The field of the invention is crutches.
Numerous types of crutches are known for providing mobility to those who suffer from infirmities, injuries, and/or handicaps. Hands-free crutches are particularly useful because they allow their users to use both hands for tasks other than stabilizing the crutch.
The earliest hand-free crutches appear to have relied on monopods, i.e., a single ground contact pad that is substantially flat on the bottom. See e.g., U.S. Pat. No. 1,185,906 to Hoff (1916) and U.S. Pat. No. 2,827,897 to Pawlowki (1956). That strategy has persisted into the present, as exemplified by U.S. Pat. No. 3,074,420 to Gottman (1963), U.S. Pat. No. 4,058,119 to Rosequist (1977), U.S. Pat. No. 5,178,595 to MacGreggor (1993), U.S. Pat. No. 5,575,299 to Bieri (1996), U.S. Pat. No. 6,494,919 to Matthews (2002), and U.S. Pat. No. 7,600,524 to West (2009).
These and all other extrinsic materials discussed herein are incorporated by reference in their entirety. Where a definition or use of a term in an incorporated reference is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the reference does not apply.
Starting in the mid-1990s three appears to have been recognition that a single foot was not satisfactory, and the field began experimenting with use of a second foot. See e.g., U.S. Pat. No. 5,746,236 to Tilsey (1998), U.S. Pat. No. 6,799,592 and Reynolds (2004). Other variations to improve stability have included a single foot having a width that extends from the medial to the lateral side of the user's foot, and even a three-footed crutch, see the Freedom Leg™ (2011) and US2007/0241560 to Moore (publ. 2007), respectively.
Unfortunately, these and all other known hands-free crutches are difficult to use due to lack of stability and/or lack of natural transfer of weight. The user must re-learn a new way of transferring weight to and from the crutch while walking. Thus, there is still a need for stable hands-free crutch, which allows the user to walk in a relatively natural manner.
The inventive subject matter provides apparatus, systems, and methods in which a hands-free knee crutch provides stable and natural weight transition by providing a ground support in which (1) a medial contact region is higher than a lateral contact region when weight is being transmitted vertically to the ground or other surface, and (2) both the medial and lateral contact regions touch the surface when weight is being transmitted to the surface at some functional angle off vertical.
The medial and lateral contact regions can be positioned on one or more feet, but are preferably positioned on a single foot. Since the ground support is slightly supinated, the foot or feet is/are preferable rotatable relative to the knee platform to accommodate either left or right leg usage. The foot (or lateral foot where there are two feet) also preferably has a symmetrically curved lateral edge.
In especially preferred embodiments the medial and lateral contact regions are disposed on medial and lateral pads, respectively, which can advantageously be configured as sagitally oriented rockers. In a rocker configuration, anterior and posterior ends of the pads are curved upwards relative to the middle. Pads can be part of a unitary whole, but are preferably separate components, separated by at least 5 mm, more preferably at least 1 cm, more preferably at least 2 cm, more preferably at least 3 cm, more preferably at least 4 cm, and most preferably at least 5 cm. Even wider separations are also contemplated, depending in part on the width of the foot and the width of the pads. The pads and/or treads on the pads can be user replaceable.
The extent to which the medial contact region can be higher than the lateral portion when weight is being transmitted vertically to the surface is between 1 mm and 10 mm, more preferably between 2 mm and 5 mm, and most preferably between 3 mm and 5 mm. In some contemplated embodiments that difference can be adjusted by the user.
Preferred leg supports are significantly different from others on the market. In one aspect the leg platform can have a posteriorly narrowing “V” or “U” shaped support. In another aspect, preferred crutches include a knee fastener that pulls the knee anteriorly and inferiorly. In another aspect, preferred crutches include a thigh fastener that couples to an at least partially rigid thigh contact, which provides additional lateral support and alignment of the frame. Most preferably the thigh contact is part of an upper thigh saddle having both inner and outer thigh contacts. As used herein a “knee strap” is a knee fastener that pulls the knee anteriorly and inferiorly.
In addition to the usual strap and height adjustments, preferred embodiments include: (1) adjustment for the thigh saddle or other contact; (2) relative height adjustments for the medial and lateral contact regions of the foot or feet; and (3) replaceable treads on medial and lateral pads of the foot or feet.
Various objects, features, aspects and advantages of the inventive subject matter will become more apparent from the following detailed description of preferred embodiments, along with the accompanying drawing figures in which like numerals represent like components.
The following discussion provides many example embodiments of the inventive subject matter. Although each embodiment represents a single combination of inventive elements, the inventive subject matter is considered to include all possible combinations of the disclosed elements. Thus if one embodiment comprises elements A, B, and C, and a second embodiment comprises elements B and D, then the inventive subject matter is also considered to include other remaining combinations of A, B, C, or D, even if not explicitly disclosed.
Prior art
Prior art
Prior art
Prior art
The prior art failed to appreciate a critical feature of crutches; that when used by the average person, weight passing through the supported leg will generally be directed off vertical. The current inventor took that one step further, recognizing that the foot (or feet) of a crutch should therefore have a medial contact region that is raised relative to a lateral contact region when weight is being transmitted vertically to the ground or other horizontal surface. These distinctions are readily apparent by viewing
In
In
A similar situation occurs with a rounded foot. In
In
In an embodiment of
In
The minimum angle off vertical at which both lateral and medial contact regions will touch the ground is referred to herein from time to time as the critical angle, and will depend on how several factors, including far apart the two weight bearing pads (or feet) are located, and the relative height of the more medial one when the force line is vertical. Contemplated critical angles include 1-2°, 2-3°, 3-4° and 4-5°. In general, the critical angle will be between 1° and 5°, although both lesser and greater angles are contemplated.
The recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. “such as”) provided with respect to certain embodiments herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention. Unless otherwise expressly stated, all ranges include their endpoints.
As shown in
Although two ground contact regions seems to work the best, it should be appreciated that one could have more than two such regions. In addition, the total are of all regions of ground contact can be fairly large. In preferred embodiments that total is at least 50 mm2, more preferably at least 75 mm2, more preferably at least 100 mm2, and in some embodiments at least 125 mm2.
In
The frame 110 generally comprises two upper supports 112A, 112B, two lower supports 114A, 114B, and a post 116. The thigh fastener 120, thigh saddle 130, handle 140 and leg platform 150 are all connected directly to the two upper supports 112A, 112B. The post 116 is connected to the leg platform 150, the lower supports 114A, 114B and the foot 170. The frame members are preferably aluminum to provide sufficient strength with relatively low weight. All suitable materials are also contemplated, including steel, composites, rigid plastics, which could be extruded to include an internal I-beam for strength.
The two upper supports 112A, 112B are preferably telescoping, and include locks 113A and 113B, respectively. The thigh fastener 120 preferably comprises a plastic, including for example nylon or polyester webbing, or other strap 122, which can be tightened at fastener 124.
The thigh saddle 130 generally comprises a left arm 132A and a right arm 132B, which are at least partially rigid, and extend out from mechanisms 134A and 134B respectively. Those mechanisms force the arms to extend either more directly backwards above the leg platform 150 to accommodate a relatively narrow thigh, or further apart from each other to accommodate a relatively wider thigh. Because of their rigidity, the left and right arms 132A, 132B help stabilize the crutch 100 relative to the thigh. In preferred embodiments, the arms can be adjusted independently, allowing proper vertical alignment of the crutch for a wide range of leg geometries. The mechanisms 134A, 134B can be any suitable mechanisms for achieving the purposes described herein, an in the relevant figures are merely screws 136A, 136B that tighten ratchet teeth (only partially shown as 138A, 138B) against one another.
It should also be appreciated that much of the stabilization provided by thigh saddle 130 can be provided by an at least partially rigid inner thigh arm operating by itself, i.e., without cooperation of a lateral arm.
Lateral adjustability of the inner thigh member should be interpreted as adjustability relative to the leg platform, and can be accomplished in many different ways. One way is to provide rotation of the inner thigh member using a mechanism as shown in
The same adjustment mechanisms could apply to an outer thigh member.
As used herein, the term “at least partially rigid” with respect to an object means that a 5 cm length of the object cannot be bent under normal operating conditions (STP) by more than 2 cm without permanently deforming the object.
Although not shown in the Figures, an alternative thigh saddle could move laterally relative to the frame. The key is that no matter how the thigh saddle is structured, it should have sufficient rigidity to constrain crutch movement at the upper thigh, yet can be adjustable to have proper placement on thighs of different sizes and shapes.
Handle 140 is also preferably stiff plastic, but could also be wood, metal or some other material. Experiments have shown that handle 140 is important for some new users to gain confidence in using the device. However, due to the many other novel features discussed herein, most new users find the handle unnecessary after only a few minutes of practice. The handle can also be used for short trips when the user does not want to take time to strap in, and for long trips to combat leg fatigue.
As shown, handle 140 is positioned medially relative to a front perspective of the frame, rather than being placed on one side of the frame as in prior art devices. Medial positioning is considered herein to be advantageous because it facilitates use in standing up from a seated position, and facilitates use of the crutch as a cane. Although a handle need not be placed exactly in a medial sagittal line of the crutch, it is preferred that the handle be positioned such that a medial sagittal plane of the crutch passes through at least a portion of the handle. As used herein, the medial sagittal plane of a crutch is to be taken as the vertical plane that passes through the leg platform along a user's lower leg when the leg is fastened into the crutch for walking.
In the crutch of claim 22, the top of the handle is positioned at an approximate top of the frame. This is also not an absolute requirement. It is, however, preferred that the top of the handle be positioned within 10 cm of the top of the frame, more preferred that the top of the handle be positioned within 5 cm of the top of the frame, and most preferred that the top of the handle be positioned within 2 cm of the top of the frame.
Contemplated handles need not have any particular ergonomic shape. Contemplated handles include padded bars as show in
In
Leg platform 150 has a support 152 sized and dimensioned to receive one of the lower legs of the user, with the knee facing forward and the user's foot facing rearward. Since the knee of many people is wider than the anterior (bony) portion of the lower leg, the knee (forward) portion of the support 152 is wider than the more rearward portion of the cushion 152. Further, as the support transitions from anterior to posterior, the U shape similarly transitions to more of a V shape to better conform to the contours of the human leg. This provides additional proprioception, stability and control of the crutch.
A rear strap 154 and rear fastener 155 keep the mid portion of the user's lower leg snug against the cushion 152, while a forward strap 156 and forward fastener 157 keep the upper portion of the user's lower leg snug against the cushion 152. The forward strap 156 is preferably coupled to the leg platform 150 quite close to the upper supports 112A, 112B, such that the strap can actually contact the user's leg at or near the popliteal fossa, and tend to pull the leg down against both the cushion 152 and forward against a blocking band 111 configured between the two upper supports 112A, 112B. The blocking band 111 stops the knee from pushing forward in the space between the two upper supports 112A, 112B.
As used herein, and unless the context dictates otherwise, the term “coupled to” is intended to include both direct coupling (in which two elements that are coupled to each other contact each other) and indirect coupling (in which at least one additional element is located between the two elements). Therefore, the terms “coupled to” and “coupled with” are used synonymously.
Post 116 is preferably telescopic, with holes 116A and at least one pin 116B to maintain a desired relationship between the moving telescoping parts. Adjustment of the effective length of post 116 allows for operation of the crutch 100 with users having very different leg lengths.
Foot 170 is as described above with respect to
The two pads 172L and 172M are preferably spaced apart by a distance X. X is preferably between 5 mm and 100 mm, more preferably between 40 mm and 80 mm, and most preferably between 60 mm and 80 mm. Since the pads 172L and 172M each have width, the distance between the pads is taken between the centers of the bottom-most regions of each of the pads when the user's weight is directed vertically downward. Where one or more pads are curved, there are of course multiple centers, and the distance between the pads is taken between the furthest apart centers.
Foot 170 can be oriented for use with support of a user's left or right foot merely by rotating the foot 180° relative to the post 116, or rotating both the foot 170 and an inner portion of the post 116 relative to the leg platform 150. To that end foot 170 has a curved lateral edge 178, with symmetry such that the foot 170 works equally well, and looks similar, in both left leg and right leg configurations.
Two additional features are readily apparent from
Second, in
Astute readers will appreciate that as with other figures,
It should be apparent to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms “comprises” and “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced. Where the specification claims refers to at least one of something selected from the group consisting of A, B, C . . . and N, the text should be interpreted as requiring only one element from the group, not A plus N, or B plus N, etc.
This application is a continuation of U.S. application Ser. No. 13/720,519, filed Dec. 19, 2012, which claims priority to U.S. provisional application Ser. No. 61/577,892, filed Dec. 20, 2011. U.S. provisional application 61/577,892 and U.S. application Ser. No. 13/720,519 are incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1185906 | Hoff | Jun 1916 | A |
2242748 | Fulwiler | May 1941 | A |
2678054 | Bostelman | May 1954 | A |
2827897 | Pawlowski | Mar 1958 | A |
3074420 | Gottman | Jan 1963 | A |
4058119 | Rosequist | Nov 1977 | A |
4291715 | Monte | Sep 1981 | A |
5178595 | MacGregor | Jan 1993 | A |
5300016 | Marlatt | Apr 1994 | A |
5575299 | Bieri | Nov 1996 | A |
5746236 | Tilsey et al. | May 1998 | A |
6494919 | Matthews | Dec 2002 | B1 |
6799592 | Reynolds | Oct 2004 | B1 |
7600524 | West | Oct 2009 | B2 |
8047969 | Jay | Nov 2011 | B1 |
8778031 | Latour, Jr. et al. | Jul 2014 | B1 |
20050109379 | Rader | May 2005 | A1 |
20070012345 | Owens | Jan 2007 | A1 |
20070251560 | Moore | Nov 2007 | A1 |
20110041884 | Hanna et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
2326678 | Nov 2006 | CA |
2284952 | Feb 2009 | CA |
69922935 | Apr 2006 | DE |
10 2005 062 909 | Jul 2007 | DE |
Entry |
---|
“Freedom Leg”, weee.freedomlegbrace.com/how_it_works.html, screen capture Jul. 12, 2011. |
Number | Date | Country | |
---|---|---|---|
20160310345 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
61577892 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13720519 | Dec 2012 | US |
Child | 15203409 | US |