The present invention provides a design method and apparatus for a handle or grip providing a shape and structure that fills various regions inside the hand except a region at an area of the hand over the underlying carpal tunnel. Such design method and apparatus provides for various supports and handles for use by a hand. In particular, the apparatus discussed in the present application includes a generally boot-shaped body. The body or body portions include a radial side, an ulnar side and a distal (frontal) side, proximal (back) side, palmar side and a finger and thumb side. These portions are shaped to engage the various corresponding regions inside the hand dependent upon the particular application. The body of the apparatus may be divided into a radial section, a middle section and an ulnar section. These sections that form the body can be divided and some of them can be used separately for individual applications of the present invention. Some of the applications that come from these sections will be discussed in other applications and some will be briefly described in this application.
The upper arm contains a single bone (humerus). The forearm contains two bones (radius and ulnar). The wrist has seven small (carpal) bones. The proximal three carpal bones form a joint with the two forearm bones where wrist movement occurs. The distal four form a joint where they meet five metacarpal bones of the hand. [‘Proximal’ is near and ‘distal’ is away from the torso.] Motion is present at the wrist where the base of the thumb (1st metacarpal bone) meets its distal carpal bone. However, there is no movement at the joints of distal carpal bones to the remaining four metacarpal bones because they are tightly connected. The four metacarpal bones meet the phalangeal bones of the fingers to form the metacarpal-phalangeal (MP) joints. The thumb has two phalangeal bones (proximal and distal phalanges) and the long digits have three (proximal, middle and distal phalanges). Moveable joints form between the proximal (MP joint) and middle phalangeal bones as well as the middle (PIP joint) and distal (DIP) phalangeal bones. The carpal tunnel (CT) is a space formed on three sides by the internal surfaces of the wrist bones and inner surface of the transverse carpal ligament (TCL) on the forth side. The TCL is a strong dense ligament under the proximal palm that connects the radial (thumb side) and ulnar (small finger side) wrist bones. The size of the CT is regulated by genetic and environmental factors that influence bone size.
Referring to
Continuing with reference to
The shoulder is a ball joint that allows the upper extremity to move in many directions. The elbow bends to pull (flexion) or push (extension) and rotates the forearm and hand (supination or pronation). Supination is rotation of the forearm to face the palm up. Pronation is rotation of the forearm to face the palm down. The wrist moves up and down (extension or flexion), sideways (radial or ulnar deviation) and in multiple directions by combining these movements.
The thumb 801 has five basic movements. The thumb 801 as a first movement flexes (moves closer) to or as a second movement extends (moves away from) in a direction parallel to the radial side 301 of the hand 100. As a third movement, the thumb 801 abducts or adducts to move up or down perpendicular to the palm 100b. Finally, as a fifth movement, the thumb 801 also opposes or touches any of the long fingers 604. The combination of these movements is called circumduction, which is moving the thumb 801 around in any direction.
The long fingers 604 have three muscle groups working individually or together to flex (pull) the proximal, middle and distal phalangeal bones. One muscle group is in the palm 100b and two muscle groups are in the forearm. The muscles in the palm 100b are the lumbrical muscles. These lumbrical muscles flex the proximal phalanges 606c, 607c, 608c, 609c at the MP joints 106. The lumbrical muscles are relatively small muscles in size.
Further, two other larger muscle groups are located in the front (volar surface) of the forearm and are called the superficial and deep flexor muscles. The superficial flexor muscle is close to the surface of the forearm and the deep flexor muscle lies underneath it. Each flexor forearm muscle is divided into subunits from which four tendons each arise contributing eight tendons that pass through the CT 203. The tendons from the superficial flexor muscle attach to and pull (flex) the middle phalanges 606b, 607b, 608b, 609b. The tendons from the deep flexor muscle attach to and pull the distal phalanges 606a, 607a, 608a, 609a. The deep flexor muscle is larger and stronger than the superficial flexor muscle. All the muscles combine function to sequentially flex the finger bones and produce varying degrees of finger curl to grip various shaped objects. Other muscles in the hand spread the fingers apart or pull them together (abduct or adduct).
When muscle units contract their girth enlarges to pull its smooth cable-like tendon, which in turn pulls its bone at a joint. The amount and strength of finger flexion depends upon the degree of each muscle unit's contraction. This depends on muscle size. Therefore, a larger muscle has greater contractile force. The largest and strongest forearm muscle is the deep flexor, which pull the distal phalangeal bone. Therefore the distal phalanges 606a, 607a, 608a, 609a of the long fingers 604 can exert the most gripping force.
The human hand has the unique ability to hold, grasp and move objects of various sizes, shapes and weight and to provide support to the human body. Handles and handgrips are tools to assist in these functions. Common handles and grips found on canes, bicycle handlebars, sanders, electric and pneumatic and other tools are usually tubular and made of a single size. Long finger bones vary in length. The middle and ring fingers 607 and 608 are longer than the index and small fingers 606 and 609. Because of this size difference, when the long fingers 604 grasp tubular handles the fingertips 610 do not end at the same line. Namely, the fingertip 610 of the small finger 609 ends before the fingertip 610 of index finger 606, which ends before the fingertip 610 of the ring finger 608 and that ends before the fingertip 610 of the middle finger 607 while the thumb 801 overlaps or lies next to the index finger 606.
Usually, the middle phalanges 607b, 608b of the middle finger 607 and the ring finger 608 and the distal phalanges 606a, 609a of the index finger 606 and the small finger 609 exert grip force along the same line on a tubular grip. Therefore, the smaller superficial flexor forearm muscle pulls the middle phalanges 607b, 608b of the middle finger 607 and the ring finger 608 while the deep flexor forearm muscle pulls the distal phalanges 606a, 609a of the index and small fingers 606 and 609, which is asymmetric use of the superficial and deep flexor muscles. Therefore, a problem can develop in that the different flexor muscles pulling different parts of the fingers 606-609 to grip a common handle do not work in concert.
Grip effort depends on brain messages to direct the amount of contraction a muscle segment exerts to the tendon pulling its phalange. The sum of all muscle contraction determines total grip strength. Asymmetrical use of the flexor forearm muscles to the fingers 606-609 limits potential use of the hand 100 to grip and can cause forearm muscle tension.
Such asymmetric use of forearm finger flexor muscles is forced by use of common handles and grips for tools and implements as for heavy equipment, machines, appliances and other devices and can frequently cause problems. This can adversely stress the finger and wrist joints, the contents of the CT 203, the muscles in the hand 100 and forearm and the median nerve. Such stresses are aggravated when common handles are gripped and used in relation to supporting the upper body.
The skin and tissue on the palm 100b and fingers 606-609 is another factor involved in gripping: It contains soft, compressible fatty tissue with tiny but strong perpendicular ligaments extending to the under surface of the skin from deep tissue. These ligaments prevent the skin of the palmar surface 100a from sliding. Aside from cushioning the skin of the fingers 606-609 has ridges and valleys (fingerprints) to enable the hand 100 to grip objects progressively tighter without slipping.
While, various diseases, such as hypothyroidism and diabetes can affect the median nerve in the CT 203, the design method and apparatus of the present invention relates to preventing or reducing traumatic injury and mechanical strain to the hand 100 and wrist. The median nerve in the CT 203 is compressed and flattened under the TCL 202 when the wrist is extended and the fingers 606-609 are forcefully gripping. This occurs, for example, from repeatedly gripping a steering wheel, repetitive vibration from hand sanders, repetitive compression from jackhammers and other forceful activities. These activities can irritate and inflame the median nerve as well as the synovial tissue wrapped around the tendons in the CT 203. The inflamed synovial tissue can swell to compress the median nerve in the CT 203. Scar can form as a result of the inflammation that increases friction to tendon motion in the CT 203. When the contents of the CT 203 are inflamed and the wrist is bent, the pressure in the CT 203 increases exponentially. Aging and repeated injury typically causes the TCL 202 to thicken, which decreases the size of the CT 203. Small size wrists are more prone to repetitive strain and carpal tunnel syndrome (CTS). The symptoms of CTS include wrist pain and finger tingling progressing to loss of sensation and thenar muscle weakness due to compression of the median nerve by the swelled contents of the CT 203.
The wrist works as a fulcrum when a person leans and places their weight on the palm 100b or fingers 606-609 while grasping a common handle to support the upper body. In this position the wrist is generally unsupported. The wrist in this condition maximally extends (bends back) and acts as a fulcrum to support upper body weight, especially when the elbow is straight. Supporting the hand 100 in this way also flattens the palm 100b. Resting the hand 100 on the longitudinal creases 201, in the valley between the thenar muscles 302 and the hypothenar muscles 402, places the weight of the upper body directly on the TCL 202 and transmits pressure to the median nerve which is immediately under it. These positions often produce symptoms of CTS, which could be prevented or reduced by a proper handle or grip.
Efficiency is reached when the parts of the hand 100 work in harmony. The goal of any handle or grip, as well as an objective the present invention is to promote such efficiency. An efficient handle or grip design should maintain the band 100 in a comfortable position and also avoid placing substantial external pressure on the TCL 202 and reducing internal pressure in the CT 203. A further goal of any handle or grip design, as well as a further objective of the present invention is to facilitate the function of the hand 100 and forearm muscles so they work in concert. Furthermore, such a handle or grip design, as well as a further objective of the present invention should also promote a reduction in the amount of gripping strength typically required to hold a handle or grip. When less gripping strength is used to hold a handle or grip the internal pressure in the CT 203 can be reduced. A handle or grip that fulfills these goals should promote reduced incidence of CTS and repetitive strain disorder.
There are many handgrip patents that fit the hand by being convex and fill in the depression (valley) between the thenar and hypothenar muscle areas, which will pressure the median nerve. Some have depressions fitting the metacarpal and finger pads. For example, U.S. Pat. No. 6,142,918 is listed as a barbell system. U.S. Pat. No. 4,828,261 is listed as a handle for athletic equipment. U.S. Pat. No. 5,556,092 is round with indentations and listed as ergonomic handle. U.S. Pat. No. 5,979,015 is listed as an Ergonomic Hand Grip And Method Of Gripping but the fingertips do not end together to balance grip.
U.S. Pat. No. 5,806,091 is a Hand Grip Aid. This is a pad placed under the web spaces of the long fingers where they meet the skin of the palm. It is held in place by a rubber band or loop. The device merely adds firmness to the web space, where the long fingers lie across a handle as shown on a baseball bat, but the median nerve pressure problem remains. U.S. Pat. No. 5,873,148 is titled as an Ergonomic Handle System made of four individual pieces that slide along a track on a base handle. Each piece has a groove to accept the finger. The circumferences of the two central pieces are larger than the outer and inner pieces.
U.S. Pat. No. 5,031,640 is titled as a Pad for Preventing Carpal Tunnel Syndrome. It provides a glove padding the thenar area, MP joints and the hypothenar area, and it empties in the region of the CT.
U.S. Pat. No. 6,183,400 is titled as a Hand at Rest Grip. It is designed to reduce gripping force when lifting weights. A ‘palm heel’ (a bulge) is provided to fit the ulnar side of the hand. It spreads to the CT stopping at the longitudinal creases over the median nerve. A strap is placed around the dorsal part of the hand to hold the hand in place. The thumb wraps around a flat bottom. The grip is hinged to attach around a bar for weight lifting. The ‘palm heel’ is curved and concave.
U.S. Pat. No. 5,829,099 is titled as a Universal Ergonomic Handle. It is contoured to match the anatomy of the hand and said to fit the anatomic rest position.
The handle in U.S. Pat. No. 5,761,767 incorporates a flat surface, i.e. “palm heel”, extending from the upper surface of a tube to support the ulnar half of the hand. The object of the handle is to limit wrist movement when lifting weights by using a “hook type hand grip”, U.S. Pat. No. 5,339,850 discloses an Orthopedic Hand Grip for Ambulation Aids, Tools and Other Implements. The grip includes a ‘palm heel’ extending across the longitudinal crease.
A method and apparatus for designing handles/grips is provided and is based on defined anatomical positions derived from the functional anatomy of a gripping hand. The design method and apparatus compensates for differences in finger length. The method uses curves made on the palm and long fingers when their tips end, side by side, at the same line while the thumb opposes the space between the thumb and index fingers. Apparatus, such as handles and grips, produced from this method make efficient use of the hand and the flexor muscles. The method produces and the apparatus also provides upper body supports while the hands rest on their fleshy thenar and hypothenar muscles and metacarpal joints without pressuring the transverse carpal ligament and median nerve.
An advantage of a handle of this design is that it does not contact the skin over the TCL because of the recessed proximal part of the middle section. Therefore the TCL is not compressed and no pressure is transmitted to the contents of the CT region during gripping or using a handle of this design as a support.
Another advantage is that it maintains the natural arcs of the fingers and palm- for the natural accommodation of the hand to conform to it. In conforming to the neutral hand anatomy a handle or this design becomes more comfortable to hold or rest on.
Another advantage is that a larger part of the hand contacts handle. Common tubular grips contact the hand at the long fingers, metacarpals across the palm and thumb. Whereas a handle of this design adds contact to the fleshy thenar muscle surface between the thumb and index finger the and to the flattened hypothenar muscle region of the ulnar side of the hand in addition to the long fingers, metacarpal area and thumb. Thus there is the addition of the much greater hand surface area contacting a handle of this design for holding or gripping.
Another advantage when used as a bicycle support is that the larger contact area supports upper body weight across the metacarpals and the radial and ulnar muscle areas. Common handles, however, bear weight at the fleshy area between the thumb and index fingers and metacarpals while the fingers hold it tightly. Common handles do hot have a section for the ulnar side of the hand to rest on.
Another advantage is that the squeezing action of the long fingers is directed against broader sections of the palm and hand. The radial side of a handle of the present design fills the space formed when the thumb opposes the index and middle fingers obliging the tips of the thumb, index and middle fingers to squeeze against the radial muscles. The ulnar side of the handle forces the small and ring finger to squeeze against the ulnar muscles. Forces in gripping common handles involve the long fingers squeezing a tube against the palm and specifically against the metacarpal-phalangeal joints. Another advantage is that the tips of the long fingers end at the line. This places similar muscles to control similar bones. The strongest muscle for squeezing is the one that goes to the fingertip. Thus a handle of this design allows the strongest muscles to do the most efficient job they can do. (This is unlike the common handle where the fingers do not end together and dissimilar muscles are used for squeezing.)
Another advantage related to the long digits ending at the same line when using a handle of this design is that the forearm and hand muscles can work at their maximal potential. This advantage is increased because the thumb participates by opposing the index and middle finger unlike common handles where the thumb overlaps the long fingers.
Another advantage is all the digits work in concert to exert maximum effort while the opposing parts of the hand antagonize each other to equilibrate gripping forces. This is like squeezing an egg in the palm of the hand. When balanced the force cannot break it.
Another advantage is that less forearm muscle effort is needed because of the larger contoured gripping surface.
Another advantage is that it makes lifting objects easier because gripping takes less effort so lifting can be done primarily with antigravity shoulder and elbow muscles (deltoid, biceps etc.)
Another advantage is that it using such a handle does not compromise or distort the arteries supplying to the muscles in the hand. This is because such a handle does not touch either the TCL and underlying CT where the radial artery traverses or Guyon's tunnel at the pisiform bone (404) where the ulnar artery goes deep to supply the structures of the hand.
Another advantage is that it does not compromise, compress or distort the nerves that go to the hand.
This is because such a handle does not touch the TCL and underlying CT where the median nerve traverses or Guyon's tunnel at the pisiform bone (404) where the ulnar nerve goes deep along side the ulnar artery to innervate the hand. Therefore repetitive trauma to these nerves is reduced when gripping such a handle.
Another advantage of using a handle of this design is that there is less strain on contents of and pressure in the CT. Such a handle obliges the tendons to move synchronously in CT versus common tubular handles that force asynchronous tendon motion increases muscle strain and tendon strain in the CT.
Another advantage is that there is less compression, distortion or irritation of the median nerve by the superficial flexor tendons, which are closer to the TCL and the median nerve in the CT.
Another advantage is that the forces from vibrating equipment like power sanders, or impact jackhammers and wrenches are transmitted to the fleshy thenar and hypothenar muscles to absorb energy and are not directed to the CT.
The consummate advantage is that a handle of this design based on the advantages noted above will reduce acute and chronic irritation, trauma and strain to the tendons, bursa, joints, forearm muscles and median nerve. It is therefore expected that the result will be in a reduced incidence of CTS and repetitive strain syndrome for people who use handles or grips of this design.
It is an objective of the present invention to provide a method for developing a handle design based on objective hand measurements. Such measurements are made corresponding to the regions and surfaces of the hand as if it was in the position of holding a handle.
It is objective of the present invention to provide a design method and apparatus for a handle or grip that does not place substantial pressure at the CT region.
It is an objective of the present invention to provide a design method and apparatus for a handle or grip having greater contact with the supportive areas of the hand.
It is an objective of the present invention to provide a design method and apparatus for a handle or grip so as to optimize use of the forearm flexor muscles to the thumb and long fingers and equilibrate forces for gripping, lifting, pulling, etc.
It is another objective of the present invention to provide a design method and apparatus for a handle or grip that does not place substantial pressure at the CT region when the wrist is in neutral position. This neutral wrist position is present when the wrist is neither excessively flexed nor extended or deviated toward the radial or ulnar directions.
It is another objective of the present invention to provide a design method and apparatus for a handle or grip that reduces or substantially eliminates increased pressure in the CT when the hand forcefully grips a handle or grip.
It is another objective of this invention to provide a design method and apparatus for a handle or grip to position the tips of the long fingers in substantial alignment for optimal use of the deep flexor muscles.
It is still another objective of the present invention to provide a design method and apparatus for a handle or grip that when used diffuses upper body weight to the region of the metacarpal phalangeal joints of the hand and to the radial and ulnar sides of the hand such as when the wrist is maintained in the neutral position.
It is still another objective of the present invention to provide a design method and apparatus for a handle or grip that utilizes reduced grip strength as compared to a common handle or grip.
It is still another objective of the present invention to provide a handle of various sizes and shapes depending on its purpose or use such as to reduce grip strength required for various applications.
It is still another objective of the present invention to provide handles related to various hand sizes to accomplish the above and other objectives of the present invention.
It is still another objective of the present invention to provide a handle whereby the width of the ulnar section of the handle is less than the width of the hand's hypothenar muscles.
According to a further aspect of the present invention, the distal side of an apparatus according to the present invention can include an elevated surface acting as a reference for positioning of the long fingers on the apparatus.
According to another specific aspect of the present invention, the apparatus of the present invention can include a groove or flattened area on the palmar side of the apparatus forming a rest for the MP joints from where the long fingers extend around the distal part of the apparatus such as a handle.
According to a further specific aspect of the present invention, the shell of the handle can open in front or through the center of its body and can also be flexible so that extensions from tools which utilize the handle can fit inside or with the handle for use in exchanging tools for use with the handle or grip.
According to another specific aspect of the present invention, the periphery of the handle can be combined into a glove to provide versatility in use of the handle for various applications.
According to a further aspect of the present invention, the handle can be separated into various parts so that such parts can be respectively used for certain functions i.e. luggage handle, stylus etc.
It is still another objective of the present invention to provide directions to position a handle or grip so that the wrist in relation to the hand is placed in the neutral position. The neutral wrist position is achieved by arranging two intersecting planes, such that one of the intersecting planes passes through the forearm and the other intersecting plane passes from the base of the thumb through the fingers, and such that the angle between the two intersecting planes is in a range of from about ten degrees to about forty-five degrees, desirably less than or equal to thirty degrees, when the hand is in a variant of the described T Position.
Therefore, in a handle or grip of the present invention the long fingers end in a line adjacent to each other and there is no contact of the handle to the longitudinal crease. Furthermore, the metacarpal bones are arched and the ulnar side of the handle does not touch the longitudinal crease, while the thumb is positioned to oppose the space between the thumb and middle fingers. In a handle or grip of the present invention the ulnar side of the handle has an extended contact area with the ulnar side of the hand, and the web space at the thenar muscles on the radial side of the handle is in full contact with the proximal side of the radial section.
Also, in the design method and apparatus for a handle or grip of the present invention, the design method and apparatus is based on measurements made of the hand in a functional or gripping position, and handle size is desirably based on the distance between the thumb tip and the index and long fingertips.
Additionally, in the design method and apparatus for a handle or grip of the present invention, the shape of the palmar and distal (front) parts of a handle can be formed in the shape of a “coke bottle curve” where the ulnar side has a smaller arc than the radial side, and providing a shape that bulges to compel the longer middle and ring fingers to end at the same line as the index and small fingers.
Furthermore, in the design method and apparatus for a handle or grip of the present invention, the body can be trisected into radial, middle and ulnar sections, which can be used independently or together. Such versatility allows that the sides of sections may be attached to tools. Also, the body of a handle or grip of the present invention can be bisected or split along a plane passing through the palmar to thumb sides or another plane passing through the proximal to distal sides of the handle or grip of the present invention for various applications. In addition, the body can be cut along diagonal, oblique or tangential planes for various uses or purposes.
Also, in a handle or grip of the present invention, one side of the body of the handle or grip can be the mirror image or be dissimilar to the other side, depending upon the use or purpose of the handle or grip.
Therefore, the present invention provides a design method and apparatus for a handle or grip providing a shape and structure that fills various regions of the hand except a region in an area over the underlying carpal tunnel. Such design method and apparatus provides for various supports and handles for use by a hand. In particular, the apparatus includes a generally boot-shaped body or portions thereof. The body or body portions include a radial section, an ulnar section and middle section. Furthermore the body has a distal (frontal) finger side, proximal (back) side, palmar side and a thumb side. The body also has radial and ulnar sides. These portions are shaped to engage the various corresponding regions of the inner surface of the hand. These sections and sides forming the body can be divided and used separately for individual applications of the present invention.
The foregoing and additional features and characteristics of the present invention will become more apparent from the following detailed description considered with reference to the accompanying drawings in which like reference numerals designate like elements and wherein:
In order to more clearly and concisely describe the subject matter of the present invention, the following definitions are intended to provide guidance as to the meanings of specific terms used in the following written description. Also it is to be understood that the phraseology or terminology employed herein is for the purpose of description and not to be construed as limiting. The following sections relate to areas of the hand described in the background information and refer to FIG. 1.
NEUTRAL HAND POSITION—‘N POSITION’
The concavity formed at the horizontal crease 101 when the hand is in the ‘N Position’ is referred to as the palmar arch 102 and shown in FIG. 2. The fleshy surfaces of the thenar muscle area 302 and hypothenar muscle area 402 lie proximal to the palmar arch 102. The horizontal creases 101 and longitudinal creases 201 become closer in the ‘N Position’ than when the hand 100 is flat.
PRONE OR ‘P POSTION’
The prone or ‘P Position’, which is different from the above described ‘N Position’, occurs when the forearm is raised and turned over (pronated) so the palmar side of the hand 100 lies on a table with the wrist maintained in a neutral position. The radial side of the thumb 801 lies flat and its tip 610 touches the radial side of the index finger 606. In the ‘P Position’ the long fingers are slightly more flexed; with the ring finger 608 and the small finger 609 being more flexed than index finger 606 and the middle finger 607, and with he tips 610 of the long fingers 604 being substantially in linear relation to each other when supported by a flat surface, such as a table.
SUPINE OR ‘S POSITION’
The ‘S Position’ is obtained from the ‘P Position’ when the forearm is raised and turned over (supinated) so the palm 100b faces up while maintaining the above described ‘N Position’.
‘T POSITION’
The ‘T Position’ as illustrated in
The fingernails 602 of the longer middle finger 607 and the ring finger 608 are shown because the middle finger 607 and the ring finger 608 flex more to align with the index finger 606 and small finger 609.
Another concavity shown in
The distal (near the end) finger creases 603 of the middle finger 607 and the ring finger 608 are not visible in
Continuing now with reference to
Hand dimensions fall into groups, allowing formation of sizes (e.g. foot size and shoe size). Data to determine size groupings for the different hand positions can be collected. 30 male and 30 female right hands were measured from the radial side 301 to the ulnar side 401 of the hand 100 across the horizontal creases 101. The measurements (in 0.5-cm increments) ranged from 8.5-12 cm in males and 7-9 cm in females.
In such design method for determining measurements for the inner surface of the hand, referring to
Connecting such a series of parallel lines forms a surface that mirrors the surface anatomy of the hand 100. The size and dimension of such a surface of the hand 100 vary from person to person. However, the basic shape of such surface of the hand 100 is substantially the same although the surface area may differ, irrespective of whether the hand is small, large, wide or narrow.
Measurements from the above described contour mapping of the surface of the hand 100 can determine the size and shape of handles of the present invention mirroring the inner surface of the hand 100.
Refinements to the measurement area for developing sizes for a handle or grip of the present invention are illustrated with reference to FIG. 7.
Thus,
As shown in
Referring now to
Referring to
Continuing with reference to
A third plane, indicated at a location between two arrows D, can be drawn from Plane A to the horizontal median line 211. This plane, indicated at the location between the two arrows D, demarcates the proximal position of the middle section of a handle of the present invention that touches the palm 100b of the hand 100.
Referring to
The fourth or curved surface is the inner surface of the hand 100 formed where Plane A intersects with inner surface 604a of the long fingers 604 indicated by the dotted line X, and with the radial horizontal line 311, and with the perpendicular plane extending from Plane A to the horizontal ulnar line 411 indicated by the arrows C, and with the third plane indicated by the arrows D perpendicular from Plane A to the middle horizontal line 211.
Since one hand 100 is the mirror image of the other hand 100, the surface or volume map for values for design data from the above described boundaries will reflect positive value data for one hand 100 and corresponding negative value data for the other hand 100 that is equal in absolute value to the corresponding positive value data. Adding the absolute values of the corresponding positive and negative data from the surface or volume map provides the dimensions for a handle of the design of the present invention that fits either hand 100 when either hand 100 is in the ‘T Position’. Using the surface or volume map data provides information for designing a mold for a handle of the design or the present invention that fits either hand 100.
In addition, in the design method of the present invention, measurements of the palmar surface 100a as described above with respect to
Continuing now with reference to
In this regard, generally greater flexion at the middle PIP joints 111a produces a handle of the design method of the present invention that is shorter from the proximal (rear) part of a handle to the distal (frontal) part of a handle, such as handle H1 illustrated in FIG. 17A. As a corollary, generally less flexion at the middle MP joints 111a produces a handle of the design method of the present invention that is longer from the proximal (rear) part of a handle to the distal (frontal) part of a handle and longer from the palmar part to the thumb part of a handle, such as handle H2 illustrated in FIG. 17B. Also, handles designed by this method may be larger to compensate for skin and subcutaneous tissue compression.
Referring now to
Furthermore as illustrated in
Continuing with reference to
The proper angular relationship between the two planes, Plane A and Plane B, should provide an optimal angle W promotes limiting wrist flexion and extension and promotes preventing kinks to the median nerve in the CT 203 while holding a handle of the present invention. This angular relationship generally can be ignored for small handles of the present invention because in this case the plane A and the plane B may coincide. However, the position of Plane A of a supportive type handle of the present invention, such as a bicycle type handle, will not necessarily be parallel to the ground or reference surface R.
Referring now to
Various embodiments of handles according to the present invention will now be described first with reference the body structure shown in
The body 121a, 121b of a handle 120a, 120b of this design is made of free-formed curves and shaped like a boot and is shown in
The body 121a, 121b of a handle 120a, 120b of this design shown in
The body 121a, 121b of a handle 120a, 120b of this design has four parts as shown in
The proximal (rear) part 521a, 521b of body 121a, 121b is defined to correspond to the proximal horizontal radial line 108 at the base 801a of the thumb 801 to the horizontal creases 101 at the radial side 301 of the hand 100 as illustrated in
The palmar part 721a, 721b of body 121a, 121b is designed to extend from the horizontal creases 101 of the hand 100 distally to the proximal finger creases 603 of the long fingers 604 as illustrated in
The distal (frontal) part 621a, 621b of body 121a, 121b is designed to extend from the proximal finger creases 603 to the tips 610 of the long fingers 606, 607, 608 and 609.
The thumb part 821a, 821b of body 121a, 121b is designed to extend from the proximal horizontal radial line 108 at the base 801a of the thumb 801 to the tips 610 of the long fingers when the hand 100 is in the ‘T Position’.
The body 121a, 121b of a handle 120a, 120b of this design can be divided into three contiguous sections, which are the radial section 331, the middle section 231 and the ulnar section 431, arranged from the radial side 321a, 321b to ulnar side 421a, 421b as particularly shown in
The radial section 331 is in corresponding relation to the radial side 301 of the hand 100, which includes the index finger 606, thenar muscle area 302, the metacarpal joint 106 related to the index finger 606 and the thumb 801. The middle section 231 is in corresponding relation to the middle finger 607 and ring finger 608 and their corresponding metacarpal joints 106 at the palm 100b. The ulnar section 431 is in corresponding relation to the small finger 609 and the hypothenar muscle area 102 of the hand 100.
The sections 231, 331, 431 each have proximal, palmar, distal and thumb sides. The radial section 331 has a proximal (rear) side 541, a palmar radial side 741, a distal (frontal) radial side 641 and a thumb radial side 841. The middle section 231 has a proximal (rear) side 542, a palmar middle side 742, a distal (frontal) middle side 642 and a thumb middle side 842. The ulnar section 431 has a proximal side 543, a palmar ulnar side 743, a distal (frontal) ulnar side 643 and a thumb ulnar side 843.
The body 121a, 121b of a handle 120a, 120b can have edges along various surfaces, which are illustrated in
The radial section 331 can have a radial side edge 351 at the radial end side 321a, 321b of the radial section 331 of the elongated body 121a, 121b. The radial section 331 can also have an ulnar edge 551 adjacent the proximal radial side 541.
The middle section 231 can have a radial side edge 552 adjacent its proximal middle side 542 where the middle section 231 meets the radial section 331. The middle section 231 can have an ulnar edge 553 where the middle section 231 meets the ulnar section 431.
The ulnar section 431 can have a radial edge 554 adjacent its proximal ulnar side 543 and another edge along the ulnar end side 421a, 421b of the ulnar section 431 of the elongated body 121a, 121b.
Referring to and as illustrated in
Further, in the handle 120a, 120b of
Also, in the handle 120a, 120b of
Additionally, in the handle 120a, 120b of
The relationship of the radial 331, middle 231 and ulnar 431 sections of a handle 120a to the parts or the hand 100 are shown in
The hypothenar muscle area 402 of the hand 100 contacts the proximal ulnar side 543 of the ulnar section 431 of a handle of this design up to the ulnar side of the horizontal creases 101.
The metacarpal joint 103 of the small finger 609 contacts the palmar ulnar side 743 of the ulnar section 431 of handle 120a. The distal (frontal) ulnar side 643 of the ulnar section 431 contacts the small finger 609. The small finger 609 contacts the concave section of the distal ulnar side 643 and ends at the same line L as the long fingers 606, 607, 608 that wrap around the radial section 331 and the middle section 231. There is no contact with the hand 100 on the thumb side 842 of the ulnar section 431.
The body 121a, 121b of a handle 120a, 120b can have edges along various surfaces that are related to various parts of the hand 100. The corresponding edges of the handle 120a, 120b have been discussed previously with respect to
Referring to FIGS. 9A through FIG. 12 and to FIG. 7 and
The proximal middle section radial edge 552 does not contact the hand 100 but is the radial boundary for the median void 221 of a handle 120a, 120b. The proximal middle section ulnar edge 553 does not contact the hand 100 but is the ulnar boundary for the median void 221 of handle 120a, 120b.
The ulnar section 431 can have an edge 554 along its proximal radial side that meets the longitudinal ulnar line 412. The ulnar section 431 has another edge 421a, 421b where it meets the ulnar side 401 of the hand 100.
Also,
Moreover,
As mentioned previously, the present invention provides a design method and apparatus for a handle or grip providing a shape and structure that fills various regions of the hand except a region in an area over the underlying carpal tunnel. Such design method and apparatus provides for various supports, handles, implements and tools for use by a hand.
For example
For example,
A further example of using bisected sections of a handle of the present invention is illustrated in
Further, in addition to being useful in various implements and tools, the bisected handle 120b in
Hand controls for bicycle brakes are based on lever systems. The lever is attached to wire and the fixed part is attached the handlebar. Squeezing or pulling the lever decreases the width between its non-fixed end of the lever and the handlebar. In reference to the hand 100, the thumb 801, thenar muscle area 302 and hypothenar muscle area 402 are fixed to the handlebar while the long fingers 604 pull the lever. The ring finger 608 and small finger 609 can be used to initiate the pull of the lever. These fingers are typically smaller and associated with smaller flexor forearm muscles. These fingers 608 and 609 have to reach further and work harder than the index finger 606 and the middle finger 607. It is not efficient to use the weakest fingers to initiate and perform the greatest pull. Furthermore, the muscle systems for the long fingers 604 for gripping a lever are not synchronized.
The weaker superficial flexor muscle pulls the middle phalanges 606b and 607b of the lesser involved index finger 606 and middle finger 607 while the stronger but smaller deep flexor muscle subunits pull the distal phalanges 608a and 609a of the ring finger 608 and small finger 609. Thus, asymmetrical muscles are used to pull the lever that pulls the wire.
Continuing with reference to
Similarly, many surgical instruments that bight into tissue are based on the same the principle of using the long fingers to pull a lever. Likewise many tools that fit the hand also are based on a lever system to effect the jaws of the tool to grip. This is similar to a scissors but in a scissors both members pivot on a fixed shaft. Thus, a system similar to the handbrake 1023 illustrated in
Referring first to FIG. 24A and
As illustrated in FIG. 24A and
The middle section 231 of the rotating shaft handle 120c has substantially the same shape as the corresponding section of the handle 120b illustrated in FIG. 9B. The palmar, thumb and distal (front) of the handle 120c with the shorter ulnar end are rounded to fit the palmar arch 102 and the finger cup 601. The long fingers 604 end along the same line L in a substantially linear arrangement similar to the ‘T Position’ as illustrated in
The rotating shaft handle 120c while being used places the thumb 801 parallel and close to the Plane B as defined in FIG. 18 and
Moreover, the rotating tool shaft handle 120c can be adapted to accommodate a shaft 1039, 1040 between the middle finger 607 and the ring finger 608. For screwdrivers the middle finger 607 and the ring finger 608 finger must spread to allow the shaft 1039, 1040 to be position between these fingers 608 and 607. The aperture 1042 for the screwdriver shaft, which is usually between the middle finger 607 and the ring finger 608, can be shifted and placed between the index finger 606 and middle finger 607.
Referring now to
Referring now to
Referring now to
Continuing with reference to
Alternatively, the handle 120d of
The handle 120e illustrated in
The handle for a paintbrush typically is a large stylus with a heavy brush-type working end 1072.
Also, in the handles/grips of the present invention, various materials can be used for fabrication of the handle/grip as, for example, various woods, metals, plastics, composites, rubber compounds, latex's and organic or inorganic materials, suitable for the particular application of a handle or grip of the present invention. Further, various materials can be added to augment and personalize the fit of a handle/grip of the present invention.
The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. However, the invention which is intended to be protected is not limited to the particular embodiments disclosed. The embodiments described herein are illustrative rather than restrictive. Variations and changes may be made by others, and equivalents employed, without departing from the spirit of the present invention. Accordingly, it is expressly intended that all such variations, changes and equivalents which fall within the spirit and scope of the present invention as defined in the claims, be embraced thereby.
This application claims the benefit of the U.S. Provisional Patent Application Ser. No. 60/330,527 filed on Oct. 24, 2001, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
288096 | Morgan | Nov 1883 | A |
336540 | Wyttenbach | Feb 1886 | A |
340382 | Smith | Apr 1886 | A |
700492 | Henstock | May 1902 | A |
825985 | Schwertenberg | Jul 1906 | A |
987095 | Bonta | Mar 1911 | A |
D43242 | Bernstein | Nov 1912 | S |
1188394 | Bernstein | Jun 1916 | A |
1229658 | Sandow | Jun 1917 | A |
1648354 | Lied | Nov 1927 | A |
1879456 | Parsons | Sep 1932 | A |
1919968 | Trabold | Jul 1933 | A |
2047635 | Johst | Jul 1936 | A |
2370026 | Elia | Feb 1945 | A |
2540255 | Graves | Feb 1951 | A |
2561941 | Moskowitz | Jul 1951 | A |
2621688 | Wales | Dec 1952 | A |
2669991 | Curutchet | Feb 1954 | A |
2669993 | Curutchet | Feb 1954 | A |
2975505 | Linskey et al. | Mar 1961 | A |
3129939 | Stock | Apr 1964 | A |
3407816 | Curutchet | Oct 1968 | A |
3557792 | Rubin | Jan 1971 | A |
3713350 | Brilando | Jan 1973 | A |
3741665 | Smagala-Romanoff | Jun 1973 | A |
3972333 | Leveen | Aug 1976 | A |
4043343 | Williams | Aug 1977 | A |
4127338 | Laybourne | Nov 1978 | A |
4161051 | Brodwin | Jul 1979 | A |
4413034 | Anderson | Nov 1983 | A |
4462404 | Schwarz et al. | Jul 1984 | A |
4553746 | Lee | Nov 1985 | A |
4572227 | Wheeler | Feb 1986 | A |
4599915 | Hlavac et al. | Jul 1986 | A |
4599920 | Schmid | Jul 1986 | A |
4632383 | Tsuzuki | Dec 1986 | A |
4641857 | Gailiunas | Feb 1987 | A |
4644651 | Jacobsen | Feb 1987 | A |
4674330 | Ellis | Jun 1987 | A |
4674501 | Greenberg | Jun 1987 | A |
D292297 | Bingham | Oct 1987 | S |
4738158 | Christol | Apr 1988 | A |
4785495 | Dellis | Nov 1988 | A |
4798377 | White | Jan 1989 | A |
4802704 | Burns | Feb 1989 | A |
4830002 | Semm | May 1989 | A |
4850355 | Brooks et al. | Jul 1989 | A |
4877280 | Milano | Oct 1989 | A |
4885818 | Arterbury | Dec 1989 | A |
4899618 | Christol | Feb 1990 | A |
4924851 | Ognier et al. | May 1990 | A |
4941460 | Working | Jul 1990 | A |
4962747 | Biller | Oct 1990 | A |
5002561 | Fisher | Mar 1991 | A |
5005674 | Piatt | Apr 1991 | A |
5024119 | Linden | Jun 1991 | A |
5031640 | Spitzer | Jul 1991 | A |
5044058 | Voss | Sep 1991 | A |
5046381 | Mueller | Sep 1991 | A |
5046722 | Antoon | Sep 1991 | A |
5047046 | Bodoia | Sep 1991 | A |
5047049 | Salai | Sep 1991 | A |
5076569 | Gootter | Dec 1991 | A |
5125878 | Wingate et al. | Jun 1992 | A |
5143463 | Pozil et al. | Sep 1992 | A |
5146809 | Ruana | Sep 1992 | A |
5146810 | Mueller | Sep 1992 | A |
5147380 | Hernandez et al. | Sep 1992 | A |
5159851 | Rahmes | Nov 1992 | A |
5160343 | Brancel et al. | Nov 1992 | A |
5176696 | Saunders | Jan 1993 | A |
5184625 | Cottone, Jr. et al. | Feb 1993 | A |
5199324 | Sain | Apr 1993 | A |
5211655 | Hasson | May 1993 | A |
5230704 | Moberg et al. | Jul 1993 | A |
5234460 | Stouder, Jr. | Aug 1993 | A |
D339468 | Mertz | Sep 1993 | S |
5277683 | Wilkins | Jan 1994 | A |
5299991 | Sato | Apr 1994 | A |
5318589 | Lichtman | Jun 1994 | A |
5339850 | Mertz | Aug 1994 | A |
5351702 | Denjean | Oct 1994 | A |
5366476 | Noda | Nov 1994 | A |
5379758 | Snyder | Jan 1995 | A |
5391010 | Gorbunov | Feb 1995 | A |
5417234 | Davis | May 1995 | A |
5445479 | Hillinger | Aug 1995 | A |
5454380 | Gates | Oct 1995 | A |
5470162 | Rubin | Nov 1995 | A |
5470328 | Furnish et al. | Nov 1995 | A |
5495867 | Block | Mar 1996 | A |
5498256 | Furnish | Mar 1996 | A |
5522290 | Visser et al. | Jun 1996 | A |
5540304 | Hawkins et al. | Jul 1996 | A |
5554132 | Straits et al. | Sep 1996 | A |
5556092 | Theken | Sep 1996 | A |
5562693 | Devlin et al. | Oct 1996 | A |
5571127 | DeCampli | Nov 1996 | A |
5578050 | Webb | Nov 1996 | A |
5606985 | Battiston et al. | Mar 1997 | A |
5634382 | Fan | Jun 1997 | A |
5653713 | Michelson | Aug 1997 | A |
5659959 | Parlowski | Aug 1997 | A |
5660082 | Hsieh | Aug 1997 | A |
5662006 | Angeltun | Sep 1997 | A |
5692265 | Dalury | Dec 1997 | A |
5728121 | Bimbo et al. | Mar 1998 | A |
5730751 | Dillon et al. | Mar 1998 | A |
5735873 | MacLean | Apr 1998 | A |
5761767 | Barton | Jun 1998 | A |
5782853 | Zeevi et al. | Jul 1998 | A |
5785443 | Rubin | Jul 1998 | A |
5791671 | Tang et al. | Aug 1998 | A |
5797165 | Armbrust | Aug 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5827263 | Furnish et al. | Oct 1998 | A |
5829099 | Kopelman et al. | Nov 1998 | A |
5830231 | Geiges, Jr. | Nov 1998 | A |
5833580 | Chiu | Nov 1998 | A |
5846221 | Snoke et al. | Dec 1998 | A |
5885018 | Sato | Mar 1999 | A |
5893877 | Gampp, Jr. et al. | Apr 1999 | A |
5897571 | Kazama | Apr 1999 | A |
5908432 | Pan | Jun 1999 | A |
5920944 | Biggs et al. | Jul 1999 | A |
5923467 | Pericic et al. | Jul 1999 | A |
5935149 | Ek | Aug 1999 | A |
5961430 | Zuckerman et al. | Oct 1999 | A |
5976121 | Matern et al. | Nov 1999 | A |
5979015 | Tamaribuchi | Nov 1999 | A |
5980511 | Bilitz et al. | Nov 1999 | A |
5991956 | Chapman | Nov 1999 | A |
6007570 | Sharkey et al. | Dec 1999 | A |
6012623 | Fealey | Jan 2000 | A |
6024737 | Morales | Feb 2000 | A |
6029780 | Phillips | Feb 2000 | A |
6030409 | Lang | Feb 2000 | A |
6041258 | Cigaina et al. | Mar 2000 | A |
6042559 | Dobak, III | Mar 2000 | A |
6063087 | Agee et al. | May 2000 | A |
6079523 | Irvine | Jun 2000 | A |
6085611 | Valdez | Jul 2000 | A |
6094780 | McGlothlin et al. | Aug 2000 | A |
6119309 | Lu | Sep 2000 | A |
6129622 | Seaman et al. | Oct 2000 | A |
6129740 | Michelson | Oct 2000 | A |
6134994 | Gomas | Oct 2000 | A |
6145151 | Herron et al. | Nov 2000 | A |
6161256 | Quiring et al. | Dec 2000 | A |
6161974 | Nakagawa | Dec 2000 | A |
6217536 | Gustafson | Apr 2001 | B1 |
6305244 | Takahama | Oct 2001 | B1 |
6354618 | Liao | Mar 2002 | B1 |
6427565 | Ping | Aug 2002 | B1 |
6530125 | Shippert | Mar 2003 | B2 |
6592160 | Nicolay et al. | Jul 2003 | B1 |
6637962 | Roche et al. | Oct 2003 | B1 |
20010001630 | Nakagawa | May 2001 | A1 |
Number | Date | Country | |
---|---|---|---|
20030074766 A1 | Apr 2003 | US |
Number | Date | Country | |
---|---|---|---|
60330527 | Oct 2001 | US |