The present invention relates to a method for a handover of a UE (User Equipment) currently engaged in a voice call. More particularly, the invention relates to a handover from 1) a packet based radio where Voice Service is provided via VoIP over the radio and is controlled via Session Initiation Protocol (SIP) based signalling (e.g. LTE, E-UTRAN or WIMAX radio) to 2) a radio access network where Voice Service can be only provided via circuit switched (CS) domain (a visited mobile switching centre (VMSC) is needed) such as legacy 3GPP UMTS Terrestrial Radio Access Network (UTRAN)/GSM/Edge Radio Access Network (GERAN) coverage. The application particularly applies to the case where the UE is not able to transmit/receive on both radio accesses simultaneously.
In the prior art (3GPP TS 23.206) it is assumed that the UE is able to transmit/receive on both radio accesses simultaneously. This allows a handover to be make-before-break, and so there is minimal interruption to the voice service detected by the user. When a handover is required (as detected by the UE, e.g. based on radio measurements) the UE creates a new call/session in the new domain, while maintaining the voice service in the existing domain. Once the new call/session is established, the network (namely a VCC Application) switches the voice media to this new call/session and then releases the network resources in the previous domain. Thus, handover from 1) packet based radio where Voice Service is provided via VoIP over the radio and is controlled via SIP based signalling (e.g. Wifi) to 2) a location (such as legacy UTRAN/GERAN) where Voice Service can be only provided via CS domain is only possible for Dual Radio mobiles, i.e. mobiles able to simultaneously transmit and receive on packet based radio (e.g. Wifi) and cellular radio (such as legacy UTRAN/GERAN). This is because Voice Call Continuity (VCC) as currently specified requires to register on CS domain and to send a call request over CS domain while the terminal is still sending/receiving voice over the Packet radio
The present invention proposes a mechanism for handover of an UE-A currently engaged in a Voice Call with a remote UE-B from a packet based radio network where Voice Service is provided via VoIP over the radio and is controlled via SIP based signalling (e.g. LTE/E-UTRAN/Enhanced Packet Core (EPC)) to legacy 3GPP GERAN/UTRAN CS domain that works for Single Radio UEs by introducing a new entity named Mobile Switching Center (MSC) Server “MSC-S” (or “CS-proxy”) that sits on both the Packet Switched (PS) and Circuit Switched (CS) domains. More specifically this entity:
According to an aspect of the invention, when the radio network has detected that a handover to legacy coverage is needed that requires to pass the Voice Service from the PS domain to CS domain, such MSC-S upon reception of relevant triggers co-ordinates following processes:
When both processes are completed, the MSC-S commands the UE-A for handover execution and instructs a Media Gateway (MGW) to connect the path towards UE-B with the path towards the target radio.
The proposed mechanism thus progresses and coordinates the existing VCC (TS 23.206) procedures (which are at the IMS layer) in parallel with existing inter-MSC handover procedures in order to minimize the voice break detected by the user.
The proposed mechanism (apart from the addition of a MSC-S function—that may be co-located with an existing MSC or may be deployed as a stand-alone box) does neither induce modification to the legacy RAN (GERAN/UTRAN), nor modification to IMS Core and AS, and does not impact the remote UE (UE-B) beyond the impacts already defined in existing VCC procedures.
During the process of preparing a new path towards the remote UE-B (using a VCC procedure), the MSC-S entity according to an aspect of the invention reserves resources at its MGW and sends an IAM (ISUP Initial Address Message) via an MGCF (Media Gateway Control Function—possibly co-located) towards the VCC AS of the UE-A in his/her home network (HPLMN).
Note that if the (A, Iu, . . . ) interface towards the target RAN (controlling target GERAN/UTRAN radio) is not controlled by the MSC-S but by a different MSC, called MSC-B, an inter-MSC HO procedure is invoked, whereby the MSC-S is acting as anchor MSC. In this case, the MSC-B (that controls the target Radio GERAN/UTRAN) is not aware that the inter-MSC HO procedure is actually invoked as part of a more global procedure (Single Radio VCC procedure of the invention).
A handover method according to an embodiment of the invention comprises the following steps:
A packet radio base station (such as an eNB for E-UTRAN) initiates a handover of a voice call towards CS domain over legacy radio, wherein an MSC-S entity is invoked, this MSC-S entity being interfaced to a packet Core signalling entity on one side and acting as a VMSC to a CS core on the other side;
The MSC-S initiates, as an anchor MSC, a CS domain handover via the legacy Radio;
The packet radio base station (e.g. eNB) sends a CS Handover Request to the UE-A to request the UE-A to initiate a VCC procedure via the MSC-S, thereby initiating a setup towards a VCC Application function identified by a VDN identifier; optionally, MSC-S waits for the completion of the handover preparation phase;
Upon the UE-A having initiated VCC procedure via the MSC-S, the MSC-S starts processing of an originating call in the CS network towards the VCC AS providing Voice Call Continuity to the User-A and the full VCC procedure applies;
MSC-S routes the call towards the user's home IMS network via an MGCF;
The MGCF reserves connection resources in the attached MGW (that provides the new user plane address where to send voice traffic towards UE-A) and forwards the session set-up (including the new user plane address where to send voice traffic towards UE-A) towards the VCC AS that triggers the VCC procedure, that transfers to the remote UE-B via SIP signalling the new user plane address where to send voice traffic towards UE-A;
Upon receiving this information, the UE-B acknowledges it, disconnects its user plane from the previous path, and connects it to the new path towards the MGW;
This acknowledgement (200OK) is transferred via the MGCF that replies to the MSC-S with an ANM message;
The MSC-S requests the UE-A to perform Handover Execution phase;
The target RAN (GERAN/UTRAN) detects the UE-A (in the new cell), and sends Handover Detect towards MSC-B;
The MSC-B commands its MGW to connect the path towards UE-B (established via the VCC procedure) with the path towards the target radio where the UE-A has been handed-over to;
If the MSC-B is a separate node from MSC-S, MSC-B sends MAP-PROCESS-ACCESS-SIGNALLING request to MSC-S;
The UE-A sends Handover Complete to the target RAN, which notifies MSC-B;
If the MSC-B is a separate node from MSC-S, MSC-B sends MAP-SEND-END-SIGNAL request to MSC-S.
According to an embodiment of the present invention, the method is characterised in that the packet radio base station (such as an eNB for E-UTRAN) sends a Relocation/Handover Required message to a mobile Packet Core signalling entity (such as the MME in case of an Evolved Packet Core) indicating a handover target cell and that it is a handover to circuit switched domain. The mobile Packet Core signalling entity (e.g. MME) selects a MSC-S entity and relays the Relocation/Handover Required message to this MSC-S entity. The selected MSC-S then initiates the process of reservation of network resources on the target radio network. This process may involve another MSC (MSC-B) that directly interfaces the controller (e.g. BSC/RNC) of the target Node B/BTS. In an embodiment of the present invention, the mobile Packet Core signalling entity (such as a MME) may consider the MSC-S as another mobile Packet Core signalling entity (such as another MME).
According to an embodiment of the present invention, the CS handover procedure invoked by MSC-S may entail an inter MSC handover if the MSC-S does not have the interface to control the RAN (GERAN/UTRAN) serving the cell where the UE-A is going to handed-over to.
According to a further embodiment of the invention, the VCC procedure initiation by the UE-A corresponds to a CS domain setup message towards a VCC Domain Transfer Number (VDN) and this message is tunneled through the mobile Packet Radio (e.g. UTRAN) and Core Networks (eNB and MME) towards the MSC-S.
In a typical embodiment of the invention, the CS domain setup procedure towards a VDN is controlled using Customized Applications for Mobile Network Enhanced Logic (CAMEL), wherein the actual address of the VCC AS serving the user of UE-A (in his/her Home PLMN) is resolved using the VDN and possibly the identity of this user.
According to a typical method according to the invention, the packet radio base station (e.g. eNB) orders measurements of the neighbour cells to the UE-A before initiating the handover and, upon reports received from the UE-A, decides to perform a handover to a CS target cell.
In a method according to another embodiment of the invention, the UE-A sends a Handover Complete message to the MSC-S (relayed via RNC/BSC and via MSC-B if an inter MSC HO was needed), and MSC-S sends relevant signalling to the mobile Packet Core signalling entity (such as a MME) in order to release network resources in the mobile Packet Core (e.g. EPC) and the packet Radio (e.g. E-UTRAN).
In the same way as in UMTS, the radio “Base Station” on the PS radio (such as eNB (Enhanced NodeB) for LTE) may order measurements of neighbor cells to the UE-A and is able to decide a handover to a CS target cell. When the decision is taken, the radio “Base Station” on the PS radio (e.g. eNB) sends a handover request towards its network Control Node (e.g. MME in case of E-UTRAN radio) that relays the request to the MSC-S. It also requests the UE-A to initiate a VCC (Voice Call Continuity) Domain Transfer to CS by initiating a SETUP towards a VDN (VCC Domain Transfer Number), as specified in 3GPP TS 23.206. The SETUP message is tunneled through the packet radio (e.g. E-UTRAN) and Core (e.g. EPC) network towards the MSC-S.
The MSC-S waits for completion of the handover preparation phase, i.e. network and radio resources reserved towards the target network, and for the SETUP (VDN) message sent by the UE-A. Then an originating call is processed in the CS network according to CS origination procedures of VCC invoking CAMEL (Customized Applications for Mobile Network Enhanced Logic): the CAMEL Service reroutes the call to the IMS VCC AS (Voice Call Continuity Application Server) that serves the UE-A. Then, the MSC-S (acting as a VMSC) routes the call towards the user's home IMS (IP Multimedia Subsystem) network via an MGCF (Media Gateway Control Function) in the home network.
The MGCF reserves connection resources in the corresponding MGW (Media Gateway) it controls and forwards the call request for the new path to the UE-B via VCC AS through IMS call control. VCC AS sends a SIP message (e.g. SIP Re-Invite message) to the UE-B to change the address where it sends its user plane to be sent to UE-A. Upon receiving this SIP message, the UE-B replies with 200 OK, disconnects its user plane from the previous path and connects it to the new path towards the MGW. The MGCF orders the corresponding MGW to connect the UE-B path to the MSC-S path and replies to the MSC-S with an ISUP Answer message (ANM) message. The MSC-S knows that the path with UE-B is established and can now request the UE-A to perform Handover Execution phase i.e. to switch its radio to the target cell.
The target NodeB/BTS (Base Transceiver Station) detects the UE-A and sends Handover Detect to the RNC (Radio Network Controller)/BSC (Base Station Controller) that will relay it to MSC-S (possibly via MSC-B if the MSC-S needs another MSC-B to terminate the link with controller of the target radio). MSC-S connects the UE-A path (over the new radio) to the UE-B path (via the MGW). At this point, user plane is end-to-end connected. The UE-A sends Handover Complete message to the RNC/BSC that relays it to the MSC-S (possibly via MSC-B) in order to release network resources in the packet based Core (e.g. EPC-Enhanced Packet Core) network and packet based radio (e.g. E-UTRAN Enhanced UTRAN) that the UE-A has just left.
Further, the invention concerns a MSC-S entity adapted to perform the method according to the invention and a mobile telecommunication network adapted to perform the method according to invention.
According to the invention, a new MSC-Serving entity is introduced as a VMSC interfaced to MME (Mobility Management Entity) on one side and to CS (Circuit Switched) core on the other side. It corresponds to the MSC (Mobile Switching Centre) entity that serves the UE-A, and acts as an Anchor MSC function, forwarding the handover required by the eNB towards the CS target network. The MSC-S behavior is based on existing MSC behavior, but some changes are required for the solution according to the invention, therefore introducing a new entity means so that existing MSC's do not need to be modified.
There are several significant advantages to the above described solution: The method according to the invention has no impact to the existing Core Network nodes. Further it has no impact to the existing RAN (Radio Access Network) nodes (UTRAN, GERAN), to the IMS network and to VCC applications. Further, the user plane interruption is minimized: it corresponds to the addition of the processing and transmission of the ANM and Relocation Command messages, estimated between 5 and 10 ms, to the inevitable handover execution time that is defined as the interruption time on Layer 1 and estimated between 50 and 100 ms.
In addition, the handover preparation phase is minimized as the steps to initiate a VCC procedure until receiving Setup (VDN) message may be performed in parallel with the legacy handover preparation phase (from Relocation/Handover Required to MAP (Mobile Application Part) Prepare HO (handover) Response). Moreover, these steps are expected to be short compared to the legacy handover preparation phase.
Further, the MSC-S can be distributed, so the method according to the invention is a scalable solution. Finally, if the MSC-S is in the VPLMN (Visited Public Land Mobile Network), the routing tables are the same as a legacy MSC.
It should be noted that basically the above mentioned aspects of the invention may be combined in many useful ways. Furthermore, it should be noted that the disclosure of the invention also covers other claim combinations than the claim combinations which are explicitly given by the back references in the dependent claims, i.e., the claims may be basically combined in any order.
Further aspects, advantages and features of the present invention are apparent from the dependent claims, the detailed description and the accompanying drawings, in which:
a shows a first flow chart; and
b shows a second flow chart subsequent to the first flow chart.
In
According to the embodiment of the invention shown in the
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. While the invention has been described in terms of various specific embodiments, those skilled in the art will recognise that the invention can be practiced with modification within the spirit and scope of the claims. Especially, mutually non-exclusive features of the embodiments described above may be combined with each other. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
0707387.7 | Apr 2007 | EP | regional |
0707387.7 | Apr 2007 | GB | national |
08100048.1 | Jan 2008 | EP | regional |