Embodiments disclosed herein generally relate to sensors integrated in or on tools and configured to provide real-time stress, strain, load, and/or fatigue measurements during operation of the tools.
Handling tools utilized in oil and gas operations are subjected to very rough conditions. These handling tools carry heavy loads (tubulars and/or support equipment for example) high above personnel on a rig such that fatigue of these handling tools is a safety risk. These handling tools are inspected at certain times to determine fatigue, and only during these inspections can a dangerous or potentially dangerous problem, such as a crack in the handling tool, be detected.
Therefore there is a need for a method and apparatus that provides real-time monitoring of stress and strain that lead to fatigue of handling tools.
In one embodiment, a handling tool includes a body having a high-stress location, a pocket formed in the high stress location, and a sensor adhered to a surface of the pocket and oriented along an axis of the body.
So that the manner in which the above-recited features of the disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one embodiment may be beneficially utilized on other embodiments without specific recitation.
Embodiments disclosed herein relate to measuring stress, strain, and load that cause fatigue of a handling tool utilized in oil and gas operations. The stress, strain, and load may be measured by sensors in or on the handling tool during operation. An exemplary handling tool is an elevator (or other similar tubular handling tools), which is generally a hinged device that is used to clamp around a tubular (e.g. drill pipe or casing) to facilitate lifting, conveying, and lowering of a single tubular or a string of tubulars. Embodiments of the disclosure, however, may be utilized in other handling tools as well as other machinery that experiences high stress, strain, and loading during operation.
The plurality of hinged members 110A and 110B may be configured as a door 125 that may be open as shown in
The elevator 100 includes one or more sensors 215 (illustrated in
The sensors 215 may be one or more strain gauges, load cells, and/or other suitable devices that measure one or a combination of stress, strain, loading, and fatigue. Each of the sensors 215 may measure and/or monitor stress, strain, load, and/or fatigue along one axis, two axes, or three axes of the main body member 105 and/or the door 125.
The high-stress location 135 includes a pocket 200 formed in the main body member 105 and/or the door 125. The pocket 200 may include a bottom surface 205 and a sidewall 210. The pocket 200 may be machined into the main body member 105 and/or the door 125, or formed into the main body member 105 and/or the door 125 during fabrication of the elevator 100.
A sensor 215 may be placed in the pocket 200 to monitor stress and strain on or in the high-stress location 135. In one embodiment, the sensor 215 may include one or more strain gauges. In one embodiment, the sensor 215 may include one or more load cells. In one embodiment, the sensor 215 may utilize one or more electrical signals that change in magnitude in proportion to an amount of load being applied to the high-stress location 135.
A protective coating 220 (shown in
The sensor 215 may be attached to a surface of the pocket 200 by an adhesive, such as glue, which measures and/or monitors the load applied to the high-stress location 135 along at least one axis 218 (such as the longitudinal axis) of the main body member 105 and/or the door 125 that is to be measured and/or monitored. Typically up to three axes of the main body member 105 and/or the door 125 may be measured and/or monitored by one or more of the sensors 215.
The sensor 215 may be wired or wireless and provide real-time stress and strain measurements to one or more feedback units 235. The sensor 215 may include a transmitter/receiver unit 240 that may be queried periodically for a measurement to the feedback unit 235. Alternatively, the transmitter/receiver unit 240 may provide continuous stress and strain measurement data to the feedback unit 235.
The feedback unit 235 may include one or more gauges monitored by personnel and/or a computer that receives measurement data from the sensor 215. The feedback unit 235 may include preprogrammed values (such as maximum and minimum allowable limits) of stress and strain for the high-stress locations 135. The feedback unit 235 may be equipped with an audible and/or visible alarm when the measured data from the sensor 215 increases above or decreases below the preprogrammed values.
The sensor 215 and/or the feedback unit 235 may be utilized to measure and calculate data from each high-stress location 135, the data including stress, strain, magnitude of load, and/or life cycle of each high-stress location 135. In one embodiment, the feedback unit 235 may track the amount of load and the number of times such load was carried by the elevator 100. The load may include the weight of tubulars suspended by the elevator 100.
While the foregoing is directed to embodiments of the disclosure, other and further embodiments may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 15/342,707, filed on Nov. 3, 2016, the contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5340182 | Busink et al. | Aug 1994 | A |
8286509 | Igarashi et al. | Oct 2012 | B2 |
8651175 | Fallen | Feb 2014 | B2 |
9372075 | Oudovikine | Jun 2016 | B2 |
9790750 | Stoldt | Oct 2017 | B1 |
20130035787 | Canter | Feb 2013 | A1 |
20140202767 | Feasey | Jul 2014 | A1 |
20150122490 | Greening et al. | May 2015 | A1 |
20150226022 | Angelle et al. | Aug 2015 | A1 |
20160061022 | McCoy | Mar 2016 | A1 |
20160290073 | Zheng et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
2016148880 | Sep 2016 | WO |
Entry |
---|
International Search Report and Written Opinion dated Jan. 29, 2018, corresponding to Application No. PCT/US2017/054432. |
Invitation to Pay Additional Fees and, Where Applicable, Protest Fee dated Nov. 24, 2017, corresponding to Application No. PCT/US2017054432. |
Number | Date | Country | |
---|---|---|---|
20180119500 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15342707 | Nov 2016 | US |
Child | 15783335 | US |