The present invention relates to a handling device designed to be used to convey an intervention tool on an electrolytic cell. The invention also relates to an intervention device on an electrolytic cell comprising this handling device and the intervention tool, an electrolytic cell comprising this handling device, and an aluminum smelter comprising this electrolytic cell. Finally, the invention relates to an intervention method on this electrolytic cell.
Producing aluminum industrially from alumina by electrolysis according to the Hall-Héroult process is well known. To this end, a rectangular electrolytic cell is provided, like that shown in
The electrolytic cell comprises several anode assemblies 38, each comprising a substantially vertical anode rod 36 and an anode 37 formed from at least one anode block suspended from the anode rod 36 and immersed in this electrolytic bath 35. The anodes 37 are more particularly of the prebaked anode type with prebaked carbon blocks, i.e. baked before introduction into the electrolytic cell.
The electrolytic cell comprises a superstructure 30 extending above the pot shell 31 to support and guide a vertically movable anode frame 34. This superstructure 30 consists, in particular, of at least one beam extending above the pot shell 31 in a longitudinal direction of the cell and supported by feet arranged at the transverse edges of the pot shell 31. Typically, this superstructure 30 further comprises means for extracting cell gases and devices for supplying alumina. The anode assemblies 38 are suspended at regular intervals along two rows from the anode frame 34 by means of removable connectors 32 pressing the anode rods 36 against the anode frame 34. Electrical conductors 39 for rising the electrolysis current carrying the electrolysis current from the cathode outlets of the preceding electrolytic cell to the anode frame 34 extend diagonally upwards from a longitudinal edge of the pot shell 31.
The anode blocks being consumed as the electrolysis reaction progresses, the anode assemblies 38 are progressively lowered towards the cathode 33 in order to keep the distance between the lower surface of the anodes 37 and the cathode 33 substantially constant.
The displacement of the anode assemblies 38 is collective, since all the anode assemblies 38 attached to the same anode frame 34 are displaced simultaneously due to the displacement of this anode frame 34.
To ensure the correct operation of the electrolytic cell, it is typically necessary for the anode assemblies 38 to be positioned so that the lower surface of their anodes 37 is in a plane of reference, in particular coincident with the plane containing the lower surface of the other anodes 37 of the electrolytic cell, also called the anode plane.
However, as is sometimes the case, some anodes 37 wear out more or less quickly than adjacent anodes 37, slip slightly or are improperly positioned when they are placed in the cell so that their lower face is no longer contained in the anode reference plane, thereby resulting in a problem of electrolytic cell performance or generating detrimental operational problems, for example, a short circuit. The corresponding anode assemblies 38 must advantageously be repositioned so that the lower surface of the anodes 37 is once again located in the anode reference plane. This individualized repositioning of an anode assembly 38 is also called anode height adjustment. The anode frame 34, which collectively supports and displaces a plurality of anode assemblies 38, does not allow such an adjustment to be made.
To overcome this difficulty, equipping each anode assembly 38 with an actuator allowing it to be moved individually is well known. However, this individual motorization solution is relatively expensive, and it is not easy to implement in pre-existing aluminum smelters.
Another known solution is the use of a handling crane circulating in the potroom above the electrolytic cells, also called a pot tending machine, guided by an operator, to reposition an improperly positioned anode assembly. To this end, the electrolysis service machine, circulating in the potroom above the electrolytic cells, includes a screw-driving machine to tighten-loosen the removable connector, working in conjunction with a gripping arm allowing to grip the anode rod, typically by its upper end, and reposition the anode assembly by raising or lowering it. However, the number of electrolysis service machines in an aluminum smelter is limited and these machines are required for multiple operations, so their availability is limited. In addition, electrolysis service machines cannot cross paths in the potroom. Consequently, an electrolysis service machine cannot be used as part of a process for continuous improvement of operations involving regular repositioning of the anode assemblies.
Generally speaking, document FR3024466 discloses a vehicle for the operation of electrolytic cells, which can move from one electrolytic cell to another in order to carry out an intervention therein. However, this vehicle circulates in the aisles used for the movement of other vehicles performing various operations on the cells, or in which pallets are temporarily stored for operations on the cell, in particular to support new or used anode assemblies.
Also, this invention aims to overcome all or part of these drawbacks by proposing a handling device intended to convey an intervention tool making it possible to carry out an intervention on an electrolytic cell, with a view in particular to quickly adjusting the height of the anodes, at contained costs, without obstructing the movement of operators or other vehicles.
To this end, the subject-matter of this invention is a handling device intended to convey an intervention tool, making it possible to carry out an intervention on an electrolytic cell having a superstructure, the handling device comprising a chassis carrying the intervention tool and displacement means adapted to allow movement of the chassis, characterized in that the displacement means is adapted to rest against the superstructure.
Thus, an intervention tool may be brought by the handling device to various locations along the superstructure of the electrolytic cell in order to execute an operation therein without requiring intervention by the electrolysis service machine and without requiring circulation in the passageways adjacent to the electrolytic cells.
Superstructure refers to the structure supporting the anode frame and any fixed element of the electrolytic cell attached thereto, such as, for example, means for extracting cell gases and devices for supplying alumina. This superstructure comprises, for example, a beam extending above the pot shell in a longitudinal direction of the cell and supported by feet disposed at the transverse edges of the pot shell. The superstructure, upon which the displacement means are bearing, supports these displacement means and the handling device.
The handling device therefore makes it possible in particular to make the same intervention tool available to several anode assemblies positioned at regular intervals along the superstructure of the electrolytic cell, thereby reducing costs.
Also, according to one embodiment, the intervention tool is a device that makes it possible to reposition an anode assembly of the electrolytic cell.
Repositioning means adjusting the height of the anode of the anode assembly so that its lower surface is in a determined position.
A handling device provided with such an intervention tool therefore offers the possibility of regularly repositioning of anode assemblies on an individualized basis and also increases the availability of electrolysis service machines for other operations, also reducing the costs of exploitation.
According to one embodiment, the handling device comprises lifting means configured to raise or lower the intervention tool between a parking position, making it possible to keep the intervention tool at a distance from the electrolytic cell, and a working position, making it possible to lower the intervention tool in contact with the electrolytic cell.
These lifting means may consist of jacks or articulated arms but, according to one embodiment of the invention, the lifting means are cable lifting means.
Cable lifting means refers to any lifting means comprising a long and flexible element designed to lower or tow a load from above such as a cable, tether, strap, rope, chain, or equivalent.
The use of cable lifting means, in essence simple, reliable and inexpensive, is made advantageous due to the positioning of the chassis above the superstructure, that is to say, above an intervention area of the intervention tool.
According to one embodiment, the lifting means comprise a motorized hoist or winch.
According to one embodiment, the lifting means comprise means for detecting the arrival of the intervention tool in the working position.
The height at which the intervention tool is in the working position depends on the height of the anode frame which varies over time. Therefore, halting the lowering of the intervention tool can be controlled when the intervention tool comes into contact and bears on the anode frame or a cell element, fixed with respect to the anode frame, such as the connector, the connector axis, or the hook formed on the anode frame to support the connector. The detection means may be of the contact sensor or optical sensor type.
According to one embodiment, the handling device comprises guide means configured to guide the intervention tool according to a predetermined path from the parking position to the working position.
This feature allows to bring the intervention tool to an intervention zone precisely.
According to one embodiment, the guide means comprise two parallel flanges between which the intervention tool extends in the parking position, each flange comprising a groove designed to receive and guide an element attached to the intervention tool.
These flanges ensure robust and efficient guidance, preventing any tilting or unsuitable backlash.
According to one embodiment, the handling device comprises a retaining member designed to prevent the chassis carrying the intervention tool from tilting on either side of the superstructure. This allows lowering or raising the intervention tool in a secure manner.
According to one embodiment, the handling device carries two intervention tools arranged on opposite sides of the chassis.
This makes it possible to balance the masses at the handling device, and to have two intervention tools available per electrolytic cell, each intervention tool being designed to intervene on one half of the electrolytic cell. Therefore, the operating efficiency of the electrolytic cell and the aluminum smelter is improved.
Alternatively, the handling device carries a single intervention tool arranged on a rotary platform positioned on the chassis.
Thus, the same tool can advantageously operate on both sides of the electrolytic cell.
According to one embodiment, the displacement means allow the displacement of the chassis along the superstructure of the electrolytic cell.
According to one embodiment, the chassis moves above the superstructure.
According to a second aspect, the subject-matter of the invention is an intervention device on an electrolytic cell comprising a handling device with the aforementioned features and the intervention tool, the intervention tool comprising a mount provided with one or more support surfaces allowing the intervention tool to rest upon and to be stably supported directly upon at least one element of the electrolytic cell in the working position.
This feature makes it possible for the electrolytic cell to be the one supporting the weight of the intervention tool when the intervention tool is in the working position and, in particular, during the intervention on the cell. There is a transfer of the intervention tool's weight from the handling device to at least one element of the electrolytic cell when the intervention tool arrives in the working position and rests upon this cell element. Thus, the handling device does not undergo mechanical force from the intervention tool when the latter is in the working position and during intervention on the cell. The handling device therefore does not need to be sized to withstand significant mechanical stresses, which reduces the associated design and handling costs. Also, there is no risk for the handling device to tilt when the tool is in the working position and in particular during intervention on the cell.
According to one embodiment, the mount of the intervention tool comprises reversible fixing means adapted to create a reversible attachment between the mount and at least one element of the electrolytic cell. Thus, when the intervention tool is in a working position, bearing on at least one element of the cell, the intervention tool can also be attached to at least one element of the cell to further improve the stability of the intervention tool on the cell and increase the stress levels that the intervention tool may undergo during the intervention on the cell.
According to one embodiment, the intervention tool comprises a movable part relative to the mount, a displacement means for moving the movable part in translation relative to the mount, the movable part comprising the engagement means configured to engage a rod anode of an anode assembly of the electrolytic cell in order to secure in translation the anode rod and the movable part of the intervention tool.
These features allow the intervention tool to reposition an anode assembly for which a possible optimization of the vertical positioning has been detected, that is to say, an individualized displacement of an anode assembly, in particular in order to reposition its lower surface in the anode plane. The movable part may be moved with the anode assembly in vertical translation, up or down with respect to the mount, based on the desired positioning of the anode assembly.
Such an intervention tool that can be moved along the superstructure by means of the handling device facing each of the anode assemblies of the cell allows, if necessary, to reposition one after the other individually all the anode assemblies of the cell. The engagement means, for securing the anode rod and the movable part of the intervention tool in translation, include conventional gripping means such as pliers or a vise gripping the anode rod between two opposite jaw members.
According to one embodiment, the intervention tool comprises a tightening/loosening means suitable for tightening/loosening a connector holding the anode assembly in position within the electrolytic cell.
These tightening/loosening means are advantageously a screwdriver engaging a threaded rod of the connector when the intervention tool is positioned in a working position.
According to a third aspect, the subject-matter of the invention is an electrolytic cell comprising a superstructure, an anode frame supported by the superstructure and a handling device having the aforementioned features, in which the superstructure comprises a surface upon which the displacement means are bearing.
Thus, the handling device, designed to transport an intervention tool, moves on the electrolytic cell instead of moving in the aisles serving the electrolytic cells. This reduces congestion in the potroom and improves safety.
All the electrolytic cells of an aluminum smelter can be equipped with a handling device allowing the movement of an intervention tool and therefore interventions in different areas in each electrolytic cell without generating a detrimental congestion in the work aisles adjacent to the electrolytic cells, or mobilizing an electrolysis service machine.
According to one embodiment, the surface upon which the displacement means are bearing is an upper surface of the superstructure.
This embodiment is the simplest since the superstructure typically has an upper surface extending over the entire length of the electrolytic cell.
According to one embodiment, the superstructure and/or the displacement means form a path of displacement for the chassis over at least the entire length of the anode frame.
Thus, the intervention tool, carried by the handling device, can be moved and brought into position for intervention near all the anode assemblies supported by the anode frame.
According to one embodiment, the displacement path presents a storage track at one end of the electrolytic cell.
This allows the handling device to clear the space above the anode frame, for example, for the passage or intervention of an electrolysis service machine.
According to one embodiment, the displacement means comprise guide means designed to guide the chassis in translation in a longitudinal direction of the electrolytic cell.
These guide means ensure precise positioning of the handling device on the superstructure and may, in particular, be rails forming the displacement path and cooperating with wheels arranged on the chassis.
According to one embodiment, the displacement means comprise drive means configured to move the chassis along the superstructure.
The handling device can move autonomously on the superstructure of the electrolytic cell.
According to a fourth aspect, the invention relates to an aluminum smelter comprising at least one electrolytic cell having the aforementioned features.
According to a fifth aspect, the subject-matter of the invention is a method of intervention on an electrolytic cell having the aforementioned features, comprising the steps of:
According to a particular embodiment, the intervention on the electrolytic cell is a repositioning of an anode assembly and includes the following steps:
Other features and advantages of the present invention will emerge clearly from the detailed description below of an embodiment, given by way of nonlimiting example, with reference to the appended drawings in which:
With reference to
The chassis 10 extends longitudinally along a transverse axis X, designed to extend parallel to a transverse direction of the electrolytic cell 3. The chassis 10 may take the form of a support plate or platform (
When the handling device 1 carries two intervention tools 2, these two intervention tools 2 are advantageously positioned on opposite sides of the chassis 10 along the transverse axis X.
The displacement means support the chassis 10. The displacement means are configured to rest upon a surface 300, advantageously an upper surface, of the superstructure 30 and to allow a translation of the handling device 1 in a longitudinal direction of the electrolytic cell 3, along a displacement path delimited by the upper surface 300 of the superstructure 30.
With reference to
The displacement means of the handling device 1 may comprise drive means, such as a motor which may be loaded on the chassis 10 to allow the handling device 1 to move along the superstructure 30, in the longitudinal direction Y of the electrolytic cell 3. Alternatively, as shown in
With reference to
The handling device 1 may include lifting means. The lifting means are configured to individually move the intervention tool(s) 2 between a parking position (
With reference to
With reference to
The guide means may include grooves 16 designed to receive and guide a rotary axis or roller 20 of the intervention tool 2. The grooves 16 may be formed on two parallel flanges 18 connected to the chassis 10 and defining between them a space designed to receive the intervention tool 2 in the parking position. Each groove 16 preferably comprises a lower portion 160, which advantageously extends along a vertical axis Z orthogonal to the longitudinal and transverse Y, X axes essentially under a horizontal plane containing or flush with the displacement means, and an upper portion 162, which extends obliquely with respect to the lower portion 160, at the height of or above a horizontal plane containing the chassis 10 or displacement means for the handling device 1. The upper portion 162 preferably extends externally from the vertical lower portion 160, that is to say away from the chassis 10 and the electrolytic cell 3. In the parking position, the rotary axis or roller 20 of the intervention tool 2 is located in the upper portion 162 of the groove, while in the working position, the rotary axis or roller 20 of the intervention tool 2 is located in the lower portion 160 of the groove. Preferably, each flange 18 comprises two similar and parallel grooves 16. These doubled grooves 16 prevent the intervention tool 2 from tilting around the rotary axis or roller 20 placed in the groove 16.
The handling device 1 may include means for supporting each intervention tool 2 in the parking position. Thus, the intervention tool 2 bears, at least in part, on these support means. The support means may be a side wall of the groove(s) 16 of the flanges 18.
The handling device 1 may comprise wired supply means, of the electric cable or pneumatic hose type, designed to supply the lifting means and/or a motor making it possible to move the handling device 1 on the superstructure 30, and an automatic reel designed for winding the wired supply means. Alternatively, or additionally, the handling device 1 may carry one or more energy storage units, such as batteries.
Each intervention tool 2 is connected to the handling device 1 via the cable 102 and the guide means described above.
With reference to
The mount 22 may also include reversible fixing means designed for creating a reversible attachment between the mount 22 and at least one element of the electrolytic cell 3. The reversible fixing means may comprise one or more locking tabs, possibly movable with respect to the casing 22 between a retracted position and a deployed position, configured to cooperate with an element of the electrolytic cell 3 when the intervention tool 2 is in the working position, more precisely, with a fixed element with respect to the anode frame 34, such as connector 32, axis 320 of connector 32, anode frame 34, or hook 322 supporting the connector 32. The locking tab(s), with the bearing surface(s) 220, therefore make it possible to attach the intervention tool 2 to the electrolytic cell 3.
The intervention tool 2 is advantageously intended to perform a predetermined operation on the electrolytic cell 3, such as for example repositioning an anode. In this case, the intervention tool 2 may comprise engagement means allowing the gripping of an anode rod 36 of an anode assembly 38 of the electrolytic cell 3 and means for driving in translation of these gripping means, in order to vertically displace the anode assembly 38. More specifically, the intervention tool 2 comprises a movable part 24 in translation relative to the mount 22, this movable part 24 supporting the means of attachment, and driving means for driving the movable part 24 in translation along the vertical axis Z with respect to the mount 22. The movable part 24 and the mount 22 can be connected by a sliding guide 26. These features make it possible to move the anode assembly 38, by raising or lowering it, over a relatively short distance, of approximately 100 mm, but sufficient to replace the lower surface of the anode block of this anode assembly 38 at the desired location, for example in the anode plane.
With reference to
With reference to
With reference to
The handling device 1, and, more particularly, the lifting means, advantageously comprises detection means, such as, for example, a contact or optical sensor 11, shown diagrammatically in
Furthermore, the intervention tool 2 may comprise wired supply means, of the electric cable or pneumatic hose type, designed, in particular, to supply the drive, engagement and/or tightening/loosening means of the intervention tool 2, and an automatic reel designed for winding the wired supply means. Alternatively, or in addition, the intervention tool 2 may carry one or more energy storage units, such as batteries.
The invention also relates to an electrolytic cell 3 comprising a superstructure 30, an anode frame 34 supported by the superstructure 30, an anode assembly 38, a connector 32 for removably suspending the anode assembly 38 from the anode frame 34, and a handling device 1 as described above, the handling device 1 being able to carry one or more intervention tools 2.
With reference to
The displacement path may extend beyond a vertical projection of the anode frame 34 or the pot shell of the electrolytic cell 3. In particular, as illustrated in
If necessary, the positioning of the handling device 1 on the storage track 40 can allow recharging electrical batteries of different equipment, such as the displacement means, lifting means and/or intervention tool 2.
It will be noted that the electrolytic cell 3 or the handling device 1 may advantageously include means for controlling the position of the handling device 1, such as an encoder installed in the motor 42 designed to drive the handling device 1, as well as a sensor for both the zero point, for example, a first end of the displacement path such as the storage track 40, and the end of travel, such as a second opposite end of the displacement path.
Alternatively, markings and associated detectors may make it possible to precisely determine the stops of the chassis 10 facing the anode assemblies 38, whose positions always remain the same and are at regular intervals, as shown in
In addition, although not shown, the electrolytic cell 3, the handling device 1 or the intervention tool 2 may be equipped with wired or wireless communication means, known to the person skilled in the art, for communicating with a control unit provided within the aluminum smelter and designed to control the displacements and operations of the handling device 1 and the intervention tool 2.
The invention also relates to an aluminum smelter comprising a plurality of electrolytic cells 3 including at least one electrolytic cell 3 as described above. Preferably, all of the aluminum smelter electrolytic cells 3 have the above features. The smelter may include one or more electrolysis service machines intended to move above the handling devices 1 present on the displacement path of the superstructure 30.
Furthermore, the aluminum smelter or the electrolytic cell(s) 3 advantageously comprises means for measuring the current flowing in each of the anode assemblies 38, such as, for example, Hall effect sensors, as disclosed in U.S. Pat. No. 6,136,177.
The aluminum smelter may include a control unit designed to control the displacements and operations of the handling devices 1, and intervention tools 2 based on the results of the measurements of the current circulating in each of the anode assemblies 38, and based on information received about the positioning and operations of the handling devices 1 and/or the intervention tools 2 and/or the electrolysis service machines.
The invention finally relates to an intervention method on an electrolytic cell 3 as previously described. This method includes the steps of:
The method may include an initial step of measuring an operating parameter of the cell, such as the intensity of the current circulating in each of the anode assemblies 38.
The lowering of the intervention tool 2 down to the working position may include the bearing of the intervention tool 2 on an element of the electrolytic cell 3, more precisely, a fixed element with respect to the anode frame 34, such as the connector 32, the axis 320 of the connector 32, the anode frame 34, or the hook 322 supporting the connector 32.
The lowering of the intervention tool 2 down to the working position may be followed by a step of attaching the intervention tool 2 to the electrolytic cell 3 in the working position, more precisely, on an element of the electrolytic cell 3 fixed with respect to the anode frame 34, such as the connector 32, the axis 320 of the connector 32, the anode frame 34, or the hook 322 supporting the connector 32.
Preferably, the step of carrying out the intervention by means of the intervention tool 2 consists in repositioning an anode assembly, for example, the displacement of an anode assembly 38 in order to reposition the lower face of the anode block in the anode reference plane. Repositioning an anode assembly can include the following steps:
Advantageously, the loosening step of the connector 32 is a partial loosening step so that the connector 32 maintains contact between the anode rod 36 and the anode frame 34. The tightening and loosening of the connector 32 are advantageously carried out by the tightening/loosening means of the intervention tool 2.
The method may also include the communication of information or control signals between the control unit of the aluminum smelter and the handling devices 1 and/or the intervention tools 2 and/or the electrolysis service machines in order to control their respective displacements and operations.
Obviously, the invention is in no way limited to the embodiment described above, this embodiment having been given only by way of example. Modifications are possible, in particular in terms of the composition of the various devices, or by substitution of technical equivalents, without thereby departing from the scope of protection of the invention.
Number | Date | Country | Kind |
---|---|---|---|
19/02640 | Mar 2019 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CA2020/050325 | 3/11/2020 | WO | 00 |