Information
-
Patent Grant
-
6495781
-
Patent Number
6,495,781
-
Date Filed
Wednesday, December 27, 200023 years ago
-
Date Issued
Tuesday, December 17, 200221 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Enad; Elvin
- Poker; Jennifer A.
-
CPC
-
US Classifications
Field of Search
US
- 200 308
- 200 331
- 200 330
- 200 333
- 200 334
- 200 5026
- 200 5001
- 200 5011
-
International Classifications
-
Abstract
An indicator on a stored energy motor operator indicates that the circuit breaker is “on” when the contacts are closed and the handle is in an on position and when the contacts are open and the handle is in an on position. The indicator only indicates that the circuit breaker is “off” when the contacts are open and the handle is in an off position. To achieve these conditions, the stored energy motor operator includes a flag bearing on and off indicia, the flag attached to one end of a connecting bar, the other end of the connecting bar pivotally connected within the stored energy motor operator. A lever is attached to a central portion of the connecting bar at a spring, the lever including a hook portion for hooking onto a pin within the motor operator. When the contacts are closed, thus indicating an “on” condition, the lever remains hooked onto the pin. When the contacts are open, on-off indicator attached to a rotor drive pin within the circuit breaker moves the lever off of the pin. The connecting bar, however, does not move away from the pin until the handle is also in the off position and moves a second pin extending from the handle so that the connecting bar can move in its spring biased direction.
Description
BACKGROUND OF THE INVENTION
The present invention relates generally to a circuit breaker with a stored energy motor operator, and more particularly this invention relates to a stored energy motor operator which does not indicate an off condition when the handle is in an on/closed position.
Stored Energy motor operators provide closing times of breakers in under 300 micro-seconds (ms). These can be used in uninterrupted power supplies where one breaker is interlocked to the other so that both cannot be closed. Inherent in the design is the possibility that the motor operator can be closed on the auxiliary breaker but because the contacts are blocked due to the interlock, the motor operator does not indicate that the motor operator is discharged, which would cause inadvertent closing of the auxiliary breaker when the main breaker is opened.
U.S. Pat. No. 5,477,016 to Baginski et al, for example, discloses an add-on remote control unit for a circuit breaker in which an indicator is arranged at the top end of an operating lever, operatively connected with the circuit breaker for indicating whether the contacts are in the open or closed state. This device does not, however, prevent the inadvertent closing of an auxiliary breaker when a main breaker is opened because the indication relies solely on whether the contacts are separated or not.
BRIEF SUMMARY OF THE INVENTION
The above discussed and other drawbacks and deficiencies are overcome or alleviated by a circuit breaker assembly comprising a rotary circuit breaker including a top cover, a midcover, a base, a moveable rotor drive pin, an on-off indicator having a first end and a second end, the rotor drive pin connected to the second end of the on-off indicator, and a handle. The circuit breaker assembly further preferably comprises a stored energy motor operator mounted to the top cover of the rotary circuit breaker, the stored energy motor operator including a flag, a connecting bar attached to the flag, a lever having a first end and a second end, the first end of the lever attached to the connecting bar, a hook portion of the lever between the first end and the second end, and, a pin seatable within the hook portion of the lever, the pin preventing the lever from movement towards the connecting bar when seated within the hook portion.
The above-discussed and other features and advantages of the present invention will be appreciated and understood by those skilled in the art from the following detailed description and drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Referring to the FIGURES wherein like elements are numbered alike in the several FIGURES:
FIG. 1
shows a perspective view of a circuit breaker assembly including a circuit breaker and a stored energy motor operator;
FIG. 2
shows a rotary contact assembly usable in the circuit breaker of
FIG. 1
;
FIG. 3
shows a perspective view of the circuit breaker of
FIG. 1
with the top cover removed;
FIG. 4
shows an exploded perspective view of the circuit breaker of
FIG. 1
with the top cover removed and the mid cover partially removed;
FIG. 5
shows an exploded perspective view of a rotor drive pin and an on-off indicator for use in the circuit breaker of
FIG. 1
;
FIG. 6
shows a diagrammatic interior view of the stored energy motor operator of
FIG. 1
undergoing a condition wherein separable contacts of the circuit breaker are abutting and the handle is in an on position;
FIG. 7
shows a diagrammatic interior view of the stored energy motor operator of
FIG. 1
undergoing a condition wherein separable contacts of the circuit breaker are separated but the handle is still in an on position; and,
FIG. 8
shows a diagrammatic interior view of the stored energy motor operator of
FIG. 1
undergoing a condition wherein separable contacts of the circuit breaker are separated and the handle is in an off position.
DETAILED DESCRIPTION OF THE INVENTION
As shown in
FIG. 1
, circuit breaker assembly
30
includes remote device or stored energy motor operator
32
which attaches to a multipole circuit breaker
40
. The circuit breaker
40
includes a top cover
34
, a midcover
36
, and a base
38
. Although a three pole circuit breaker is shown, more or less poles in a circuit breaker would be within the scope of this invention.
Within the circuit breaker
40
, a circuit breaker rotary contact assembly
10
as shown in FIG.
2
. Within a three pole circuit breaker, two similar rotary contact assemblies
10
would also be provided within the base
28
and midcover
36
. Opposing line and load straps
11
,
12
are adapted for connection with an associated electrical distribution system and a protected electric circuit, respectively. Fixed contacts
24
,
26
connect with the line and the load straps while the moveable contacts
23
,
25
are attached to the ends of moveable contact arms
21
,
22
for making moveable connection with the associated fixed contacts to complete the circuit connection with the line and load straps
11
,
12
. The rotor
19
may rotate about a rotor pivot
27
in response to the circuit breaker operating mechanism and interacts with the moveable contact arms
21
,
22
. The moveable contact arms
21
,
22
are preferably of unitary structure and rotate within the rotor and contact arm assembly
15
about the pivot
27
when rotated upon response to the circuit breaker operating mechanism by connection via the rotor drive pin
18
and the pair of opposing levers
16
,
17
. The arcs generated when the contacts
23
,
24
and
25
,
26
are separated upon overload circuit current conditions are cooled and quenched within the arc chambers
13
,
14
to interrupt current through the protected circuit.
FIG. 3
shows the circuit breaker
40
with stored energy motor operator
32
and top cover
34
removed to reveal the handle
50
as well as a top portion of on-off indicator
52
which moves either up or down in the direction of double-sided arrow
54
in response to whether or not the contacts
23
,
24
and
25
,
26
are separated.
FIG. 4
also shows the circuit breaker
40
except with the midcover
36
partially removed to reveal a cassette
56
which houses a circuit breaker rotary contact assembly
10
as shown in FIG.
2
. As the circuit breaker
40
as shown is a three pole circuit breaker, the circuit breaker
40
would include three cassettes
56
. Also shown in
FIG. 4
is a full view of the on-off indicator
52
which is operatively connected with the interior of the cassette
56
via the rotor drive pin
18
.
As shown in
FIG. 5
, the on-off indicator
52
includes a first end
58
lying along a first longitudinal axis
60
and a second end
62
lying along a second longitudinal axis
64
of the on-off indicator
52
, the first and second longitudinal axes
60
,
64
being parallel. An angled section
66
connects a first straight section
68
to a second straight section
70
of the on-off indicator
52
. The first straight section
68
includes a slot
72
and the second straight section
68
includes an aperture
74
. The aperture
74
is sized to receive an end
76
of the rotor drive pin
18
. A clamp
78
may be used to secure the end
76
to the on-off indicator
52
, although other securing devices are within the scope of this invention. Preferably, the longitudinal axis
80
of the rotor drive pin
18
is perpendicular to the first longitudinal axis
64
. The on-off indicator
52
is thus directly connected to the rotor drive pin
18
to indicate if the rotor is open or closed by movement of this indicator
52
in the vertical direction as demonstrated by arrow
54
.
FIGS. 6-8
show the first end
58
of the on-off indicator
52
within the motor operator
32
. Components within the motor operator
32
include an on-off flag
82
, a spring
84
such as a torsion spring, and a lever
86
which interfaces with the on-off indicator
52
and a pin
88
. A top surface
90
of the motor operator
32
includes a window
92
for viewing the on-off flag
82
. The on-off flag
82
preferably includes a curved member
83
having a first end
94
and a second end
96
. The first end
94
is preferably imprinted with the word “on” or other suitable indicia indicating an on condition and the second end
96
is preferably imprinted with the word “off”or other suitable indicia indicating an off condition. The indicia is preferably imprinted on an outer surface
110
which faces the top surface
90
, while an inner surface
112
of the curved member
83
is attached to a first end
99
of the connecting bar
100
. Also enclosed within the motor operator
32
is the handle
50
of the circuit breaker
40
which is shown in phantom. A second end
101
of the connecting bar
100
includes a pivot pin
97
which allows for pivotal movement of the connecting bar
100
within the stored energy motor operator
32
. A pin
51
, shown in
FIGS. 6-8
may extend from the handle
50
to interfere with movement of the connecting bar
100
as will be described below.
The condition shown in
FIG. 6
is when the contacts move to the on position, i.e., the contacts
24
,
26
are in an abutting and closed position. The flag
82
positions the first end
94
of the curved member
83
within the window
92
to indicate an “on” condition. The lever
86
includes a first end
98
attached to connecting bar
100
at spring
84
, and a second end
102
having a cam surface
103
facing the on-off indicator
52
. The spring
84
biases the second end
102
of the lever
86
downwards towards the on-off indicator
52
(as shown, the spring
84
biases the second end
102
in a counterclockwise direction). Between the first end
98
and the second end
102
is a hook portion
104
of the lever
86
which latches onto pin
88
in the condition shown in FIG.
6
. The spring
84
retains the hook portion
104
on the pin
88
. As shown, the handle
50
is in a position which indicates that the breaker
40
is “closed”, meaning that the contact pairs
23
,
24
and
25
,
26
are closed and in an abutting condition, which, in turn, means that the breaker is “on”.
The condition shown in
FIG. 7
is where the handle
50
is moved to the on position (as in
FIG. 6
) but the rotors are blocked from an interlock and thus the contacts
23
,
24
and
25
,
26
are in an off position, i.e. the contact pairs are separated. The rotor drive pin
18
is in a position corresponding to the off state of the contacts which moves the on-off indicator
52
in a vertically upwards direction, in a direction towards the top surface
90
of the motor operator
32
. The first end
58
of the on-off indicator
52
interfaces with the cam surface
103
of the second end
102
of the lever
86
to release the pin
88
. However, because the handle
50
is still in the on position, the motor operator
32
still indicates the handle
50
in the on position even though the contacts
23
,
24
and
25
,
26
are in the off position. This is due to the pin
51
which extends from the handle
50
and prevents the connecting bar
100
from moving, which in turn retains the flag
82
in the “ON” position as shown.
The only way the flag
82
can indicate “off” is when both the handle
50
is in the off position and the contacts
23
,
24
and
25
,
26
are in the off position as shown in FIG.
8
. The indicator
52
moves the hook portion
104
of the lever
86
off the pin
88
as previously shown in and described with respect to FIG.
7
. The lever
86
is prevented from further rotation about the spring
84
by a stopping member
114
attached to the connecting bar
100
. Once the lever
86
is released from the pin
88
, and the connecting bar
100
is not blocked from movement by the pin
51
extending from the handle
50
, an additional spring
116
, such as an extension spring, which is connected at one end to the connecting bar
100
and at another end within the motor operator
32
, draws the connecting bar
100
, and thus the lever
86
, towards direction A. The spring
116
biases the connecting bar
100
in the A direction, however the connecting bar
100
is prevented from moving in the A direction until both the pin
88
is released from the lever
86
and the handle
50
is moved to an off position moving the pin
51
out of the way of the connecting bar
100
. Thus, the flag
82
is allowed to move correspondingly with the connecting bar
100
to the off position where the second end
96
of the curved member
83
is visible through the window
92
of the top surface
90
of the motor operator
32
.
The handle cannot be in the off position while the contacts are in an on position. In that respect, it would be seemingly possible, however not preferable, to link the flag
82
directly to the handle
50
. Because of arcing, the separable contacts cannot be slowly or gradually separated or closed, they will separate virtually immediately based on tripping action and will likewise close (abut) virtually immediately when signaled to close. The handle
50
, on the other hand, could potentially be moved slowly, and could even become located within a “dead zone” somewhere between on and off. Therefore, linking only the handle
50
to the flag
82
may have undesirable consequences, such as displaying neither an on or off condition if the handle has been moved too slowly, which would not give an indication of the state of the contacts. Thus, it is the preferred embodiment to link the flag
82
to the on-off indicator
52
, which provides a clear indication of whether the contacts are open or closed, as well as the handle
50
, as has been described.
The present invention thus describes a method where the motor operator
32
only indicates off when the breaker handle is in the off position and the contacts are open when used in a rotary breaker.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Claims
- 1. A stored energy motor operator for a mounting exteriorly on a circuit breaker, the stored energy motor operator comprising:a flag having a first end and a second end, the first end bearing indicia relating to an ON condition, the second end bearing indicia relating to an OFF condition; a connecting bar attached to the flag, the connecting bar moveable within the motor operator; a lever having a first end and a second end, the first end of the lever attached to the connecting bar, a hook portion of the lever between the first end and the second end; and, a first pin seatable within the hook portion of the lever, the pin preventing the connecting bar from movement in a direction away from the pin when the pin is seated within the hook portion of the lever.
- 2. The stored energy motor operator of claim 1 wherein the connecting bar includes a first end and a second end, the first end of the connecting bar attached to the flag, and the second end attached to a pivot pin for pivotal movement of the connecting bar within the stored energy motor operator.
- 3. The stored energy motor operator of claim 2 wherein the first end of the lever is attached to the connecting bar between the first and second ends of the connecting bar, a spring positioned at the first end of the lever.
- 4. The stored energy motor operator of claim 1 wherein the second end of the lever includes a cam surface.
- 5. The stored energy motor operator of claim 1 wherein the indicia on the first end of the flag is “ON” and the indicia on the second end of the flag is “OFF”.
- 6. The stored energy motor operator of claim 1 further comprising a top surface having a window, wherein the flag is moveable relative to the window to position either the first end or second end of the flag within the window.
- 7. The stored energy motor operator of claim 3 wherein the lever is spring biased towards the first pin.
- 8. The stored energy motor operator of claim 1 further comprising a spring attached at one end to the connecting bar and at another end within the stored energy motor operator, wherein the connecting bar is spring biased in a opposite direction of the first pin.
- 9. The stored energy motor operator of claim 1 wherein the flag comprises a curved member, an inner surface of the curved member attached to the connecting bar and an outer surface of the curved member carrying the indicia on the first end and the indicia on the second end of the flag.
- 10. A circuit breaker assembly comprising:a rotary circuit breaker including a top cover, a midcover, a base, a moveable rotor drive pin, an on-off indicator having a first end and a second end, the rotor drive pin connected to the second end of the on-off indicator, and a handle; and, a stored energy motor operator mounted to the top cover of the rotary circuit breaker, the stored energy motor operator including: a flag, a connecting bar attached to the flag, a lever having a first end and a second end, the first end of the lever attached to the connecting bar, a hook portion of the lever between the first end of the lever and the second end of the lever, and, a first pin seatable within the hook portion of the lever, the first pin preventing the lever from movement towards the connecting bar when the first pin is seated within the hook portion.
- 11. The circuit breaker assembly of claim 10 wherein the flag has a first end and a second end, the first end bearing indicia relating to an ON condition, the second end bearing indicia relating to an OFF condition.
- 12. The circuit breaker assembly of claim 11 wherein the circuit breaker further comprises a pair of separable contacts, and the motor operator includes an outer surface having a window, wherein the flag is moveable relative to the window to position either the first end or second end of the flag within the window.
- 13. The circuit breaker assembly of claim 12 wherein the second end of the flag is positioned within the window only when the handle of the circuit breaker is in an off position and the contacts are separated.
- 14. The circuit breaker assembly of claim 10 wherein the first end of the on-off indicator is moveable to abut the second end of the lever and push the hook portion off of the first pin.
- 15. The circuit breaker assembly of claim 14 wherein the second end of the lever includes a cam surface for abutting with the first end of the on-off indicator.
- 16. The circuit breaker assembly of claim 14 wherein the connecting bar includes a first end and a second end, the first end of the connecting bar attached to the flag, and the second end of the connecting bar having a pivot pin for pivotal movement within the stored energy motor operator.
- 17. The circuit breaker assembly of claim 16 wherein the first end of the lever is attached to the connecting bar between the first and second ends of the connecting bar, a spring positioned at the first end of the lever.
- 18. The circuit breaker assembly of claim 11 wherein the indicia on the first end of the flag is “ON” and the indicia on the second end of the flag is “OFF”.
- 19. The circuit breaker assembly of claim 17 wherein the lever is spring biased towards the first pin.
- 20. The circuit breaker assembly of claim 10 further comprising a spring attached at one end to the connecting bar and at another end within the stored energy motor operator, wherein the connecting bar is spring biased in a opposite direction of the pin.
- 21. The stored energy motor operator of claim 1 wherein the first end of the lever is directly connected to the connecting bar between the first and second ends of the connecting bar, a spring positioned at the first end of the lever.
- 22. A method for indicating handle position of a circuit breaker on a stored energy motor operator, the method comprising:providing a flag within the stored energy motor operator, the flag having a first end bearing indicia relating to an “ON” condition and a second end bearing indicia relating to an “OFF” condition, the flag attached to a connecting bar for movement within the stored energy motor operator, and a lever attached to the connecting bar; restricting the lever from movement and positioning the first end of the flag within a window of the stored energy motor operator when a pair of separable contacts within the circuit breaker are abutting and when a handle of the circuit breaker is in an ON position; when the pair of separable contacts within the circuit breaker are separated, releasing the lever for movement within the stored energy motor operator; preventing movement of the flag by abutting the connecting bar with the handle when the handle of the circuit breaker is in an ON position and positioning the first end of the flag within the window when the pair of separable contacts within the circuit breaker are separated and when the handle of the circuit breaker is in the ON position; and, allowing movement of the connecting bar when the handle of the circuit breaker is in an OFF position and positioning the second end of the flag within the window when the pair of separable contacts within the circuit breaker are separated and when the handle of the circuit breaker is in an OFF position.
- 23. The method of claim 22 wherein the lever is attached to the connecting bar at a first spring, wherein restricting the lever from movement comprises providing a first pin within the stored energy motor operator to engage with a hook of the lever to prevent spring biased movement of the lever, and providing a second spring connecting the connecting bar to a point within the stored energy motor operator to spring bias the connecting bar in a direction away from the first pin.
- 24. The method of claim 23 wherein restricting the lever from movement further comprises hooking the lever onto the first pin.
- 25. A circuit breaker assembly comprising:a rotary circuit breaker including a top cover, a midcover, a base, a moveable rotor drive pin, an on-off indicator having a first end and a second end, the rotor drive pin connected to the second end of the on-off indicator, and a handle; and, a stored energy motor operator mounted to the top cover of the rotary circuit breaker, the stored energy motor operator including: flag, a connecting bar attached to the flag, a spring attached at one end to the connecting bar and at another end within the stored energy motor operator, a lever having a first end and a second end, the first end of the lever attached to the connecting bar, a hook portion of the lever between the first end of the lever and the second end of the lever, and, a first pin seatable within the hook portion of the lever, the first pin preventing the lever from movement towards the connecting bar when the first pin is seated within the hook portion, a second pin extending from the handle of the circuit breaker, wherein the connecting bar is spring biased in a opposite direction of the first pin and further wherein the connecting bar is restricted from spring biased movement by the second pin when the handle is in an on position.
- 26. A method for indicating handle position of a circuit breaker on a stored energy motor operator, the method comprising:providing a flag within the stored energy motor operator, the flag having a first end bearing indicia relating to an “ON” condition and a second end bearing indicia relating to an “OFF” condition; attaching the flag to a first end of a connecting bar; attaching a first end of a lever to the connecting bar at a first spring; providing a first pin within the stored energy motor operator to engage with a hook of the lever to prevent spring biased movement of the lever; providing a second spring connecting the connecting bar to a point within the stored energy motor operator to spring bias the connecting bar in a direction away from the first pin; positioning the first end of the flag within a window of the stored energy motor operator when a pair of separable contacts within the circuit breaker are abutting and when a handle of the circuit breaker is in an ON position; positioning the first end of the flag within the window when the pair of separable contacts within the circuit breaker are separated and when the handle of the circuit breaker is in an ON position by releasing the hook of the lever from the first pin and preventing the lever and connecting bar from spring biased movement by abutting the connecting bar against a second pin extending from the handle; and, positioning the second end of the flag within the window when the pair of separable contacts within the circuit breaker are separated and when the handle of the circuit breaker is in an OFF position.
US Referenced Citations (8)
Number |
Name |
Date |
Kind |
4042896 |
Powell et al. |
Aug 1977 |
A |
4167988 |
Acampora et al. |
Sep 1979 |
A |
4245140 |
Jencks et al. |
Jan 1981 |
A |
5323131 |
Castonguay |
Jun 1994 |
A |
5477016 |
Baginski et al. |
Dec 1995 |
A |
5545867 |
Castonguay et al. |
Aug 1996 |
A |
5791457 |
Castonguay et al. |
Aug 1998 |
A |
5981887 |
Robarge et al. |
Nov 1999 |
A |