The present invention relates to a handle assembly comprising a first and a second handle lever for operating a locking device by rotating one of the handle levers between a first and a second position. In particular the present invention relates to a handle assembly wherein the first and second handle levers may be coupled to each other without use of tools. Moreover, the present invention relates to a rosette for rotationally supporting a handle lever, which rosette is adapted to allow a handle lever to be attached to a door without use of bolts for rotationally locking the rosette relative to the door.
Handle assemblies for operating a locking device are known in the art. Such handle assemblies may comprise two handle levers interconnected by an interconnection member. The handle levers are attached to the interconnection member by means of screws, whereby assembly of the handle assembly is time consuming. Accordingly it is an object of a preferred embodiment of the present invention, to provide a handle assembly wherein the handle levers may be attached to the interconnection member in one step and without use of tools.
In a first aspect, the present invention relates to a handle assembly for operating a locking device having a locking member adapted to be moved between a locking and a non-locking position by manipulation of a manoeuvring member of the locking device, the handle assembly comprising:
wherein the fastening means has a fastening position in which the fastening means unidirectionally locks the interconnection member for movement out of and away from the handle lever while allowing further movement of the interconnection member into the handle lever.
An advantage of the handle assembly according to the present invention is, that the handle levers may be attached to the interconnecting member in an infinite number of positions, whereby slack between a rosette of the handle lever and the door may be avoided. Moreover, an advantage of the present invention is, that the handle assembly may be attached to a door/locking device in one step and without use of tools, due to the provision of the fastening means allowing the interconnection member to be inserted into handle lever in one single movement. This saves time when a plurality of handle assemblies are to be installed, such as in connection with erection of large office buildings, houses, ferries etc.
The handle assembly may be adapted to operate a locking device having a locking member for engaging a door frame or the like. The locking member may define a locking position wherein the locking member extends out of the locking device and—when the locking device is installed in a door or the like—engage a door frame when the door is closed. Moreover, the locking device may be adapted to be moved to a non-locking position wherein the locking member is retracted into the locking device so as to allow the door, window etc., to be opened. In order to move the locking member between the locking and the non-locking position, the locking device may comprise a manoeuvring member which is rotatable so as to move the locking member between the locking and the non-locking position.
The locking device may be adapted to be installed in a hinged door or window or a slidably arranged door or window. Moreover it will be appreciated, that the locking device may be installed in any other means for closing an opening in a house, a room, cupboard, box etc.
The handle assembly comprises a first and a second handle lever defining a gripping portion allowing a user to rotate/slide the handle assembly so as to lock or unlock the locking device. The handle levers are attachable to an interconnection member and at least one of the handle levers are adapted to be attached to the interconnection member in an infinite number of positions.
Upon delivery of the handle assembly one or both of the handle levers may not be attached to the interconnection member. In one embodiment one of the handle levers are attached to the interconnection member by means of a screw so as to lock the interconnection member for movement in both directions inside said handle lever, i.e. into and out of the passage of the handle lever. In said embodiment, the other of the handle levers may comprise the fastening means according to the present invention, allowing said handle lever to be attached to the interconnection member in an infinite number of positions. Supply of such a handle assembly makes it easy to assemble the handle assembly, as the process of assembling only comprises the steps of:
In another embodiment neither of the handle levers are attached to the interconnection member, and thus the process of assembling the handle assembly comprises the steps of:
When the interconnection member is inserted into the locking device, it engages the manoeuvring member of the locking device whereby the locking member may be moved between the locking and the non-locking position by rotating the handle levers between corresponding two positions.
In one embodiment, the fastening means is adapted to allow the interconnection member to be fastened to the handle lever in an infinite number of positions. One advantage of such an arrangement is that slack between the handle lever and the door/window onto which the handle assembly is attached, may be avoided. This is desirable as the thickness of doors/windows varies. Accordingly, the present invention provides a handle assembly for assembling the handle levers to the interconnection member in one step—independent on the thickness of the door/window and without use of tools.
In order to allow the handle lever to be fastened to the interconnection member in an infinite number of positions, the fastening means may define en engagement surface which, when the interconnection member is received in the passage of the handle lever, engages an outer surface of the interconnection member. Moreover, the outer surface of the interconnection member may be smooth and/or non-toothed so as to allow said infinite locking of the two elements relative to each other.
In one embodiment, the fastening means defines two engagement surfaces which, when the interconnection member is received in the passage of the handle lever, engage two opposite surfaces of the interconnection member, i.e. surfaces facing away from each other.
In one embodiment, the fastening means defines an opening for receiving the interconnection member. The opening may define the two engagement surfaces. The opening may be defined in a fastening zone of the fastening means. The width of the opening may be larger than the thickness of the interconnection member whereby the fastening zone must be provided at an angel—relative to the longitudinal direction of the interconnection member—in order to ensure that the engagement surfaces engage the interconnection member.
In one embodiment, the fastening means is adapted to be moved between:
When the fastening means is provided in the fastening position, the fastening zone may be provided at an angle relative to the interconnection member as described above. In order to unlock the fastening member, the fastening zone may be rotated relative to the interconnection member such that the engagement surfaces disengage the interconnection member. When the fastening means is provided in the non-fastening position the fastening zone may be closer to defining a right angel with interconnection member, than when the fastening means is provided in the fastening position.
In order to allow a user to move the fastening means between the fastening and the non-fastening position, the fastening means may comprise a fastening lever for moving the engagement surface between the fastening and the non-fastening position. The fastening lever may be operable from an outer surface of the handle lever.
In one embodiment the fastening means comprises/defines means for biasing the fastening means into the fastening position. Such biasing means may take the form of a spring, a resilient element or the like. In one embodiment, the fastening means is made from a flexible material and said material is bend so as to define a resilient zone adapted to force the fastening zone to be defined at an angel (different from 90 degrees) to the interconnection member.
In order to allow the fastening lever to be operable from an outer surface of the handle lever, the handle lever may define an aperture extending between the passage and an outer surface of the handle lever. Moreover, the fastening lever may be adapted to extend into the aperture from the passage so as to be operable from the outer surface of the handle lever.
It will be appreciated, that if a user is prevented from operating the fastening lever, the handle lever cannot be disconnected from the interconnection member. This may be used to prevent theft of the handle assemblies, which in some cases are expensive designer handle assemblies. Accordingly, the aperture may define a threaded inner surface adapted to allow a locking screw to be screwed into the aperture so as to prevent operation of the fastening lever either by preventing access to the fastening lever or by preventing movement of the fastening lever within the aperture. The screw may define a predetermined, non-standard shape requiring a special tool to remove the screw and thereby access the fastening lever.
At least one of the handle levers may be rotatably supported by a rosette adapted to be fixed rotationally relative to the locking device while allowing the handle lever to be rotated relative to the rosette between the locking and non-locking position. Such a rosette may be used to hide an opening made in the door/window for inserting the interconnection member into the manoeuvring member of the locking device form the outer surface of the door/window.
In order to eliminate locking bolts which extend into the door and the locking device, and are used to lock the rosette rotationally relative to the door/locking device, the rosette may comprise one or more resilient member(s) which when the rosette abut the locking device or door/window, causes the rosette to be locked rotationally relative to the locking device/door/window (i.e. the element into which the locking device is mounted), due to the friction between the resilient element and the door/window/locking device. It will be appreciated, that the infinite locking of the handle levers relative to the interconnection member, enables the resilient element of the rosette to be compressed independent of the thickness of the door whereby the friction between the resilient element and the door is increased. Such an increased friction prevents the rosette from rotating relative to the door/window or the like.
In a SECOND aspect the present invention relates to a rosette for rotationally supporting a handle lever, the rosette being adapted to be fixed rotationally relative to a locking device according to any of the preceding claims, while allowing the handle lever to be rotated relative to the rosette, wherein the rosette comprises one or more resilient member(s) which when the rosette abut the locking device or an element into which the locking device is mounted, causes the rosette to be locked rotationally relative to the locking device and/or the element into which the locking device is mounted.
It will be appreciated that the invention according to the second aspect may comprise any combination of features and/or elements of the invention according to the first aspect.
In
The interconnecting member 108 is fastened to the first handle lever 104 by means of the fastening means 116, which is disclosed in further detail in
It will be appreciated, that abutment between the first end 110 of the interconnecting member 108 and a bottom surface 128 of the passage 114 prevents further movement of the interconnecting member 108 into the first handle lever 104, i.e. to the right in the drawing.
A recess 130 is defined in the passage 114 of the first handle lever 104. The recess 130 is adapted to retain the fastening means 116 in the passage by receiving a protrusion 132 of the fastening means 116. In the embodiment of
It will be appreciated, that movement of the interconnecting member 108 into the fastening means 116 i.e. to the right in
In the opposite case i.e. wherein the interconnecting member 108 is attempted to be moved out of the first handle lever 104 and thus to the left in
It will be appreciated, that the abovementioned unidirectionally fastening effect is caused by providing the fastening zone 138 at an angle to the retaining lever 134 which is different for 90 degrees. In one embodiment the angle between the retaining lever and the fastening zone is below 85 degrees, such as below 80 degrees, such as below 75 degrees, such as below 60 degrees. It will be appreciated that the more acute the angle between the fastening zone 138 and the retaining lever 134 (and thus the interconnection member 108) is, the larger the opening 140 of the fastening zone 138 must be in order to allow the engagement surfaces 126′,126″ to be moved into and out of engagement with the outer surface of the interconnection member 108.
In
Moreover it will be appreciated, that if the protrusion 144 and/or the fastening lever 136 are not accessible from an outer surface 122 of the first handle lever 104, the interconnecting member 108 cannot be disconnected from the first handle lever 104. Furthermore, if the first and the second handle levers 104,106 are prevented from being disconnected from the interconnecting member 108, theft of the handle assembly 100 may be prevented in cases wherein the interconnecting member 108 extends through the locking device, as the handle assembly 100 is then locked to the locking device 102. Such theft protection may be achieved either by providing the first and the second handle levers 104,106 with fastening means 116 which is only accessible in special cases, e.g. by means of a special tool. Alternatively, one of the handle levers may be permanently fixed to the interconnecting member 108, while the other handle lever comprises the abovementioned fastening means 116.
A simple way of preventing the fastening lever 136 and/or the protrusion 144 from being moved into the non-fastening position is to provide a screw 118 adapted to be screwed into the aperture 120 so as to make the fastening lever 136 and/or the protrusion 144 inaccessible from an outer surface 122 of the handle lever 104. Advantageously, the screw 118 may be adapted to prevent ordinary tools such as standard screwdrivers or Unbrako spanners (hex keys), from being used to remove the screw 118, by defining a special geometry requiring a spanner defining said special geometry in order to be able to screw the screw 118 into and out of the aperture 120.
It will be appreciated, that the upon delivery of the handle assembly 100 to a user, the screws 118 may be screwed into the apertures 120, as the protrusion 144 and/or the fastening lever 136 need not be accessible from the outer surface 122 of the handle levers 104,106, in order to allow the handle levers 104,106 to be fastened to the interconnecting member 108. Such access to the protrusion 144 and/or the fastening lever is only needed in order to allow the interconnecting member 108 to be moved out of the passage 114 of the handle levers 104,106.
The handle levers 104,106 of
The locking device 102 comprises a casing 152 housing the mechanical elements of the locking device. Such mechanical elements comprise the locking member 154 which is adapted to be moved between a locking position as shown in
In the embodiment of
Another difference between
In
It will be appreciated that during use, the fastening means 116 is orientated so as to allow the two handle levers to be moved towards each other while preventing the two handle levers from being moved away from each other (without use of tools). Accordingly, the fastening means of
Number | Date | Country | Kind |
---|---|---|---|
PA 2007 01107 | Jul 2007 | DK | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/059927 | 7/29/2008 | WO | 00 | 1/13/2010 |
Number | Date | Country | |
---|---|---|---|
60935197 | Jul 2007 | US |