1. Field of the Invention
The present invention relates to a concrete saw and more specifically to an adjustable handle assembly for a concrete saw.
2. Description of Related Art
In the concrete industry, when building bridges, buildings, roads and the like, it is often necessary to pour large horizontal slabs of concrete. Once poured, it is usually necessary to machine the slab. Such machining may include cutting seams completely through the slab (to form expansion joints and to allow for foundation shifting), cutting notches partially into the slab (to create stress cracks along which the slab will split), cutting multiple grooves into the slab to create a high friction surface such as for bridges, grinding the surface of the slab and the like. Road surface cutting saws, also known as concrete saws, are typically used for this type of application. Concrete saws are also used in the demolition or removal of concrete, such as during the sawing and replacement of bridge decks. Various types of concrete saws may be utilized to carry out these machining and demolition tasks. In larger industrial applications, large self-propelled saws are used that are powered in a variety of manners, such as by gasoline, diesel, electric, propane and natural gas engines mounted on the saw. While performing a cut, the operator controls the direction, cutting speed, cutting depth and the like. One type of saw used to perform the functions described above is disclosed in U.S. Pat. No. 7,117,864 entitled “Mobile Road or Floor Saw,” the disclosure of which is herein incorporated by reference.
During operation of the saw the operator walks behind the saw to control the direction, cutting speed, cutting depth, and other operating conditions of the saw. In addition, the operator typically has to maneuver the saw while the saw blade is raised above the concrete. Maneuvering the saw may include turning the saw from side to side to better position the blade, moving the saw from one cutting path to the next cutting path, etc. At least one handle extends from the rear of the saw to allow the operator to maneuver and operate the saw. In order to maneuver the saw the operator pushes the handles in a downward direction toward the concrete. This raises the saw blade above the concrete and allows the operator to pivot the saw about the rear wheels or transport the saw to the next cutting path. When the saw blade, however, is raised above the concrete the operator is typically in an uncomfortable-bent over position thereby making maneuvering the heavy saw more difficult.
It is well known in the industry to provide concrete cutting saws with adjustable handles to permit the operator to adjust the handles to a more desired and comfortable position while maneuvering the saw. Ease of adjustment, however, remains a problem. Thus, what is required is an adjustable handle for a concrete saw that is easy and fast to adjust.
In accordance with one aspect, the present invention overcomes the above mentioned disadvantages by providing an adjustable handle assembly for a road surface cutting saw comprising a back plate attached to a housing of the saw, an outer gear attached to the back plate, the outer gear defining a center-circular opening, a bracket assembly including an inner gear, a tubular member slidably attached to the bracket assembly, the tubular member having a hand grip, and an adjustment lever having a threaded engagement end. The adjustment lever is inserted through an aperture in the bracket assembly, whereby the threaded engagement end engages a fastener operatively attached to a rear surface of the back plate. When the adjustment lever is rotated in a tightening direction the inner gear engages the outer gear such that the inner gear occupies a space defined by the center-circular opening of the outer gear to thereby rigidly secure the bracket
In accordance with another aspect, the present invention provides a bias spring. Thus, when the adjustment lever is rotated in a loosening direction the bias spring biases the bracket assembly away from the saw such that the inner gear disengages from the outer gear to thereby allow rotation of the tubular member to a desired operating position.
In accordance with yet another aspect, the present invention provides a locking knob having a threaded engagement end to secure the tubular member in the bracket assembly. When the locking knob is rotated in a non-locking direction the locking knob disengages the tubular member to thereby allow the tubular member to slide forwardly and rearwardly in the horizontal channel to a desired operating position.
Additional benefits and advantages of the present invention will become apparent to those skilled in the art to which it pertains upon a reading and understanding of the following detailed specification.
The invention may take physical form in certain parts and arrangement of parts, a preferred embodiment of which will be described in detail in this specification and illustrated in the accompanying drawings that form a part of the specification.
Referring now to the drawings,
Referring to
Referring to
The lower portion 54 of the bracket 48 is semi-circular in shape and is integrally joined to the upper portion 52. A circular-horizontal aperture 76 extends from a front surface 78 to the rear surface 80 of the lower portion 54 such that an opening 82 is defined in both the front 78 and rear surfaces 80. The circular-horizontal aperture 76 receives the adjustment lever 40, as will be described further below.
Referring to
Referring to
Referring to
A fastener 106 having a center aperture 108 is joined to a rear surface 110 of the back plate 38 such that the center aperture 108 of the fastener 106 is aligned with the center aperture 104 of the back plate 38. The fastener 106 can be joined to the back plate 38 by any means known in the art such as, for example by welding, brazing, etc. The fastener 106 may be any type of fastener known in the art such as for example, a clip, bracket, a threaded nut, etc. The fastener 106 shown in
Referring to
To attach and secure the bracket assembly 34 to the saw, the adjustment lever 40 is inserted through the circular-vertical aperture 76 of the bracket assembly 34 and through a center of the bias spring 39 until it engages the fastener 106 on the rear surface 110 of the back plate 38. In the embodiment shown in
To attach the tubular member 44 to the bracket assembly 34, the tubular member 44 is inserted into the horizontal-circular channel 56 of the bracket 48. A threaded engagement end 120 of the locking knob 42 is inserted into the threaded-circular channel 68. When rotated in a locking direction the locking knob 42 descends into the threaded-circular channel 68 and contacts the tubular member 44 to thereby secure the tubular member 44 within the horizontal-circular channel 56.
To adjust the tubular member 44 in a forward or rearward direction the operator simply rotates the locking knob 42 in a non-locking direction and slides the tubular member 44 forward or rearward in the horizontal-circular channel 56 to a desired operating position, as shown in
To rotate the tubular member 44 about a pivot point defined by the adjustment lever 40, the operator rotates the adjustment lever 40 in a loosening direction. The bias spring 39 biases the bracket assembly 34 away from the saw 10 such that the inner gear 50 disengages from the outer gear 36. This allows the operator to rotate the tubular member 44 to a desired operating position, as shown in
It should be noted that in a second embodiment (not shown) the handle assemblies 22 can be mounted to the saw 10 such that the handle assemblies 22 incorporate a self leveling feature. For example, the back plate 38 can be mounted to a rotatable axel that extends between the two side panels 22. Thus, during operation of the saw 10, as the blade 12 moves in an up and down direction the handle assemblies 22 can automatically rotate and remain in a substantially horizontal position.
While specific embodiments of the invention have been described and illustrated, it is to be understood that these embodiments are provided by way of example only and that the invention is not to be construed as being limited but only by proper scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4889675 | Chiuminatta et al. | Dec 1989 | A |
4903680 | Chiuminatta et al. | Feb 1990 | A |
4928662 | Chiuminatta et al. | May 1990 | A |
4938201 | Chiuminatta et al. | Jul 1990 | A |
5039118 | Huang | Aug 1991 | A |
5056499 | Chiuminatta et al. | Oct 1991 | A |
5062769 | Ortolano | Nov 1991 | A |
5123768 | Franklin | Jun 1992 | A |
5542151 | Stranski et al. | Aug 1996 | A |
5551745 | Huang | Sep 1996 | A |
5664553 | Chiuminatta et al. | Sep 1997 | A |
5680854 | Kingsley et al. | Oct 1997 | A |
5725282 | Masseth et al. | Mar 1998 | A |
5810448 | Kingsley et al. | Sep 1998 | A |
5941227 | Bearden | Aug 1999 | A |
6112736 | Bearden | Sep 2000 | A |
6318351 | Baratta | Nov 2001 | B1 |
6629801 | Cheng | Oct 2003 | B2 |
6739798 | Vandewinckel et al. | May 2004 | B2 |
6910708 | Sack et al. | Jun 2005 | B2 |
6948197 | Chen | Sep 2005 | B1 |
7117864 | Marques et al. | Oct 2006 | B2 |
7418959 | Kingsley et al. | Sep 2008 | B2 |
20060005826 | Kingsley et al. | Jan 2006 | A1 |
20070163566 | Johnson et al. | Jul 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080252133 A1 | Oct 2008 | US |