, the link arm is pivotable between a first link arm position and a second link arm position, the cam is pivotable between a first cam position and a second cam position, and when the handle is in the first handle position, the link arm is in the first link arm position, and the cam is in the first cam position. In yet another embodiment, the lock actuation assembly includes a rivet for rotatably engaging the second end of the link arm with the cam. In still another embodiment, an angle between the first handle position and the second handle position is from about 5 degrees to about 20 degrees. In another embodiment the angle is about 11 degrees.
In an embodiment of the above aspect, the link arm defines an opening for receiving a mounting element, wherein the mounting element is adapted to mount the lock actuation assembly onto a stile of a door. In another embodiment, the projection is integral with at least one of the handle and the link arm. In yet another embodiment, the lock actuation assembly further includes a stop for limiting a pivoting range of the handle. In still another embodiment, the stop slidably engages a second end of the handle with the escutcheon.
In another aspect, the technology relates to a lock actuation assembly including: an escutcheon; a handle comprising a first handle end pivotably connected to the escutcheon at an interface, wherein the first handle end is pivotable about an interface axis; and a cam disposed in the escutcheon and operably connected to the handle, wherein the cam comprises a tailpiece adapted for engagement with a locking mechanism, wherein the tailpiece is pivotable about a tailpiece axis that is substantially parallel to the interface axis. In an embodiment, the lock actuation assembly further includes a link arm comprising a first link arm end and a second link arm end, wherein the first link arm end is fixedly engaged with the handle, and wherein the second link arm end is pivotably engaged with the cam, such that a rotation of the handle rotates the cam. In another embodiment, the handle is pivotable between a rest position and a stop position. In yet another embodiment, the lock actuation assembly further includes a stop for preventing a pivoting of the handle past the stop position. In still another embodiment, the stop extends from the handle and is slidably engaged with a slot defined by the escutcheon.
In another embodiment of the above aspect, the stop extends from a second end of the handle. In yet another embodiment, the link arm has a taper from the first link arm end to the second link arm end, and wherein the link arm has a first tapered edge and a second tapered edge. In still another embodiment, when the link arm is in a first position, the first tapered edge is substantially parallel to an escutcheon axis, and wherein when the link arm is in a second position, the second tapered edge is substantially parallel to the escutcheon axis.
In another aspect, the technology relates to a kit useful in forming a lock actuation assembly, the kit including: an escutcheon adapted to be secured to a stile of a door; a handle comprising a first end, wherein the first end is adapted to be pivotably connected to the escutcheon at an interface; a link arm adapted to be pivotably received in the escutcheon, the link arm comprising a first end; a projection adapted to engage the first end of the handle with the first end of the link arm; and a cam adapted to be pivotably received in the escutcheon, wherein the cam is adapted to be rotatably engaged with a second end of the link arm, the cam comprising a tailpiece adapted for engagement with a locking mechanism. In an embodiment, the kit includes a stop adapted to be fixed to at least one of the handle and the escutcheon.
There are shown in the drawings, embodiments which are presently preferred, it being understood, however, that the technology is not limited to the precise arrangements and instrumentalities shown.
The link arm 222 is configured so as to fit within the escutcheon 202 when installed. In addition to the keyway 220/key 224 connection, the depicted link arm 222 may include a number of detents 228 that may further engage matching recesses on the projection 218. Once the fastener 226 is fixed, these detents 228 will further help limit play between the handle 204 and the link arm 222. The link arm 222 further includes a number of tabs 230, which are described in more detail below. Additionally, one or more bends 232 may be formed on the link arm to ensure clearance between the various components. The bend 232 depicted in
A retention plate 242 may be fastened to the escutcheon 202 with a screw, bolt, or other fastener 244 so as to keep the cam 234 positioned within the escutcheon 202. The retention plate 242 defines an opening 246 through which the tailpiece 210 extends. The depicted lock actuation assembly 200 also includes a stop 248 in the form of a pin that extends from a lower portion 250 of the escutcheon 202 and is secured to a lower portion 252 of the handle 204. The operation of the stop 248 is described in more detail below. A number of axes are depicted in
As apparent from the description, several of the elements of the lock actuation assembly 200 are located on an underside of the escutcheon 202 and thus would not be visible once installed. The escutcheon 202 is secured onto a stile of a door with one or more mounting elements 254, such as screws, bolts, or other securing devices that penetrate the openings 206. In the depicted embodiment, an upper mounting element 254a is located proximate the upper end 208 of the handle 204. A second securing element 254b is located proximate a lower portion 252 of the handle 204. Of course, the mounting elements 254 may be located on the escutcheon 202 as required or desired for a particular application. The mounting elements 254 may penetrate the locking mechanism, and may be secured to an escutcheon located on an opposite side of the door. Additionally, the upper mounting element 254a passes through a mounting element opening 256 defined by the lever arm 222. The lock actuation assembly 200 is typically located on an interior side of the door. The escutcheon 202 serves an aesthetic function and may be of various designs and/or configurations to complement the handle 204.
Walls 652, 654 of the escutcheon 602 define a recess 650. The link arm 622 is located within the recess 650 of the escutcheon 602 and transfers rotational motion from the handle 604 to the cam 634. The length and tapered shape of the link arm 622 determines, in part, the angle of rotation of the handle 604. The link arm 622 is secured at a first end 622a to the handle 604 with a screw, bolt, or other fastener 626. The cam 634 is engaged with a second end 622b of the link arm 622 via a pin, rivet, or other projection 636 that extends into a slot 640 defined by the cam 634. The cam 634 is also located within the recess 650. The cam 634 includes a tailpiece 610 that is inserted into an actuator slot 108 (
A stop 648 is fixed to the handle 604 and limits rotation of the handle 604 during opening and closing operations of the associated door. In
The lock actuation assemblies depicted herein automatically unlock and lock an associated lock mechanism (such as the type depicted in
The materials utilized in the manufacture of the lock actuator assembly may be those typically utilized for lock and handle manufacture, e.g., zinc, steel, brass, stainless steel, etc. Material selection for most of the components may be based on the proposed use of the lock assembly, level of security desired, etc. Appropriate materials may be selected for a lock assembly used on sliding doors, or on doors that have particular security requirements, as well as on lock assemblies subject to certain environmental conditions (e.g., moisture, corrosive atmospheres, etc.). For particularly light-weight door panels or low-security panels, molded plastic, such as PVC, polyethylene, etc., may be utilized for the various components. Nylon, acetal, Teflon®, or combinations thereof may be utilized for various components (e.g., the bushing) to reduce friction, although other low-friction materials are contemplated. The handle and escutcheon may also be finished by known powder coating processes.
The terms first, second, retracted, extended, latched, unlatched, locked, unlocked, upper, lower, etc., as used herein, are relative terms used for convenience of the reader and to differentiate various elements of the lock actuation assembly from each other. In general, unless otherwise noted, the terms are not meant to define or otherwise restrict location of any particular element or the relationship between any particular elements. For example, although the embodiments depicted herein are described such that the handle/escutcheon interface is disposed at the top of the assembly, the assemblies may also be installed upside down. The lock actuator assemblies described herein may be utilized in new doors or may be retrofitted into existing installations. As can be seen from the figures, the pivoting handles described herein differ significantly from conventional non-pivoting handles located on sliding doors. In other embodiments, the link arm and cam need not be utilized and the interface axis AI and the tailpiece axis AT would be substantially collinear. In such an embodiment, the handle may be configured with a tailpiece at the first end to engage with the actuator slot. Such embodiments may be desirable in certain applications, but the depicted embodiments utilizing the link arm and cam helps maintain size and location similar to those of conventional, non-pivoting sliding door handles. Additionally, embodiments utilizing the link arm and cam offer mechanical advantages that may not be present in an embodiment where the handle connects directly to the locking mechanism.
The lock actuator assemblies depicted herein may be sold in a kit including the components necessary to construct a complete door lock using a locking mechanism and a lock actuator assembly. In certain embodiments, the kit may include a handle, an escutcheon, a link arm, and a cam, and any required connectors or fasteners. Additionally, the elements of the lock actuation assembly may be sold as a kit separate from a locking mechanism to enable easy retrofitting of the lock actuation assembly onto an existing door with an existing lock mechanism. Additionally, certain components depicted as unitary herein may be made of discrete parts that are assembled in the field. For example, a cam including an opening for receiving a discrete tailpiece may be utilized. Multiple tailpieces of different lengths may be included in the kit such that a tailpiece of the correct length may be field-selected for a door having a particular thickness (e.g., deep or shallow).
While there have been described herein what are to be considered exemplary and preferred embodiments of the present technology, other modifications of the technology will become apparent to those skilled in the art from the teachings herein. The particular methods of manufacture and geometries disclosed herein are exemplary in nature and are not to be considered limiting. It is therefore desired to be secured in the appended claims all such modifications as fall within the spirit and scope of the technology. Accordingly, what is desired to be secured by Letters Patent is the technology as defined and differentiated in the following claims, and all equivalents.
This application claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 61/661,081, filed Jun. 18, 2012, entitled “Handle-actuated Sliding Door Lock Actuation Assemblies,” the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1251467 | Blixt et al. | Jan 1918 | A |
1716113 | Carlson | Jun 1929 | A |
2535947 | Newell | Dec 1950 | A |
2739002 | Johnson | Mar 1956 | A |
2862750 | Minke | Dec 1958 | A |
2910858 | Jackson | Nov 1959 | A |
3064462 | Ng et al. | Nov 1962 | A |
3162472 | Rust | Dec 1964 | A |
3250100 | Cornaro | May 1966 | A |
3413025 | Sperry | Nov 1968 | A |
3437364 | Walters | Apr 1969 | A |
RE26677 | Russell et al. | Oct 1969 | E |
3586360 | Perrotta | Jun 1971 | A |
3806171 | Fernandez | Apr 1974 | A |
3869159 | Eads | Mar 1975 | A |
3894759 | Balducci | Jul 1975 | A |
3899201 | Paioletti | Aug 1975 | A |
3904229 | Waldo | Sep 1975 | A |
3981164 | Balducci | Sep 1976 | A |
4076289 | Fellows et al. | Feb 1978 | A |
4116479 | Poe | Sep 1978 | A |
4132438 | Guymer | Jan 1979 | A |
4387917 | Cocker | Jun 1983 | A |
4593542 | Rotondi et al. | Jun 1986 | A |
4602812 | Bourne | Jul 1986 | A |
4629228 | Marko et al. | Dec 1986 | A |
4643005 | Logas | Feb 1987 | A |
4691543 | Watts | Sep 1987 | A |
4949563 | Gerard et al. | Aug 1990 | A |
4962653 | Kaup | Oct 1990 | A |
4964660 | Prevot et al. | Oct 1990 | A |
4973091 | Paulson | Nov 1990 | A |
5092144 | Fleming et al. | Mar 1992 | A |
5118151 | Nicholas, Jr. et al. | Jun 1992 | A |
5125703 | Clancy et al. | Jun 1992 | A |
5171050 | Mascotte | Dec 1992 | A |
5172944 | Munich et al. | Dec 1992 | A |
5197771 | Kaup et al. | Mar 1993 | A |
5265452 | Dawson et al. | Nov 1993 | A |
5290077 | Fleming | Mar 1994 | A |
5373716 | MacNeil | Dec 1994 | A |
5382060 | O'Toole et al. | Jan 1995 | A |
5383060 | Davis | Jan 1995 | A |
5388875 | Fleming | Feb 1995 | A |
5404737 | Hotzl | Apr 1995 | A |
5482334 | Hotzl | Jan 1996 | A |
5495731 | Riznik | Mar 1996 | A |
5513505 | Danes | May 1996 | A |
5516160 | Kajuch | May 1996 | A |
5524941 | Fleming | Jun 1996 | A |
5524942 | Fleming | Jun 1996 | A |
5609372 | Ponelle | Mar 1997 | A |
5620216 | Fuller | Apr 1997 | A |
5707090 | Sedley | Jan 1998 | A |
5722704 | Chaput et al. | Mar 1998 | A |
5730478 | D'Hooge | Mar 1998 | A |
5782114 | Zeus et al. | Jul 1998 | A |
5791700 | Biro | Aug 1998 | A |
5820170 | Clancy | Oct 1998 | A |
5820173 | Fuller | Oct 1998 | A |
5865479 | Viney | Feb 1999 | A |
5878606 | Chaput et al. | Mar 1999 | A |
5890753 | Fuller | Apr 1999 | A |
5896763 | Dinkelborg et al. | Apr 1999 | A |
5901989 | Becken et al. | May 1999 | A |
5906403 | Bestler et al. | May 1999 | A |
5951068 | Strong et al. | Sep 1999 | A |
6050115 | Schroter et al. | Apr 2000 | A |
6094869 | Magoon et al. | Aug 2000 | A |
D433916 | Frey | Nov 2000 | S |
6196599 | D'Hooge | Mar 2001 | B1 |
6209931 | Von Stoutenborough et al. | Apr 2001 | B1 |
6217087 | Fuller | Apr 2001 | B1 |
6257030 | Davis, III et al. | Jul 2001 | B1 |
6264252 | Clancy | Jul 2001 | B1 |
6282929 | Eller et al. | Sep 2001 | B1 |
6283516 | Viney | Sep 2001 | B1 |
6293598 | Rusiana | Sep 2001 | B1 |
6502435 | Watts et al. | Jan 2003 | B2 |
6516641 | Segawa | Feb 2003 | B1 |
6637784 | Hauber et al. | Oct 2003 | B1 |
6672632 | Speed et al. | Jan 2004 | B1 |
6688656 | Becken | Feb 2004 | B1 |
6733051 | Cowper | May 2004 | B1 |
6776441 | Liu | Aug 2004 | B2 |
6810699 | Nagy | Nov 2004 | B2 |
6971686 | Becken | Dec 2005 | B2 |
6994383 | Morris | Feb 2006 | B2 |
7025394 | Hunt | Apr 2006 | B1 |
7083206 | Johnson | Aug 2006 | B1 |
7249791 | Johnson | Jul 2007 | B2 |
7404306 | Walls et al. | Jul 2008 | B2 |
7418845 | Timothy | Sep 2008 | B2 |
7634928 | Hunt | Dec 2009 | B2 |
7677067 | Riznik et al. | Mar 2010 | B2 |
7707862 | Walls et al. | May 2010 | B2 |
7735882 | Abdollahzadeh et al. | Jun 2010 | B2 |
7753418 | Fleming | Jul 2010 | B2 |
7856856 | Shvartz | Dec 2010 | B2 |
7878034 | Alber et al. | Feb 2011 | B2 |
8182002 | Fleming | May 2012 | B2 |
8348308 | Hagemeyer et al. | Jan 2013 | B2 |
8376414 | Nakanishi et al. | Feb 2013 | B2 |
8382166 | Hagemeyer et al. | Feb 2013 | B2 |
8398126 | Nakanishi et al. | Mar 2013 | B2 |
8424928 | Lin | Apr 2013 | B2 |
8448996 | Lake | May 2013 | B2 |
20030159478 | Nagy | Aug 2003 | A1 |
20040107746 | Chang | Jun 2004 | A1 |
20040239121 | Morris | Dec 2004 | A1 |
20050103066 | Botha et al. | May 2005 | A1 |
20060202491 | Engel et al. | Sep 2006 | A1 |
20070080541 | Fleming | Apr 2007 | A1 |
20070113603 | Polster | May 2007 | A1 |
20070170725 | Speyer et al. | Jul 2007 | A1 |
20080087052 | Abdollahzadeh et al. | Apr 2008 | A1 |
20080092606 | Meekma | Apr 2008 | A1 |
20080141740 | Shvartz | Jun 2008 | A1 |
20080156048 | Topfer | Jul 2008 | A1 |
20080156049 | Topfer | Jul 2008 | A1 |
20080178530 | Ellerton et al. | Jul 2008 | A1 |
20080179893 | Johnson | Jul 2008 | A1 |
20080184749 | Alber et al. | Aug 2008 | A1 |
20090078011 | Avni | Mar 2009 | A1 |
20100154490 | Hagemeyer et al. | Jun 2010 | A1 |
20100213724 | Uyeda | Aug 2010 | A1 |
20100236302 | Uyeda | Sep 2010 | A1 |
20110198867 | Hagemeyer et al. | Aug 2011 | A1 |
20110289987 | Chiou et al. | Dec 2011 | A1 |
20120146346 | Hagemeyer et al. | Jun 2012 | A1 |
20130019643 | Tagtow et al. | Jan 2013 | A1 |
20130200636 | Hagemeyer et al. | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
844928 | Dec 1920 | AT |
1002656 | Feb 1957 | DE |
1584112 | Sep 1969 | DE |
2639065 | Mar 1977 | DE |
9011216 | Oct 1990 | DE |
4224909 | Feb 1993 | DE |
29807860 | Aug 1998 | DE |
102010029985 | Dec 2011 | DE |
341173 | Nov 1989 | EP |
359284 | Mar 1990 | EP |
661409 | Jul 1995 | EP |
792987 | Sep 1997 | EP |
1106761 | Jun 2001 | EP |
1867817 | Dec 2007 | EP |
1953311 | Aug 2008 | EP |
2107189 | Oct 2009 | EP |
2128362 | Dec 2009 | EP |
1142316 | Mar 1957 | FR |
2339723 | Sep 1977 | FR |
2342390 | Sep 1977 | FR |
226170 | Apr 1925 | GB |
1498849 | Jan 1978 | GB |
1575900 | Oct 1980 | GB |
2051214 | Jan 1981 | GB |
2076879 | Dec 1981 | GB |
2122244 | Jan 1984 | GB |
2126644 | Mar 1984 | GB |
2134170 | Aug 1984 | GB |
2136045 | Sep 1984 | GB |
2168747 | Jun 1986 | GB |
2196375 | Apr 1988 | GB |
2212849 | Aug 1989 | GB |
2225052 | May 1990 | GB |
2230294 | Oct 1990 | GB |
2242702 | Oct 1991 | GB |
2244512 | Dec 1991 | GB |
2265935 | Oct 1993 | GB |
2270343 | Mar 1994 | GB |
2280474 | Feb 1995 | GB |
2364545 | Jan 2002 | GB |
614960 | Jan 1961 | IT |
309372 | Mar 1969 | SE |
9625576 | Aug 1996 | WO |
2007104499 | Sep 2007 | WO |
2011154723 | Dec 2011 | WO |
Entry |
---|
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123—96.html, accessed Oct. 27, 2011, original publication date unknown, 3 pgs. |
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123—96.html?page=2&sort=2A, accessed Oct. 27, 2011, original publication date unknown, 3 pgs. |
“Intercity Locks—For All Your Security Needs—Fast”, http://www.directlocks.co.uk/locks-multipoint-locks-c-123—96.html?page=3&sort=2A, accessed Oct. 27, 2011, original publication date unknown, 3 pgs. |
“LocksOnline.co.uk: Premier Supplier of Security Products”, http://www.locksonline.co.uk/acatalog/Maco—multipoint—lock—2—cams—2—shootbolt—attachment.html, accessed Oct. 27, 2011, original publication date unknown, 5 pgs. |
“LocksOnline.co.uk: Premier Supplier of Security Products”, http://www.locksonline.co.uk/acatalog/upvc—Locks.html, accessed Oct. 27, 2011, original publication date unknown, 6 pgs. |
“uPVC Window Hardware and uPVC Door Hardware online”, http://www.upvc-hardware.co.uk/, accessed Oct. 27, 2011, original publication date unknown, 2 pgs. |
Number | Date | Country | |
---|---|---|---|
20130334829 A1 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
61661081 | Jun 2012 | US |