The present invention provides handles for forceps/tweezers and method and apparatus for designing such handles. Desirably, the forceps/tweezers have a generally asymmetrical “Y” shaped handle designed to comfortably fit the hand when used. The present invention provides a forceps/tweezers handle that desirably includes two mirror image blades, which meet or connect at one end. The forceps/tweezers handle of the present invention can be used as a handle to assist the hand in pinching, gripping, holding, cutting and other functions. The forceps/tweezers handle of the present invention can be used for surgical forceps, a variety of surgical instruments, tweezers and a variety of tools and instruments.
Forceps and tweezers are common tools made in the shape of a stylus in which there is a working end or tip and a part that rests on the fleshy space between the base of the index finger and the thumb. Typically, forceps and tweezers are held like a pencil where the thumb, index finger and middle finger hold forceps or tweezers close to the working end. As used herein and as in human anatomy, the anatomical term proximal is nearer and distal is further away on the extremities in relation to the torso. Similarly, in relation to the hand, typically the part of a forceps or tweezers resting over the portion of the hand between the base of the thumb and index finger is the proximal end, whereas the tips of forceps or tweezers can be referred to as the distal end.
Forceps and tweezers have opposing blades or members and fine tips enabling the hand to pick up and hold parts of various objects with a range of grip intensity. The opposing actions of the thumb and the long fingers manipulate the blades to move the tips of forceps or tweezers together. Opposition, i.e. moving the tip of the thumb and tips of the long fingers closer to each other, is done by contracting opponens muscle of the thumb and the lumbrical muscles of the long fingers. The lumbricals are small muscles located in the palm of the hand and their contraction pulls the proximal interphalangeal (PIP) bones at the base of the long fingers. The opponens muscle of the hand pulls the base of the thumb. When using forceps or tweezers, the function of fine pinch is under control of the opponens muscle and the lumbrical muscles. However, the function of gross pinch is under control of the opponens muscle of the forearm that pulls the distal portion of the thumb, and the deep flexor muscles of the forearm pull the distal portion of the index finger and the distal portion of the middle finger.
Typically, the blades of a forceps or tweezers receive support in the resting hand from the middle finger that crosses underneath them and the portion of the hand between the thumb and index finger. However, when the distal tips of a forceps or tweezers are moved together, the support for the forceps or tweezers in the hand changes and greater support is generated at the tips of the thumb and index fingers to hold the forceps or tweezers. This can cause muscle and joint strain.
Some of the factors that can cause strain in the hand when using a common forceps or tweezers include the width of the blades, the spring force of the blades, the way the hand and wrist joints function when grasping or pinching with a forceps or tweezers, the number of muscle fascicles of a muscle used to contract a corresponding muscle, and the position of the fingers on the forceps or tweezers. Typically, wider blades of a forceps or tweezers are easier to hold than narrow blades, and generally require less muscle tension to pinch. The spring-like properties of the material used for typical forceps or tweezers and the connection of the blades can affect the muscle force required to close a forceps or tweezers.
Most joints flex and extend and have a small degree of side to side motion, while other joints can move in more than one direction. In the latter joints, such as the thumb, there is larger surface contact area at the center of the joint than the periphery of the joint. When the thumb opposes the center of the long finger tips, the bones at the base of the thumb contact more surface area. When the thumb opposes the index finger or small finger, then bone contact in the joint is at the respective sides of the joint, with the joint contact area of the bones being less than when the thumb opposes the long fingers. Therefore, the common forceps or tweezers force the thumb to move to the radial side of the thumb joint where there is less bone contact surface area.
Muscles are made up of sub groups called muscle fascicles. These fascicles are made up of groups of muscle fibers. The amount of muscle fiber contraction determines the strength or the pinch force used to hold an object between the tips of the forceps or tweezers. When the radial side of the thumb joint is used to hold a common forceps or tweezers, the thumb opposes the index finger, and the radial side of the opponens muscle contracts to pull the thumb. In the common forceps or tweezers, fewer muscle fascicles and fibers are typically used for pinch strength when the thumb opposes the index finger than when the thumb opposes the center of the long finger tips. If fewer muscle fascicles and fibers are used to pinch, than potentially available, there is a greater chance of fatigue and strain in these muscles and their fascicles. Therefore, utilizing more muscle fascicles can desirably increase pinch strength and reduce muscle fatigue and stress. Thus a forceps or tweezers that increases the number of muscle fascicles used to pinch a forceps or tweezers is desirable.
Moreover, pinch strength is also affected by the number of muscles used in pinching. When the thumb and index finger pinch, one lumbrical muscle is used to pinch the index finger against the thumb. However, two lumbrical muscles, one for the index finger and one for the middle finger, are used in pinching when the thumb opposes the space between the index finger and middle finger. Pinch forces are potentially greater when the thumb opposes both the index finger and the middle finger than when the thumb opposes the index finger alone. This potential grip strength is greater because more opponens muscle fascicles are available when the thumb opposes the space between the index finger tip and the middle finger tip than when the thumb opposes the index finger tip. Thus, opposing the thumb to the space between the index finger and the middle finger has greater efficiency and can reduce muscle fatigue.
Additionally, hand strain can occur while using a common forceps or tweezers. This is because the thumb and index finger have a natural tendency to advance toward the tip of the common forceps or tweezers when holding a stylus-type tool, creating the potential for excessive squeezing of the forceps or tweezers. This can create exaggerated flexion at the distal interphalangeal joint (DIP) of the thumb and exaggerated index finger flexion at the middle interphalangeal (MIP) joint of the index finger while the DIP joint of the index finger extends. With such exaggerated flexion, the tips of the fingers squeeze and retract proximally, providing feedback or added pressure, i.e. “the feel”, that an object is being supported by the hand. Maintaining this awkward position can also strain finger and wrist joints and ligaments, especially when they suffer pre-existing damage. Such awkward but common position of exaggerated flexion results from the forearm muscles and tendons contrasting the middle phalange of the index finger and distal phalange of the thumb. This typically requires significant force from the forearm muscles, which can add strain and pressure within the carpal tunnel (CT) where the tendons of the superficial flexor forearm muscles transmit direct pressure on the transverse carpal ligament (TCL) and median nerve. Thus, the strain and pressure in the CT from the tendons of the contracted superficial flexor forearm muscles resulting from such awkward position can lead to median nerve irritation and carpal tunnel syndrome (CTS). Furthermore, strain in the muscles in the hand and forearm can cause repetitive strain syndrome of the involved muscles.
A typical problem posed with common forceps and tweezers is that frequent use can cause pain in the hand, wrist and forearm and lead to CTS. This problem has not been solved because the common forceps or tweezers generally adapts a stylus-type tool to pinch small objects. Such stylus-type tools can force the hand into an uncomfortable position with the hand compensating for exaggerated finger flexion, as discussed above, leading to this problem.
Efficiency is reached when the parts of the hand work in harmony to perform a task. The goal of handle design for a forceps or tweezers, as well as an objective of the method and apparatus of the present invention is to promote such efficiency. An efficient handle design should maintain the hand in a comfortable position. A further goal of any handle or grip design, as well as a further objective of the present invention, is to facilitate the function of the hand and forearm muscles so they work in concert. Another goal of handle design, as well as a further objective of the method and apparatus of the present invention, is to facilitate the function of the joints in the hand and wrist to reduce ligament strain.
Furthermore, another goal of handle design for a forceps or tweezers, as well as an objective of the method and apparatus of the present invention, is to promote reduced pinch strength typically required for holding an object. When less pinch strength is required to hold objects, there is less strain to joints and their surrounding ligaments.
Therefore, what is needed is a handle for a forceps or tweezers, and a method and apparatus for designing such a handle for a forceps or tweezers, that fulfills the previously mentioned goals. Such a handle for a forceps or tweezers should promote a reduced incidence of repetitive strain disorder and joint injury.
Forceps and tweezers, such as surgical forceps and tweezers, generally fall into three common types. The first type has two side by side blade members hinged at one end and tips at the other respective end. The blade members move toward each other and the tips come together to grasp and hold. The blade members of this first type of forceps and tweezers can meet and cross and then extend like a scissors. The blade members of the second type of forceps and tweezers are oriented one on top of the other instead of side by side. In the second type, the handles extend perpendicular to the orientation of the blade members and typically the handles have rings to engage the fingers. The blade members in the second type meet the handles at a hinge. Moving the ring handles moves a pivoting member to open or close for grasping or cutting tissue. A third type of forceps and tweezers uses a lever or slide to actuate a mechanism that opens and closes the jaws of an instrument.
Examples of the side-by-side blades of the first type of forceps or tweezers include those in U.S. Pat. Nos. 288,096, 987,095 and 2,540,255, which are fruit pickers. U.S. Pat. No. 5,893,877 illustrates a forceps or tweezers which is a microsurgical cup forceps. U.S. Pat. No. 5,002,561 illustrates a protective hand forceps and U.S. Pat. No. 5,176,696 is related to handles for microsurgical instruments. The handles in U.S. Pat. No. 5,176,696 oppose the thumb to the index finger and middle finger.
Examples of the ring or second type of forceps or tweezers include those illustrated in the following U.S. patents, namely U.S. Pat. No. 4,043,343 illustrates forceps, U.S. Pat. No. 4,674,501 illustrates a surgical instrument, U.S. Pat. No. 5,160,343 illustrates a surgical instrument handle and forceps assembly, U.S. Pat. No. 5,211,655 illustrates multiple use forceps for endoscopy, U.S. Pat. No. 5,234,460 illustrates laparoscopy instrument, and U.S. Pat. No. 5,318,589 illustrates a surgical instrument for endoscopic surgery.
Examples of the lever or third type of forceps or tweezers include those illustrated in the following U.S. Patents, namely U.S. Pat. No. 4,644,651 illustrates an instrument for gripping or cutting, and U.S. Pat. No. 5,470,328 illustrates a surgical instrument handle and actuator means, in which both devices described press down a lever. Other examples of the lever or third type of forceps or tweezers include those illustrated in U.S. Pat. No. 5,147,380 which illustrates a biopsy forceps device having locking means and in U.S. Pat. No. 5,184,625 which illustrates a biopsy forceps device having improved handle, both having sliding locking devices. Another example of the lever or third type of forceps or tweezers is illustrated in U.S. Pat. No. 5,976,121 as a medical manipulator that has a lever that straddles a shaft that has a distal end with a grasping part.
What is needed is a forceps or tweezers allowing the hand to pinch with greater efficiency, improved stability and reduced joint and muscle strain and tension. The problem with many of the above examples of common forceps or tweezers is that their design and operation does not take advantage of the greater pinch strength available from opposing the thumb to the index finger and middle finger instead of opposing the thumb to the index finger. Furthermore, the above styles of handles for common forceps or tweezers do not efficiently utilize the palm of the hand to support the handle. In addition, the handles for common forceps and tweezers do not efficiently utilize the ring finger and small finger to hold and stabilize the handle of the forceps and tweezers.
The present invention provides handles for forceps/tweezers and method and apparatus for designing such handles.
Also, in the design method and apparatus for handles for forceps/tweezers of the present invention, the design method and apparatus includes embodiments and methods based on measurements made of the hand in a functional pinching position or Forceps Hand Position (FHP).
A method and apparatus for designing handles for forceps/tweezers and method and apparatus for designing such handles of the present invention is provided and is based on defined anatomical positions derived from the functional anatomy of a pinching hand. The method uses lines with respect to measurements made in the hand when the thumb opposes the space between the index and middle fingers. Apparatus, such as forceps and tweezers, produced from this method make efficient use of the hand.
An advantage of handles for forceps/tweezers and method and apparatus for designing such handles of the present invention of such design is that such handles do not contact the skin over the TCL. Therefore the TCL is not compressed and no pressure is transmitted to the contents of the CT region during pinching or using a handle of such design.
Another advantage of handles for forceps/tweezers and method and apparatus for designing such handles of the present invention is that the natural arcs of the fingers and palm are maintained. In conforming to the natural hand anatomy a handle of this design becomes more comfortable to hold.
Another advantage of handles for forceps/tweezers and method and apparatus for designing such handles of the present invention is that a larger part of the hand contacts the handle. Thus there is the addition of the much greater hand area contacting a handle of this design for pinching.
Another advantage is that using such handles for forceps/tweezers and method and apparatus for designing such handles of the present invention does not compromise or distort the arteries supplying the muscles in the hand. This is because such a handle does not touch either the TCL and underlying CT where the radial artery traverses Guyon's tunnel at the pisiform bone where the ulnar artery goes deep to supply the structures of the hand.
Another advantage of handles for forceps/tweezers and method and apparatus for designing such handles of the present invention is that they do not compromise, compress or distort the nerves that go to the hand.
Another advantage of using handles for forceps/tweezers and method and apparatus for designing such handles of the present invention is that there is less strain on contents of and pressure in the CT.
Another advantage of handles for forceps/tweezers and method and apparatus for designing such handles of the present invention is that there is less compression, distortion or irritation of the median nerve by the superficial flexor tendons, which are closer to the TCL and the median nerve in the CT.
The consummate advantage is that handles for forceps/tweezers and method and apparatus for designing such handles of the present invention based on the advantages noted above will reduce acute and chronic irritation, trauma and strain to the tendons, bursa, joints, hand muscles and median nerve. It is therefore expected that the result will be in a reduced incidence of CTS and repetitive strain syndrome for people who use forceps or tweezers of this design.
It is an objective of the present invention to provide a design method and apparatus for handles for forceps/tweezers of the present invention having greater contact with the supportive areas of the hand.
It is an objective of the present invention to provide a design method and apparatus for handles for forceps/tweezers and method and apparatus for designing such handles of the present invention to optimize use of the flexor hand muscles to the thumb and long fingers.
It is still another objective of the present invention to provide a design method and apparatus for handles for forceps/tweezers and method and apparatus for designing such handles of the present invention that utilizes reduced grip strength as compared to a common forceps/tweezers.
It is still another objective of the present invention to provide handles for forceps/tweezers and method and apparatus for designing such handles of the present invention of various sizes and shapes for various applications.
It is still another objective of the present invention to provide handles for forceps/tweezers and method and apparatus for designing such handles of the present invention related to various hand sizes to accomplish the above and other objectives of the present invention.
According to a further aspect of the present invention, the distal end of handles for forceps/tweezers and method and apparatus for designing such handles of the present invention can include an elevated surface or various surfaces acting as a reference or references for positioning of the fingers on the forceps/tweezers.
According to another aspect of the present invention, handles for forceps/tweezers and method and apparatus for designing such handles of the present invention can include those desirably having generally a “Y” shape, the “Y” shape desirably being of a generally asymmetric “Y” shape. The “Y” shape for such handle for forceps/tweezers has three ends with two upper arms and one leg, either as a single “Y” shape portion or having two “Y” shaped portions joined at their respective proximal ends. While the handles for forceps/tweezers of such aspect of the present invention will generally have the two “Y” shaped portions joined or meeting at their proximal end to perform a forceps/tweezers open and close pinching function, the handle for the forceps or tweezers can also be of a single “Y” portion, that can be adapted for various mechanisms and implements, such as for a motorized control function, such as for an implement, or as can be used for a shovel, spade or pick, for example. The uppermost or proximal arm of each “Y” meets and touches areas on the radial side and ulnar side of the palm of the hand. Each leg or distal end of the “Y” extends from the corresponding connection of the radial and ulnar proximal arms of the “Y” to end near the tips of the thumb, index finger and middle finger. The lower leg or distal end of each “Y” contacts the distal part of the thumb, index finger and middle finger of the hand. In embodiments having the two “Y” shaped portions, the proximal ends of the “Y” are connected and the distal end of each “Y” moves toward the other by the opposing movement of the thumb on one “Y” and the index finger and middle finger on the other “Y”. A variety of working ends/working members attached to the distal members of the handle by various means can be used to grasp, bite or cut various objects. The present invention also provides for handles, such as for forceps/tweezers, and method and apparatus for designing such handles of the present invention to be made for a plurality of hand sizes by adjusting the dimensions of the proximal arm and the dimensions of the distal leg.
According to another aspect of the present invention, handles for forceps/tweezers and method and apparatus for designing such handles of the present invention desirably provide for the thumb to oppose both the index and middle fingers, which is in contrast to the thumb opposing the index finger alone as in the common forceps or tweezers.
According to a further aspect of the present invention, handles for forceps/tweezers and method and apparatus for designing such handles of the present invention desirably provide greater stabilization because the handle for forceps/tweezers is supported at areas within the hand, rather than resting on the middle finger and the portion of the hand between the base of the thumb and index finger.
According to another aspect of the present invention, handles for forceps/tweezers and method and apparatus for designing such handles of the present invention desirably provide for maintaining the ring finger and the small finger in the T Position.
Furthermore, handles for forceps/tweezers and method and apparatus for designing such handles of the present invention desirably optimize the position for the joints of the thumb, index finger and middle finger so the respective MIP and DIP joints cannot flex excessively. Therefore, the handles for the forceps/tweezers of the present invention promote reduced demands on the forearm muscles and the hand muscles, when used for pinching.
According to a further aspect of the present invention, handles for forceps/tweezers and method and apparatus for designing such handles of the present invention can reduce or prevent injury to joints, muscles, tendons and the median nerve in the CT compartment.
According to a further aspect of the present invention, handles and method and apparatus for designing such handles of the present invention provide for power pinch that can utilize all of the digits of the hand for pinch and not the first three digits of the hand. Stress is thereby reduced at the metacarpal-carpal joint of the thumb when the thumb meets the wrist bones, as compared to when the thumb only opposes the index finger. When the thumb opposes the space at the middle of the long fingers, this position directs the stress across the four metacarpal-phalangeal joints of the index, middle, ring and small fingers. Directing stress across MP joints of the index, middle, ring and small fingers enlists more muscles for pinching.
An object of the present invention is to desirably provide handle designs that utilize the appropriate muscles to enhance pinch.
Another object of the present invention is to desirably provide handle designs that utilize the appropriate muscles for delicate pinch.
A further object of the present invention is to desirably provide handle designs that stabilize a handle within the hand.
An additional object of the present invention is to desirably provide handle designs that position the thumb to oppose the space between the index and middle fingers
Moreover, another object of the present invention is to desirably provide handle designs that keep the hand in the T position where the tips of the ring finger and small finger are substantially aligned.
Likewise, an object of the present invention is to desirably provide handle designs that reduce muscle and joint tension.
Another object of the present invention is to desirably provide handle designs that limit flexion at the PIP joints of the opposing thumb, index finger and middle finger of the hand.
A further object of the present invention is to desirably provide handle designs that contact the horizontal crease on the radial side of the hand.
An additional object of the present invention is to desirably provide handle designs that contact the hypothenar muscle area between the horizontal crease on the ulnar side of the hand and the pisiform bone on the ulnar side of the hand.
It is an object of the present invention to desirably provide handle designs that position the handle in the hand by having the ring and small fingers wrap around the ulnar member of the handle.
It is another object of the present invention to desirably provide handle designs that use the flexed ring finger and small finger to pull the handle of the present invention toward the radial side and ulnar side of the palm of the hand when the hand is in the Forceps Hand Position (FHP).
It is also an object of the present invention to desirably provide handle designs that have the ring finger and the small finger direct (push/pull) the proximal part of the forceps/tweezers handle against the radial side and the ulnar side of the hand.
Moreover, it is an object of the present invention to desirably provide handle designs that prevent the handle from slipping within the hand.
Additionally, it is an object of the present invention to desirably provide handle designs that stabilize such handles used with an apparatus within the hand.
Further, an object of the present invention is to desirably provide handle designs that make the shape of the ulnar section relate to the functional position of the ring and middle fingers when the hand is in the Forceps Hand Position (FHP).
Also, an object of the present invention is to desirably provide handle designs that use the flexed ring finger to lift the handle as it contacts the the proximal portion of the distal leg of the handle when the hand is in the Forceps Hand Position (FHP).
The foregoing and additional features and characteristics of the present invention will become more apparent from the following detailed description considered with reference to the accompanying drawings in which like reference numerals designate like elements and wherein:
FIG. 2A and
FIG. 3A and
FIG. 5A and
FIG. 6A and
FIG. 8A and
In order to more clearly and concisely describe the subject matter of the present invention, the following definition for the T Position is intended to provide guidance as to the meanings of specific terms used in the following written description. In addition, it is to be understood that the phraseology or terminology employed herein is for the purpose of description and not to be construed in a limiting sense. The following discussion relates to areas of the hand in relation to the present invention with reference to FIG. 1.
T Position
Continuing with reference to
Forceps Hand Position (FHP)
There can be variations to the T position. FIG. 2A and
Continuing with reference to
Referring to
For illustrative purposes, with reference to FIG. 3A and
One arm Y1, Y1′ of the schematics 400Y and 400Y′ corresponds to the arm of a handle that contacts the radial side 110 of the palm 102 of the hand 100 and can be called the radial arm Y1, Y1′ of the schematic 400Y, 400Y′. The second arm Y2, Y2′ of the schematic 400Y, 400Y′ corresponds to the arm of a handle that contacts the ulnar side 111 of the palm 102 of the hand 100 and can be called the ulnar arm Y2, Y2′ of the schematic 400Y, 400Y′. The leg Y3, Y3′ of the schematics 400Y and 400 Y′ corresponds to the distal leg of a handle that extends to meet the thumb 201, index finger 202 and middle finger 203 when the hand 100 is in the Forceps Hand Position (FHP).
In the schematic 400Y of a handle of the present invention, the radial arm Y1, the ulnar arm Y2 and distal leg Y3 can meet at a common point Y4. Alternately, as illustrated in the schematic 400Y′ of a handle of the present invention, the radial arm Y1′ can meet the distal leg Y3′ at another point Y4′ along the distal leg Y3′. However, it is generally preferable to have the radial arm Y1, ulnar arm Y2 and distal leg Y3 meet at a common point Y4, as illustrated in the schematic 400Y.
The ulnar arm Y2, Y2′ of the schematics 400Y and 400Y′ has two sections, which are called the finger section Y21, Y21′ of the ulnar arm Y2, Y2′ and the palmar section Y22, Y22′ of the ulnar arm Y2, Y2′. The finger section Y21, Y21′ of the ulnar arm Y2, Y2′ starts where the radial side 110 of the DIP joint 252 of the ring finger 204 meets the palmar side 221 of the DIP joint 252 of the ring finger 204 when the hand 100 is in the Forceps Hand Position (FHP).
The finger section Y21, Y21′ of the ulnar arm Y2, Y2′ ends at the ulnar side 111 of the DIP joint 252 of the small finger 205 when the hand 100 is in the Forceps Hand Position (FHP). The finger section Y21, Y21′ of the ulnar arm Y2, Y2′ follows the line 350 made by connecting the volar (inside) surfaces of the ring finger 204 and the small finger 205 at their respective DIP joints 252. However, the palmar section Y22, Y22′ of the ulnar arm Y2, Y2′ ends at area M on the hypothenar muscle area 116 between the horizontal crease 108 on the ulnar side 111 of the hand 100 and the pisiform bone 126 of the wrist 120. The palmar section Y22, Y22′ of the ulnar arm Y2, Y2′ ends at the ulnar side 111 of the DIP joint 252 of the small finger 205 when the hand 100 is in the Forceps Hand Position (FHP). The finger section Y21 in the schematic 400Y of the ulnar arm Y2 and the palmar section Y22 of the ulnar arm Y2 meet to form an angle Y6, such as an obtuse angle.
The distal leg Y3, Y3′ of the schematics 400Y and 400Y′ also originates at the DIP joint 252 where the palmar surface 210 of ring finger 204 meets the radial surface 211 of the DIP joint 252 of the ring finger 204 when the hand 100 is in the Forceps Hand Position (FHP). The distal leg Y3 ends at Plane B made by the tip 201a of the thumb 201, the tip 200a of the index finger 202 and the tip 200a of the middle finger 203 of the hand 100.
The junction 214 corresponds to the common point Y4. The junction 214 is defined at the meeting of the palmar surface 210 of the DIP joint 252 of ring finger 204 with the radial surface 211 of the DIP joint 252 of the ring finger 204 when the hand 100 is in the Forceps Hand Position (FHP). Therefore, the junction 214 determines the location on the schematic 400Y where the radial arm Y1, the ulnar arm Y2 and distal leg Y3 meet.
The radial arm Y1, Y1′ can be straight or curved. The ulnar arm Y2, Y2′ angles or curves to conform to the angle Y6, Y6′, such as an obtuse angle. In the schematic 400Y the angle Y5, such as an obtuse angle, is formed where the radial arm Y1 and the ulnar arm Y2 meet as illustrated. The distal leg Y3, Y3′ can be straight or curved and has a distal end Y33, Y33′. The length of the radial arm Y1, Y1′ will vary with hand size. The length of the ulnar arm Y2, Y2′ will likewise vary with hand size. The length of the distal leg Y3, Y3′ will also vary with hand size.
As illustrated in
The proximal part 405a of each opposing blade 410 has a radial arm 415 and an ulnar arm 425. The radial arm 415 and ulnar arm 425 of each opposing blade 410 meet the connection area CON. The ulnar arm 425 of each opposing blade 410 of the forceps/tweezers handle 400 of the present invention has a finger section 425a and a palmar section 425b. The finger section 425a and the palmar section 425b meet at angle Y5 as discussed above in the section related to the ulnar arm Y2 of the schematic 400Y of FIG. 3A.
The palmar end 417 of the radial arm 415 of each opposing blade 410 meets to form a radial hinge 416. The palmar end 427 of the ulnar arm 425 of each opposing blade 410 meets to form an ulnar hinge 426. The hinges 416 and 426 can be made so one blade 410 continues or is formed integrally into the other blade 410. The hinges 416 and 426 can also be made of a mechanical connection means, such as a hinge arrangement. The radial hinge 416 and the ulnar hinge 426 allow the opposing blades 410 to move toward and away from each other.
The distal leg 435 of each opposing blade 410 extends from the connection area CON. The proximal section 435b of the distal leg 435 of each opposing blade 410 is attached to the connecting area CON. The distal end 435a of the distal legs 435 of each opposing blade 410 extends from the forceps/tweezers handle 400. The distal end 435a of each distal leg 435 can be an integrated working end 450a, tip or have multiple varied attachments for performing various suitable tasks or functions, such as grasping, pinching or cutting.
The width 415w of the radial arm 415 approximates the width of base of the index finger 202. The width 425w of the ulnar arm 425 approximates the width of base of the small finger 205. The width 435w of the distal end 435a of the distal leg 435 approximates the combined width of the distal pad 202b of the index finger 202 and the distal pad 203b of the middle finger 203.
The palmar end 417 of the radial arm 415 can be consistent with the corresponding surface of the palm 102 of the radial side 110 of the hand 100. The palmar end 427 of the ulnar arm 425 can be consistent with the corresponding surface of the palm 102 of the ulnar side 111 of the hand 100. Alternately the palmar end 417 of the radial arm 416 and the palmar end 427 of the ulnar arm 425 can be parallel to each other.
Also, as illustrated in
FIG. 5A and
Continuing with reference to
The distal pad 201b of the thumb 201 contacts the distal end 435a of the distal leg 435 of one opposing blade 410 of the forceps/tweezers handle 400 of the present invention and distal pad 202b of the index finger 202 and the distal pad 203b of the middle finger 203 contacts the mirror image blade 410 of the forceps/tweezers handle 400 of the present invention.
The hand 100 desirably supports a handle of the present invention, such as the forceps/tweezers handle 400 of the present invention, at five contact locations. The first support location is where the radial side 110 of the horizontal crease 108 of the hand 100 contacts the palmar end 417 of the radial arm 415 of each opposing blade 410 of the forceps/tweezers handle 400 of the present invention. The second support location can be where the ulnar side 111 of the horizontal crease 108 of the hand 100 contacts the palmar end 427 of the ulnar arm 425 of each opposing blade 410 of the forceps/tweezers handle 400 of the present invention. However, the optimal second support location is where the palmar end 425b of the ulnar arm 425 of each opposing blade 410 of the forceps/tweezers handle 400 of the present invention contacts area M. Area M is approximately located between the ulnar side 111 of the horizontal crease 108 and the pisiform bone 126 of the wrist 120 on the ulnar side 111 of the hand 100. The third support location is where the palmar surface 210 of the middle phalange 215 of the ring finger 204 and the palmar surface 210 of the distal phalange 216 of the ring finger contact area 425c contacts section 425a of each ulnar arm 425 of the opposing blades 410 of the forceps/tweezers handle 400 of the present invention. The fourth support location is on the radial side surface 211 of the middle phalange 215 of the ring finger 204 and on the radial side surface 211 of the distal phalange 216 of the ring finger 204 which contacts the ring finger contact area 435c of the proximal section 435b of the distal leg 435 of the forceps/tweezers handle 400 of the present invention. The fifth support location is on the palmar surface 220 of the middle phalange 225 of the small finger 205 and on the palmar surface 220 of the distal phalange 226 of the small finger 205 which contacts the small finger contact area 425d of the finger section 425a of each ulnar arm 425 of the opposing blades 410 of the forceps/tweezers handle 400 of the present invention.
Support and stabilization within the hand 100 for a handle of the present invention, such as the forceps/tweezers handle 400 of the present invention, is enhanced by deep flexor forearm muscle contraction on the distal phalange 216 of the ring finger 204 and the superficial flexor forearm muscle contraction on the middle phalange 215 of the ring finger 204 and by deep flexor forearm muscle contraction on the distal phalange 226 of the small finger 205 and the superficial flexor forearm muscle contraction on the middle phalange 225 of the small finger 205 on the finger section 425a of the ulnar arms 425 of the opposing blades 410. Such contraction pulls the forceps/tweezers handle 400 of the present invention against the horizontal crease 108 of the palm 102 at the radial side 110 of the hand 100 and against a location within area M of the palm 102 at the ulnar side 111 of the hand 100. Support for lifting objects held by a handle of the present invention, such as the forceps/tweezers handle 400 of the present invention, by the hand 100 is enhanced by contact at the radial surface 211 of the ring finger 204 with the ring finger contact area 435c of the proximal section 435b of the distal leg 435 of the forceps/tweezers handle 400 of the present invention.
The distal ends 435a of the distal legs 435 of the opposing blades 410 are moved to pinch the forceps/tweezers handle 400 of the present invention. Pinch is the function of forceps or tweezers. Closing the distal pad 201b of the thumb 201 and the distal pad 202b of index finger 202 can contribute to support when using the common forceps or tweezers. However, the thumb 201, index finger 202 and middle finger 203 are not necessarily needed for support of the forceps/tweezers handle 400 of the present invention. The thumb 201, index finger 202 and middle finger 203 are only involved with pinch. When using a forceps/tweezers handle 400 of the present invention, the thumb 201, index finger 202 and middle finger 203 are not generally used to support the forceps/tweezers handle 400 of the present invention. Therefore, using the forceps/tweezers handle 400 of the present invention can reduce strain on the muscles flexing the thumb 201, index finger 202 and middle finger 203 for fine or gross pinch.
Hand Measurements
One of the goals in developing the proposed forceps/tweezers handle 400 of the present invention is to have it fit the hand. As recognized in the shoe industry feet have a range of lengths and widths. The same is true of hands. The length from wrist 120 to the tips 200a of the long fingers 200 and width from the radial side 110 of the hand 100 to the ulnar side 111 of the hand 100 vary such that hands can be short and long, short and narrow, long and wide and long and narrow. In general, male hands are longer and wider than female hands.
It is possible to develop one size for a handle of the present invention, such as the forceps/tweezers handle 400 of the present invention, to span many hands. However, holding a forceps/tweezers handle 400 of the present invention will require less muscular effort, be more comfortable and have greater stability if it is made in various sizes for the hand 100 in the Forceps Hand Position (FHP). The sizes for a handle of the present invention, such as the forceps/tweezers handle 400 of the present invention, will depend on measurements taken with the hand in the Forceps Hand Position (FHP) as shown in FIG. 2A and FIG. 2B.
With reference to FIG. 6A and
The distances Line A1 and Line A2 are measured with the tip 201a of the thumb 201 opposing the tip 200a of the index finger 202 and the tip 200a of the middle finger 203 as shown in FIG. 2A and FIG. 2B and the hand 100 as shown in FIG. 6B. Line A3 is the distance from the radial side 110 of the horizontal crease 108 of the palm 102 of the hand 100 to Point P in area M on the hypothenar muscle area 116 on the ulnar side 111 of the palm 102 of the hand 100.
Individual measurements for a handle of the present invention, can be taken, with the protractor measuring device 700 illustrated in
The distances for line A1, line A2 and line A3 are desirably measured in centimeters along ruler AA1, ruler AA2 and ruler AA3. The measurements for line A1 start at the horizontal crease 108 on the radial side 110 of the hand 100 on ruler AA1. The measurements for line A2 start at Point P in Area M between the horizontal crease 108 on the ulnar side 111 of the hand 100 and the pisiform bone 126 on ruler AA2. The measurements for line A1 and line A2 end at rivet 701. Ruler AA3 slides along ruler AA1 and ruler AA2 to touch the palm 102 of the hand 100. The measurement for line A3 is read at the gradation marks 715 where ruler AA3 crosses ruler AA1 to the gradation marks 715 where ruler AA3 crosses the gradation marks 715 of ruler AA2. The angular degree reading area 712 on the protractor 710 is read in the slot 706 of ruler AA2 to determine the angle between Line Al and Line A2.
Measurements were made on the right hands of fifty males and forty females. The height of the males in this group ranged between 5′6″ to 6′4″. Female height ranged from 4′11″ to 6′0″. The measurement for line A1 in the male hand ranged from 7 to 9.5 cm. The measurement for line A1 in the female hand ranged from 7 to 8.5 cm. The measurement for line A2 in the male hand ranged from 9 to 11.5 cm. The measurement for line A2 in the female hand ranged from 9 to 11 cm. The measurement for line A3 in the male hand ranged from 6.5 to 8 cm. The measurement for line A3 in the female hand ranged from 6 to 7.5 cm. The angular degree reading from the angular degree reading area 712 for males averaged 45 degrees and the angular degree reading from the angular degree reading area 712 for females averaged 40 degrees. As expected, the male hand is longer and wider than the female hand. This data can be analyzed to develop groups of sizes for the proposed forceps/tweezers handle 400 of the present invention.
Alternate Measuring Device
A rectangular measuring device 800 for measuring the hand 100 such as can be used for determining sizes and shapes of handles of the present invention, such as the forceps/tweezers handle 400, is desirably made of measuring members such as four rulers, as illustrated in
Referring to
Continuing with reference to
Continuing with reference to
As discussed above, a handle, such as the forceps/tweezers handle 400, of the present invention can come in a plurality of sizes. The sizes of forceps/tweezers handles 400 of the present invention can be compiled by drawing point to point outline lines Z, Y, X, W, V and U to connect end points D1, F1′, F1, G1, E1 and E2 on the measurement lines corresponding to measurement distances D, E, F, F′, G and H as illustrated in
The sizes of the forceps/tweezers handle 400 of the present invention are determined by plotting or recording measurements of the perimeter PER. However, the shape of the forceps/tweezers handle 400 of the present invention is related to those areas on the perimeter PER which touch, the hand 100 at certain areas. Referring to
Therefore, the segments or sections of the respective sixth through first outline lines U, V, W, X, Y and Z that are not on the first section N on the sixth outline line U, the second section O on the sixth outline line U, the fourth section P on the third outline line X, the fifth section Q on the third outline line X, the third section R on the fourth outline line W, the sixth section S on the second outline line Y and the seventh section T on the first outline line Z on the perimeter PER can have any curve or shape because those areas generally do not contact parts of the hand 100 on a handle, such as the forceps/tweezers handle 400 of the present invention.
Variations of the Handle
Referring now to
As illustrated in FIG. 9C and
A handle, such as the forceps/tweezers handle 400, of the present invention can be made in one size or various sizes based on above described measurements with reference to
As illustrated in
In some instances, when pinch is relaxed, it is desirable to maintain a resting distance corresponding to a distance when pinch is relaxed between the distal ends 435a of the distal legs 435 of the opposing blades 410 of a handle, such as the forceps/tweezers handle 400, of the present invention. FIG. 10A and
When using a handle, such as the forceps/tweezers handle 400, of the present invention it can be desirable to maintain closure or partial closure of the working ends 450 attached to the distal ends 435a of the distal legs 435 of the opposing blades 410 of a handle, such as the forceps/tweezers handle 400 of the present invention.
As illustrated in
The clamping post 438a extends through an aperture 438c on the other distal end 435a of the distal legs 435 of the opposing blades 410 of a handle, such as the forceps/tweezers handle 400, of the present invention. The clamping post 438a has a locking plate 438d that engages with the teeth 438e to maintain the working ends 450 of the distal ends 435a of the distal legs 435 of the opposing blades 410 of a handle, such as the forceps/tweezers handle 400, of the present invention in the closed position. The distal end 438f of the clamping post 438a can be pushed by the tip 201a of the thumb 201 or the tip 200a of the index finger 202, when a handle, such as the forceps/tweezers handle 400, of the present invention is used by a left hand 100, to release the clamping post 438a from the locking plate 438d and open the forceps/tweezers handle 400 of the present invention.
In another variation, as shown in
FIG. 11B and
The distal section 420 of the radial arm 415 and the distal section 430 of the ulnar arm 425 can be of a generally tapered configuration. The distal end 420a of the distal section 420 of the radial arm 415 and the distal end 430a of the distal section 430 of the ulnar arm 425 meet at the inside margin 440a of the semicircular channel 446 of the rotating mechanism 445 of the central connection area 440.
For a handle, such as the forceps/tweezers handle 400, of the present invention two cams 419a, 429a are attached to the outer surface of the distal section 420 of the radial arm 415 and the distal section 430 of the ulnar arm 425. The cams 419a, 429a are elevated at edges 419b, 429b of the slots 443, 444. The cams 419a, 429a are designed to engage the slots 443, 444 in the semicircular outer sleeve 442 when the distal section 420 of the radial arm 415 and the distal section 430 of the ulnar arm 425 are advanced into the semicircular channel 446 between the semicircular inner sleeve 441 and the semicircular outer sleeve 442 of the rotating mechanism 445 of the central connection area 440. The cams 419a, 429a are designed to slide in the radial slot 443 and the ulnar slot 444 to retain the radial arm 415 and ulnar arm 425 in the semicircular channel 446. The radial slot 443 and the ulnar slot 444 are designed to allow rotation of the radial arm 415 and the ulnar arm 425 in a range of approximately 35 to 50 degrees in relation to the angle K.
Another variation of the forceps/tweezers handle 400, handle 400a, of the present invention is illustrated in FIG. 12A and FIG. 12B. This variation is related to the width WD of the distal ends 436a of the distal arms 436 of the opposing blades 410 of handles, such as the forceps/tweezers handle 400, of the present invention. The variation on
As illustrated in
Therefore, in the variation handle 400a, as illustrated in
The variation handle 400a of the forceps/tweezers handle 400 of the present invention has the potential to produce the highest pinch strength at the working end 450. However, generally less pinch strength is necessary to hold an object because typically the thumb 201 and all the long fingers 200 of the hand 100 are used to pinch the distal end 436a of the distal leg 436 of the variation handle 400a of the forceps/tweezers handle 400 of the present invention.
Also, for example,
Another handle variation 400b of the present invention that changes the direction of motion at the working end 450 of the handle 400b of the present invention is illustrated in
A common example of a surgical instrument used with an up and down opening and closing motion for cutting or biopsy of tissue is a pituitary rongeur. Opening and closing the ring handles of the common pituitary rongeur position the thumb 201 and a long finger 200 of the hand 100 in a proximal and distal relationship to each other. The proximal-distal motion of the thumb 201 and a lone finger 200 activates a sliding member to move in the proximal-distal direction. The sliding member activates the working member to open and close. Using such an instrument in which the thumb 201 and a long finger 200 of the hand 100 move in a proximal and distal direction typically is not as comfortable for the hand 100 as using the side to side opposing motion utilized in the variation handle 400b of the forceps/tweezers handle 400 of the present invention.
In this variation handle 400b illustrated in
Squeezing the distal ends 435a of the distal legs 435 of the variation handle 400b of the forceps/tweezers handle 400 of the present invention when the sliding member hinges 503 of the brace members 502 are placed distal on the sliding member 501 push the sliding member 501 away from the hand 100. However, as illustrated in
Also, referring to
In various embodiments of the forceps/tweezers handle 400 of the present invention, the gap between the distal ends 435a of the distal legs 435 can be wider than the distance between the working ends 450 of the forceps/tweezers handle 400 of the present invention. The gap between the distal ends 435a of the distal legs 435 also depends on the inherent spring qualities of the material used to make the opposing blades 410 of a handle, such as the forceps/tweezers handle 400, of the present invention. The gap between the distal ends 435a of the distal legs 435 for surgical forceps and surgical instruments using the forceps/tweezers handle 400 of the present invention should generally remain between one and two centimeters. A smaller gap can increase flexion and can add strain to the PIP joints of the long fingers 200 and can increase flexion and can add strain to the metacarpal phalangeal joint 201c of the thumb 201. A larger gap also requires more gross than fine motor skills to pinch.
Continuing with reference to
As previously discussed, variation handle 400b of the forceps/tweezers handle 400 of the present invention can move a sliding member 501 in relation to a fixed member 500.
One advantage of the retractable scalpel 1000 with the forceps/tweezers handle variation handle 400b of the present invention is promoting protection from sharp injury in the operating room. Another advantage is that the retractable scalpel 1000 is based on the anatomic Forceps Hand Position (FHP), which can make the retractable scalpel 1000 more comfortable for the hand 100 to hold and manipulate.
However, the relationship of the hand 100 to the standard size scissors blades 451 of the standard size scissors variation handle 400c is typically not in the same general direction as the thumb 201, index finger 202 and middle finger 203 when the hand 100 is in the Forceps Hand Position (FHP). The direction of the standard size scissors blades 451 of the standard size scissors variation handle 400c in relation to the hand 100 is related to the relationship of the hand 100 to line J illustrated in FIG. 2A. Line J connects the space 310 between tip 202b of the index finger 202 and tip 203b of the middle finger 203 and the dorsal surface 252a of the DIP joint 252 of the small finger 205 when the hand 100 is in the Forceps Hand Position (FHP). The attachment of the blades 451 of a standard scissors to the standard size scissors variation handle 400c is such that the axis AX passes centrally through the blades 451 and the axis AX is parallel to line J.
The rings 439 on distal end 435a of distal legs 435 of the standard size scissors variation handle 400c allow the opposing thumb 201, index finger 202 and middle finger 203 to open the blades 451 of a standard scissors for the standard size scissors variation handle 400c. The distal pad 201b of the thumb 201, the distal pad 202b of the index finger 202 and the distal pad 203b of the middle finger 203 oppose to close the blades 451 of a standard scissors for the standard size scissors variation handle 400c.
In common scissors, the fingers of the hand 100 meet the ring like extensions of the scissors blades. The thumb 201 opposes the index finger 202 and the middle finger 203 and they enter ring handles to open and close the common scissors. Typically, in such common scissors, hand support is generally poor. Also, closing the scissors places the thumb 201 uncomfortably close to the opposing index finger 202 and the hand 100 is generally not integrated into the handle.
The standard size scissors handle variation 400c of the forceps/tweezers handle 400 of the present invention has advantages over a common scissors. These advantages are related to contact with the hand 100 at the horizontal crease 108 on the radial side 110 of the hand 100, at area M on the ulnar side 111 of the hand 100, at the palmar surface 210 of the ring finger 204 and at the palmar surface 220 of the small finger 205. Furthermore, the ring finger 204 and the small finger 205 pull the handle 400c into the hand. These features add to support, given the scissors variation handle 400c adapted to the forceps/tweezers handle 400 of the present invention, and integrate the hand 100 into the scissors variation handle 400c adapted to the forceps/tweezers handle 400 of the present invention. These areas of contact with the standard size scissors variation handle 400c, adapted to the forceps/tweezers handle 400 of the present invention, integrate the entire hand 100 and not only the thumb 201, index finger 202 and middle finger 203 to open, close and hold a scissors.
In summary, handles of a design according to the present invention can be molded or formed into and contiguous with any of many types of equipment commonly held by a hand. Furthermore, handles based on the design method of the present invention can be attached to or integrated into objects that can be lifted, rotated, moved, carried, etc. Such handles of the present invention can advantageously be attached or integrated into or with an object or working end. Additionally, such handles of the present invention can be designed to swivel and/or rotate on various axes at a location of attachment. For example, the handle can be attached to a shaft by an extension member, such as for turning.
Also, in the handles of the present invention, various materials can be used for fabrication of the handles as, for example, various woods, metals, plastics, composites, rubber compounds, latex's and organic or inorganic materials, suitable for the particular application of a handle of the present invention. Further, various materials can be added to augment and personalize the fit of a handle of the present invention.
The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. However, the invention which is intended to be protected is not limited to the particular embodiments disclosed. The embodiments described herein are illustrative rather than restrictive. Variations and changes may be made by others, and equivalents employed, without departing from the spirit of the present invention. Accordingly, it is expressly intended that all such variations, changes and equivalents which fall within the spirit and scope of the present invention as defined in the claims, be embraced thereby.
This application claims the benefit of and is a Continuation-In-Part of U.S. application Ser. No. 10/279,111 filed on Oct. 24, 2002, the entire disclosure of which is incorporated herein by reference; this application also claims the benefit of and is a Continuation-In-Part of International Application No. PCT/US02/33956, filed on Oct. 24, 2002, presently published in English under PCT Article 21(2), the entire disclosure of which is incorporated herein by reference; and this application further claims the benefit of U.S. Provisional Patent Application Ser. No. 60/330,527 filed on Oct. 24, 2001, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
288096 | Morgan | Nov 1883 | A |
336540 | Wyttenbach | Feb 1886 | A |
340382 | Smith | Apr 1886 | A |
700492 | Henstock | May 1902 | A |
825985 | Schwertenberg | Jul 1906 | A |
987095 | Bonta | Mar 1911 | A |
D43242 | Bernstein | Nov 1912 | S |
1188394 | Bernstein | Jun 1916 | A |
1229658 | Sandow | Jun 1917 | A |
1648354 | Lied | Nov 1927 | A |
1879456 | Parsons | Sep 1932 | A |
1919968 | Trabold | Jul 1933 | A |
2047635 | Johst | Jul 1936 | A |
2370026 | Elia | Feb 1945 | A |
2540255 | Graves | Feb 1951 | A |
2561941 | Moskowitz | Jul 1951 | A |
2621688 | Wales | Dec 1952 | A |
2669991 | Curutchet | Feb 1954 | A |
2669993 | Curutchet | Feb 1954 | A |
2975505 | Linskey et al. | Mar 1961 | A |
3129939 | Stock | Apr 1964 | A |
3407816 | Curutchet | Oct 1968 | A |
3557792 | Rubin | Jan 1971 | A |
3713350 | Brilando | Jan 1973 | A |
3741665 | Smagala-Romanoff | Jun 1973 | A |
3972333 | Leveen | Aug 1976 | A |
4043343 | Williams | Aug 1977 | A |
4127338 | Laybourne | Nov 1978 | A |
4161051 | Brodwin | Jul 1979 | A |
4413034 | Anderson | Nov 1983 | A |
4462404 | Schwarz et al. | Jul 1984 | A |
4553746 | Lee | Nov 1985 | A |
4572227 | Wheeler | Feb 1986 | A |
4599915 | Hlavac et al. | Jul 1986 | A |
4599920 | Schmid | Jul 1986 | A |
4632383 | Tsuzuki | Dec 1986 | A |
4641857 | Gailiunas | Feb 1987 | A |
4644651 | Jacobsen | Feb 1987 | A |
4674330 | Ellis | Jun 1987 | A |
4674501 | Greenberg | Jun 1987 | A |
D292297 | Bingham | Oct 1987 | S |
4738158 | Christol | Apr 1988 | A |
4785495 | Dellis | Nov 1988 | A |
4798377 | White | Jan 1989 | A |
4802704 | Burns | Feb 1989 | A |
4830002 | Semm | May 1989 | A |
4850355 | Brooks et al. | Jul 1989 | A |
4877280 | Milano | Oct 1989 | A |
4885818 | Arterbury | Dec 1989 | A |
4899618 | Christol | Feb 1990 | A |
4924851 | Ognier et al. | May 1990 | A |
4941460 | Working | Jul 1990 | A |
4962747 | Biller | Oct 1990 | A |
5002561 | Fisher | Mar 1991 | A |
5005674 | Piatt | Apr 1991 | A |
5024119 | Linden | Jun 1991 | A |
5031640 | Spitzer | Jul 1991 | A |
5044058 | Voss | Sep 1991 | A |
5046381 | Mueller | Sep 1991 | A |
5046722 | Antoon | Sep 1991 | A |
5047046 | Bodoia | Sep 1991 | A |
5047049 | Salai | Sep 1991 | A |
5076569 | Gootter | Dec 1991 | A |
5125878 | Wingate et al. | Jun 1992 | A |
5143463 | Pozil et al. | Sep 1992 | A |
5146809 | Ruana | Sep 1992 | A |
5146810 | Mueller | Sep 1992 | A |
5147380 | Hernandez et al. | Sep 1992 | A |
5159851 | Rahmes | Nov 1992 | A |
5160343 | Brancel et al. | Nov 1992 | A |
5176696 | Saunders | Jan 1993 | A |
5184625 | Cottone, Jr. et al. | Feb 1993 | A |
5199324 | Sain | Apr 1993 | A |
5211655 | Hasson | May 1993 | A |
5230704 | Moberg et al. | Jul 1993 | A |
5234460 | Stouder, Jr. | Aug 1993 | A |
D339468 | Mertz | Sep 1993 | S |
5277683 | Wilkins | Jan 1994 | A |
5299991 | Sato | Apr 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5339850 | Mertz | Aug 1994 | A |
5351702 | Denjean | Oct 1994 | A |
5366476 | Noda | Nov 1994 | A |
5379758 | Snyder | Jan 1995 | A |
5391010 | Gorbunov | Feb 1995 | A |
5417234 | Davis | May 1995 | A |
5445479 | Hillinger | Aug 1995 | A |
5454380 | Gates | Oct 1995 | A |
5470162 | Rubin | Nov 1995 | A |
5470328 | Furnish et al. | Nov 1995 | A |
5495867 | Block | Mar 1996 | A |
5498256 | Furnish | Mar 1996 | A |
5522290 | Visser et al. | Jun 1996 | A |
5540304 | Hawkins et al. | Jul 1996 | A |
5554132 | Straits et al. | Sep 1996 | A |
5556092 | Theken | Sep 1996 | A |
5562693 | Devlin et al. | Oct 1996 | A |
5571127 | DeCampli | Nov 1996 | A |
5578050 | Webb | Nov 1996 | A |
5606985 | Battiston et al. | Mar 1997 | A |
5634382 | Fan | Jun 1997 | A |
5653713 | Michelson | Aug 1997 | A |
5659959 | Parlowski | Aug 1997 | A |
5660082 | Hsieh | Aug 1997 | A |
5662006 | Angeltun | Sep 1997 | A |
5692265 | Dalury | Dec 1997 | A |
5728121 | Bimbo et al. | Mar 1998 | A |
5730751 | Dillon et al. | Mar 1998 | A |
5735873 | MacLean | Apr 1998 | A |
5761767 | Barton | Jun 1998 | A |
5782853 | Zeevi et al. | Jul 1998 | A |
5785443 | Rubin | Jul 1998 | A |
5791671 | Tang et al. | Aug 1998 | A |
5797165 | Armbrust | Aug 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5827263 | Furnish et al. | Oct 1998 | A |
5829099 | Kopelman et al. | Nov 1998 | A |
5830231 | Geiges, Jr. | Nov 1998 | A |
5833580 | Chiu | Nov 1998 | A |
5846221 | Snoke et al. | Dec 1998 | A |
5885018 | Sato | Mar 1999 | A |
5893877 | Gampp, Jr. et al. | Apr 1999 | A |
5897571 | Kazama | Apr 1999 | A |
5908432 | Pan | Jun 1999 | A |
5920944 | Biggs et al. | Jul 1999 | A |
5923467 | Pericic et al. | Jul 1999 | A |
5935149 | Ek | Aug 1999 | A |
5961430 | Zuckerman et al. | Oct 1999 | A |
5976121 | Matern et al. | Nov 1999 | A |
5979015 | Tamaribuchi | Nov 1999 | A |
5980511 | Bilitz et al. | Nov 1999 | A |
5991956 | Chapman | Nov 1999 | A |
6007570 | Sharkey et al. | Dec 1999 | A |
6012623 | Fealey | Jan 2000 | A |
6024737 | Morales | Feb 2000 | A |
6029780 | Phillips | Feb 2000 | A |
6030409 | Lang | Feb 2000 | A |
6041258 | Cigaina et al. | Mar 2000 | A |
6042559 | Dobak, III | Mar 2000 | A |
6063087 | Agee et al. | May 2000 | A |
6079523 | Irvine | Jun 2000 | A |
6085611 | Valdez | Jul 2000 | A |
6094780 | McGlothlin et al. | Aug 2000 | A |
6119309 | Lu | Sep 2000 | A |
6129622 | Seaman et al. | Oct 2000 | A |
6129740 | Michelson | Oct 2000 | A |
6134994 | Gomas | Oct 2000 | A |
6145151 | Herron et al. | Nov 2000 | A |
6161256 | Quiring et al. | Dec 2000 | A |
6161974 | Nakagawa | Dec 2000 | A |
6217536 | Gustafson | Apr 2001 | B1 |
6305244 | Takahama | Oct 2001 | B1 |
6354618 | Liao | Mar 2002 | B1 |
6427565 | Ping | Aug 2002 | B1 |
6530125 | Shippert | Mar 2003 | B2 |
6592160 | Nicolay et al. | Jul 2003 | B1 |
6637962 | Roche et al. | Oct 2003 | B1 |
20010001630 | Nakagawa | May 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
20040078935 A1 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
60330527 | Oct 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10279111 | Oct 2002 | US |
Child | 10420872 | US | |
Parent | PCT/US02/33956 | Oct 2002 | US |
Child | 10279111 | US |