When transporting a computing machine, a user can manually grasp at least one edge of the computing device. Once an edge has been grasped, the user can proceed to lift and move the computing machine. Additionally, the user can insert the computing machine in a carrying case and proceed to utilize the carrying case when transporting the computing machine.
Various features and advantages of the disclosed embodiments will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the disclosed embodiments.
A handle attachment 110 is a device which a user can hold and/or operate to access and/or transport a computing machine 100. In one embodiment, the user can hold and/or operate the handle attachment 110 by physically grasping and holding the handle attachment 110. The computing machine 100 can be a notebook, a netbook, and/or any computing device which the handle attachment 110 can be coupled to.
Additionally, the handle attachment 110 can be configured to reposition into at least one position and/or elevate at least one end of the computing machine 100 into one or more ergonomic positions. For the purposes of this application, the handle attachment 110 can reposition into at least one of the positions by sliding along and/or rotating around one or more axis. In one embodiment, the user can cause the handle attachment 110 to reposition by applying force to the handle attachment 110 in one or more directions.
Additionally, a composition of the handle attachment 110 can include one or more alloys, one or more plastics, and/or a combination of the above. In other embodiments, a composition of the handle attachment 110 can include additional compounds and/or a combination of compounds.
As illustrated in
As shown in
Further, at least one of the mounting mechanisms 220 can be coupled and/or secured to at least one location or position on the computing machine 200 utilizing at least one fastening device 260. As illustrated in
As illustrated in
Additionally, a shape of the module 240 and the shape of the aperture 250 can be round. As a result, when the module 240 of the mounting mechanism 220 engages the aperture 250 of the handle attachment, the handle attachment 210 can be configured to rotate along and/or around the module 240. In other embodiments, the shape of the aperture 250 and the module 240 can include different shapes and/or sizes in addition to and/or in lieu of those noted above and illustrated in
Further, as illustrated in
As illustrated in
In one embodiment, as illustrated in
As shown in
As a result, when the second portion 265 of the clutch mechanism 230 engages the aperture of the module 250 on the mounting mechanism 230, the second portion 265 of the clutch mechanism 230 is securely coupled to the mounting mechanism 220 and the first portion 260 of the dutch mechanism 230 can protrude out from the aperture of the module 250.
By securely coupling the second portion 265 of the clutch mechanism 230 to the mounting mechanism 220, movement of the second portion 265 of the mounting mechanism 230 can be secured and/or restricted. In one embodiment, securing and/or restricting movement of the second portion 265 includes restricting the second portion 265 from repositioning along and/or rotating around one or more axis.
As noted above, the module 240 of the mounting mechanism 230 can engage and/or couple to an aperture on the handle attachment 210. When engaging and coupling the module 240 to the aperture 250 of the handle attachment 210, the first portion 260 of the clutch mechanism 230 can protrude above the aperture 250 of the module 240 and engage an indention 270 within the aperture 250 of the handle attachment 210.
As illustrated in
As noted above, the clutch mechanism 230 is configured to reposition as the handle attachment 210 repositions to and/or from at least one position from the computing machine 100. Additionally, the clutch mechanism 230 is configured to lock the handle attachment 210 in at least one of the positions when repositioning. In one embodiment, locking the handle attachment 210 in at least one of the positions includes restricting movement of the handle attachment 210 such that the handle attachment 210 remains stationary while in a position.
When the handle attachment 210 repositions into one or more positions, the second portion 265 of the clutch mechanism 230 can remain stationary while the first portion 260 of the clutch mechanism 230 repositions by rotating. Additionally, as the first portion 260 of the clutch mechanism 230 repositions, the first portion 260 can be configured to lock into one or more of the positions. Further, the first portion 260 can be configured to unlock from one or more of the positions as the handle attachment 210 repositions from one or more of the positions. As a result, the handle attachment 210 can be configured to reposition and lock into one or more positions.
As shown in
As illustrated in
As noted above and as illustrated in
When rotating along an axis, the first portion 360 of the clutch mechanism 330 can rotate along the center cylinder 380. In another embodiment, when rotating along an axis, the first portion 360 and the center cylinder 380 can both be configured to rotate. In one embodiment, the first portion 360 of the clutch mechanism 330 includes a motor and the first portion 360 of the dutch mechanism 330 is configured by the motor to automatically rotate along and/or around an axis in response to a user accessing the handle attachment.
Further, the handle attachment can include one or more sensors which can detect when a user is accessing the handle attachment and communicate the information to the motor of the clutch mechanism. One or more sensors can include a biometric device, an infrared device, and/or a proximity sensor. In other embodiments, one or more sensors can include additional devices configured to determine whether a user is accessing the handle attachment in addition to and/or in lieu of those noted above.
Additionally, as noted above and as illustrated in
Further, as noted above, the first portion 360 and the handle attachment can be configured to unlock from one or more of the positions when repositioning. In one embodiment, when unlocking from one or more of the positions, force can be applied to the handle attachment by a user in one or more directions. As force is applied to the handle attachment, force is also applied to the first portion 360 and the first portion 360 of the of the clutch mechanism 330 is configured to rotate. In one embodiment, applying rotational force to the first portion 360 results in force being applied to the indention component 395 and causes the indention component 395 to retract from an indention 370 and unlock the handle attachment from a position.
As illustrated in
In one embodiment, one or more of the indentions 370 are located at the base of the first portion 360 and are positioned at opposite sides on the first portion 360. In other embodiments, the first portion 360 of the clutch mechanism 330 can include additional indentions 370 and the indentions 370 can be located at additional locations in addition to and/or in lieu of those noted above and illustrated in
As noted above, an indention component 395 can be configured to engage one of the indentions 370 when locking the first portion 360 and the handle attachment in one or more positions. As illustrated in
As shown in
In one embodiment, the spring 390 can be coupled to a base of the second portion 365 of the clutch mechanism. In another embodiment, the spring 390 can be coupled to the center cylinder 380. In other embodiments, the spring 395 can be coupled to additional locations or positions on the clutch mechanism 330 in addition to and/or in lieu of those noted above and illustrated in
In one embodiment, the spring 390 can be coupled to a base of the second portion 365 of the clutch mechanism. In another embodiment, the spring 390 can be coupled to the center cylinder 380. In other embodiments, the spring 395 can be coupled to additional locations or positions on the clutch mechanism 330 in addition to and/or in lieu of those noted above and illustrated in
In one embodiment, the spring 390 can be coupled to a motor included in the clutch mechanism 330. The motor can apply and/or reduce an amount of force applied to the spring 390. As a result, the spring 390 can automatically compress and/or expand while the first portion 360 of the clutch mechanism 330 rotates along an axis.
As noted above, the handle attachment 410 can reposition in response to a user accessing the handle attachment 410. Additionally, as illustrated in
As illustrated in
As shown in
As illustrated in
Additionally, as the first portion 460 continues to rotate, the indention component becomes aligned with one or more indentions on the first portion 460. When aligned with one or more of the indentions, the spring can expand to engage the indention component with an indention and lock the handle attachment 410 in the closed position.
Further, as illustrated in
Once the indention component becomes aligned with another indention and the handle attachment 410, the spring of the clutch mechanism can expand to engage the indention component with an indention and lock the handle attachment 410 in an open position.
As illustrated in
As a result, the handle attachment 510 can be configured reposition into at least one position by extending from and/or retracting to the computing machine 500. As noted above, a clutch mechanism 530 can be configured to reposition and lock the handle attachment 510 into one or more of the positions. Additionally, when repositioning, a first portion 560 of the clutch mechanism 530 can be configured to rotate as the handle attachment 510 repositions. Further, when locking into one or more positions, an indention component of the clutch mechanism 530 can be configured to extended from a spring of the clutch mechanism 530 and engage one or more indentions located on the first portion 560 of the clutch mechanism 530.
In one embodiment, as illustrated in
As a result, by extending the indention component when aligned with one or more indentions, the first portion 560 and the handle attachment 510 can be configured to lock into one or more positions as the handle attachment 510 repositions. The handle attachment 510 can continue to reposition and lock into one or more positions when transitioning from a closed position to an open position or transitioning from an open position to a closed position.
As noted above, a handle attachment is a device which a user can hold and/or operate to access and/or transport a computing machine. Additionally, the handle attachment can be configured to reposition into at least one position and/or elevate at least one end of the computing machine into one or more ergonomic positions.
Further, a first end and a second end of a handle attachment can be coupled to a computing machine 600. As noted above, at least one mounting mechanism can couple the handle attachment to the computing machine. In addition, at least one of the mounting mechanisms can be fastened to a base of the computing machine with a fastening device, such as a screw. In other embodiments, one or more of the mounting mechanisms can be fastened to additional locations or positions on the computing machine. As a result, the handle attachment can be coupled to additional location and/or positions on the computing machine in addition to and/or in lieu of those noted above.
Additionally, as noted above, a mounting mechanism can include a module which includes an aperture. The module can engage an aperture with an indention on one of the ends of the handle attachment when coupling to the handle attachment. As noted above, when the module of the mounting mechanism engages the aperture of the handle attachment, a clutch mechanism can engage the aperture of the module and the indention of the aperture on the handle attachment.
As noted above, the clutch mechanism includes a first portion and a second portion. The second portion can securely be inserted within the aperture of the module and movement of the second portion can be restricted. Additionally, the first portion of the clutch mechanism can protrude out from the aperture of the module and engage the indention within the handle attachment.
In response to a user accessing the handle attachment, the clutch mechanism can be configured to reposition and lock the handle attachment in at least one position around an axis of the computing machine 610. In one embodiment, the handle attachment and the clutch mechanism can be configured to unlock from one or more positions as the handle attachment repositions.
As noted above, as the handle attachment is repositioned, the first portion of the clutch mechanism is configured to rotate around an axis. Additionally, the first portion of the clutch mechanism includes one or more indentions configured to engage an indention component of the clutch mechanism.
As noted above, as first portion of the clutch mechanism repositions in response to force being applied to the handle attachment, the indention component can be configured by a spring of the clutch mechanism to retract when unlocking and/or transitioning between one or more of the indentions. Additionally, the spring can expand and extend the indention component when aligned with one of the indentions. By expanding when aligned an indention, the indention component can engage the indention and lock the first portion in one or more positions.
As a result, by locking the first portion into one or more positions, the handle attachment can be configured to lock into one or more positions. In one embodiment, the method is then complete. In other embodiments, the method of
As noted above, a first end and a second end of a handle attachment can initially be coupled to a computing machine 700. Additionally, at least one mounting mechanism can be utilized to couple the first end and the second end of the handle attachment to the computing machine. When coupling to the computing machine, a mounting device can be fastened to one or more locations or positions on the computing machine with a fastening device.
Additionally, the mounting mechanism can couple one or more ends of the handle attachment to the mounting mechanism by engaging a module of the mounting mechanism into an aperture of an end of the handle attachment. As noted above, a shape of the module and the aperture can be round as to allow the aperture and the handle attachment to rotate around the module when the handle attachment is repositioning.
Further, the module of the mounting mechanism also includes an aperture. The aperture in the module of the mounting mechanism is of a size and a shape that a second portion of a clutch mechanism can securely engage it. In addition, an indention within the aperture on the handle attachment is also of a size a shape that securely engages a first portion of the clutch mechanism.
As noted above, a clutch mechanism is a device which has a first portion and a second portion. Additionally, the first portion of the clutch mechanism is configured to rotate in response to the handle attachment repositioning. Further the first portion of the clutch mechanism can lock into one or more positions and cause the handle attachment to lock into one or more positions. In addition, the first portion can unlock from a position when the handle attachment is repositioning to and/or from one or more positions.
When the module of the mounting mechanism engages the aperture of the handle attachment, the first portion of the clutch mechanism can engage an indention in the aperture of the handle attachment and the second portion of the clutch mechanism can engage the aperture in the module of the mounting mechanism.
In one embodiment, the clutch mechanism can include one or more motors and the handle attachment can include one or more sensors to detect whether a user is accessing the handle attachment 710. If a sensor detects a user is accessing the handle attachment, the sensor can communicate the information to the motor of the dutch mechanism for the dutch mechanism to reposition the handle attachment into an open position 720.
As noted above, as the handle attachment repositions, the first portion of the dutch mechanism can rotate. Additionally, as the first portion rotates, an indention component can engage one or more indentions on the first portion to lock the first portion and the handle attachment in one or more positions. As a result, once the handle attachment has reached the open position, the handle attachment can be locked into the open position by configuring the indention component to engage an indention.
In another embodiment, if one or more sensors do not detect a user accessing the handle attachment, the motor of the dutch mechanism can rotate the first portion of the dutch mechanism until the handle attachment repositions into a dosed position 730. The method is then complete. In other embodiments, the method of
By coupling a handle attachment onto a computing machine, the handle attachment can conveniently be utilized by a user to securely move the computing machine to other locations. Additionally, by utilizing a dutch mechanism to reposition and lock the handle attachment into at least one position, the handle attachment can be utilized to elevate and position the computing machine into a more ergonomic and a user friendly position.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/22104 | 1/26/2010 | WO | 00 | 9/25/2011 |