The subject disclosure relates to wireless communications, and more particularly, to calibrating timing based locating systems using a handset agent in a wireless environment.
Accurately locating mobile devices that are active on a network is beneficial not just to mobile device users, but also to the network operator. If the network operators know the precise locations of the mobile devices, many services can be offered that would not otherwise be possible. Such services can include: dynamic provisioning of coupons as mobile device users pass in front of retail stores; marketing; analyzing traffic flow and routes; and analyzing network performance issues. Network performance issues can include poor coverage areas and dropped calls. Knowing the precise location of where network performance issues are occurring can be beneficial in troubleshooting and solving the issues.
The following presents a simplified summary of the specification in order to provide a basic understanding of some aspects of the specification. This summary is not an extensive overview of the specification. It is intended to neither identify key or critical elements of the specification nor delineate any scope particular embodiments of the specification, or any scope of the claims. Its sole purpose is to present some concepts of the specification in a simplified form as a prelude to the more detailed description that is presented later. It will also be appreciated that the detailed description may include additional or alternative embodiments beyond those described in this summary.
In various non-limiting embodiments, systems and methods are provided to calibrate timing measurements from macrocells to locate mobile devices more accurately. In an example embodiment, a method comprises receiving measurement reports identifying the location of a first mobile device and providing observed time differences for signals sent between the first mobile device and macrocells in range of the first mobile device. The method can also include translating the observed time differences at the location of the first mobile device to a first set of translated observed time differences that correspond to a reference location and calculating reference time differences for the macrocells using the reference location and the first set of translated observed time differences. The method can also include receiving observed time differences of signals received at a second mobile device and solving for a location of the second mobile device in response to the observed time differences of signals and the reference time difference of the macrocells.
In another example embodiment, a system can comprise a collection component configured to collect a measurement report that identifies a location of a first mobile device and provides observed time differences for signals sent to the first mobile device from macrocells in range of the first mobile device. The system can also comprise a translation component configured to translate the observed time differences at the location of the first mobile device to a first set of translated observed time difference that correspond to a reference location. The system can also include a calibration component that is configured to generate reference time differences that correspond to a reference location. The collection component can also be configured to collect observed time differences of signals between a second mobile device and the macrocells, and a location component can be configured to determine a location of the second mobile device in response to the observed time differences of signals for the second mobile device and the reference time differences.
In another example embodiment, a computer-readable storage medium having stored thereon computer-executable instructions, that in response to execution, cause a system to perform operations comprising receiving measurement reports identifying the location of a first mobile device and providing observed time differences for signals sent between the first mobile device and macrocells in range of the first mobile device. The operations can also include translating the observed time differences at the location of the first mobile device to a first set of translated observed time differences that correspond to a reference location and calculating reference time differences for the macrocells using the reference location and the first set of translated observed time differences.
The following description and the annexed drawings set forth certain illustrative aspects of the specification. These aspects are indicative, however, of but a few of the various ways in which the principles of the specification may be employed. Other novel features of the specification will become apparent from the following detailed description of the specification when considered in conjunction with the drawings.
Various non-limiting embodiments are further described with reference to the accompanying drawings in which:
One or more embodiments are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the various embodiments. It may be evident, however, that the various embodiments can be practiced without these specific details, e.g., without applying to any particular networked environment or standard. In other instances, well-known structures and devices are shown in block diagram form in order to facilitate describing the embodiments in additional detail.
Further, the various embodiments can be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement one or more aspects of the disclosed subject matter. An article of manufacture can encompass a computer program accessible from any computer-readable device or computer-readable storage/communications media. For example, computer readable storage media can include but are not limited to magnetic storage devices (e.g., hard disk, floppy disk, magnetic strips . . . ), optical disks (e.g., compact disk (CD), digital versatile disk (DVD) . . . ), smart cards, and flash memory devices (e.g., card, stick, key drive . . . ). Of course, those skilled in the art will recognize many modifications can be made to this configuration without departing from the scope or spirit of the various embodiments.
In addition, the word “example” and/or “exemplary” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “example” and/or “exemplary” is not necessarily construed as preferred or advantageous over other aspects or designs. Rather, use of the word exemplary is intended to present concepts in a concrete fashion. As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
Moreover, terms like “user equipment,” “mobile station,” “mobile,” subscriber station,” “access terminal,” “terminal,” “handset,” “mobile device,” and similar terminology, refer to a wireless device utilized by a subscriber or user of a wireless communication service to receive or convey data, control, voice, video, sound, gaming, or substantially any data-stream or signaling-stream. The foregoing terms are utilized interchangeably in the subject specification and related drawings. Likewise, the terms “access point,” “base station,” “Node B,” and the like, are utilized interchangeably in the subject application, and refer to a wireless network component or appliance that serves and receives data, control, voice, video, sound, gaming, or substantially any data-stream or signaling-stream from a set of subscriber stations. Data and signaling streams can be packetized or frame-based flows.
Furthermore, the terms “user,” “subscriber,” “customer,” and the like are employed interchangeably throughout the subject specification, unless context warrants particular distinction(s) among the terms. It should be appreciated that such terms can refer to human entities or automated components supported through artificial intelligence (e.g., a capacity to make inference based on complex mathematical formalisms), which can provide simulated vision, sound recognition and so forth. In addition, the terms “data flow,” “data session,” and the like are also employed interchangeably throughout the subject specification, unless context warrants particular distinction(s) among the terms.
The systems and methods disclosed herein can implement a handset agent calibration solution that uses the GPS receivers on mobile devices to determine a location of the mobile device to calibrate timing based locating systems. The handset agent can be installed on the mobile device and can upload to an internet server the coordinates captured by the GPS receiver along with the observed time differences for signals sent to the mobile device from macrocells in range of the mobile device. The observed time differences and the location of the mobile device can be used to solve for a reference time difference that accounts for the timing differences of the unsynchronized macrocells. While the term of art “observed time difference” is used herein, the word “observed” should not be considered a restriction on how the observation takes place. The reference time difference can be used to solve for the location of other mobile devices if the observed time differences between that mobile device and the macrocells are known. The solution can include receiving measurement reports from many mobile devices to obtain averaged observed time differences at a reference location to achieve more accurate reference time differences.
Aspects or features of the subject embodiments can be exploited in substantially any wireless communication technology; e.g., Universal Mobile Telecommunications System (UMTS), Code division multiple access (CDMA), Wi-Fi, Worldwide Interoperability for Microwave Access (WiMAX), General Packet Radio Service (GPRS), Enhanced GPRS, Third Generation Partnership Project (3GPP) Long Term Evolution (LTE), Third Generation Partnership Project 2 (3GPP2) Ultra Mobile Broadband (UMB), High Speed Packet Access (HSPA), Evolved High Speed Packet Access (HSPA+), High-Speed Downlink Packet Access (HSDPA), High-Speed Uplink Packet Access (HSUPA), Zigbee, or another IEEE 802.XX technology. Additionally, substantially all aspects of the subject embodiments can be exploited in legacy telecommunication technologies.
Turning now to
It is to be appreciated that while
Mobile device 102 can have a handset agent installed on the mobile device. The handset agent can compile information collected from the phone and upload the data to an internet server via the data connection on mobile device 102.
Macrocells 104, 106, and 108, can be configured to send out regular signals that can be received by mobile devices in range of macrocells. The signals can be received and processed by the mobile devices independent of a call. In this way, the network based locating system can operate using network overhead resources that can be cheaper and less resource intensive than communications sent over an application layer datalink.
The signals can contain code that can identify the macrocell that sent the signal. Each macrocell can have a unique signature, so that the signal can be positively identified as belonging to a specific macrocell. The mobile device 102 can analyze the signals when they are received, and compare the times of receipt. When signals arrive at different times that can indicate that the signals had different distances to travel, and thus the relative distances of the macrocells can be determined. These time differences are the observed time differences and there can be an observed time difference for each macrocell within range of mobile device 102.
In the exemplary system 100 shown in
The handset agent on mobile device 102 can compile the observed time differences into a data file that includes a Radio Resource Control (RRC) measurement report that includes the primary scrambling code of the macrocell, strength of the signal, and the timing measurement. The handset agent can also include in the data file the coordinates received from the GPS receiver on mobile device 102. This data file can be uploaded using the data/internet connection on mobile device 102 to an internet server, which can forward the data file to the core network.
Turning now to
A collection component 212 in core network 210 can be provided to collect the location information and the observed time differences from internet server 208. A translation component 214 can translate the observed time differences at the mobile device 202 to observed time differences that correspond to a reference location. A calibration component 216 can be provided to calculate a reference time difference for the macrocell 206 in using the location information and the translated observed time differences.
It is to be appreciated that while
The handset agent on mobile device 202 can upload the data file including the measurement report and the location of the mobile device to internet server 208 using the data connection on mobile device 202. The handset agent can also include information that identifies the mobile device, such as the IMSI and MSISDN numbers associated with the mobile device, as well as other identifying information.
Collection component 212 can obtain the data file that includes the observed time differences and the location of the mobile device from internet server 208. The observed time differences from mobile device 202 can be in the form of an RRC measurement report. The RRC measurement report can include the primary scrambling code of the macrocells, strength of the signals, and the timing measurements for each of the macrocells within range of mobile device 202. The primary scrambling code can identify the macrocell. Upon determining the identities of macrocells 204 and 206, collection component 214 can also obtain the location of the macrocells from a data store in the core network.
Translation component 214 can translate the observed time differences received by mobile device 202 into observed time differences that correspond to a reference location. Since the location of the macrocells 204 and 206, the mobile device 202, and the reference location are known, it is possible to calculate what the observed time differences would between the macrocells and a virtual mobile device at the reference location. The translated observed time differences can thus be virtual observed time differences. This is shown in more detail in
With the known reference location, and the locations of the macrocells, calibration component 216 can calculate reference time differences using the translated observed time differences. Since the location of the reference location is known in relation to the mobile devices 308 and 310, and the location of the macrocells are known as well, the observed time differences can be translated to virtual observed time differences for virtual signals that would have been observed if there was a mobile device at the reference location.
Calibration component 216 can determine the distance between the macrocells and the reference location. Since signals between the macrocells and reference location travel at a known and constant speed c, the expected time it takes for a signal from each macrocell to arrive at the reference location can be determined. Calibration component 216 can then use the expected time to determine the deviation of the signals from a baseline. This deviation is the reference time difference which can compensate for the unsynchronized signals from the macrocells. The reference time differences can then be used to accurately locate another mobile device, shown in more detail in
In an embodiment, collection component 212 can be configured to obtain multiple observed time differences and measurement reports for multiple mobile devices. The translation component 214 can translate the observed time differences for the many mobile devices to a reference location, and the calibration component 216 can average the translated observed time differences to obtain more accurate reference time differences for the macrocells.
Turning now to
Macrocells 302, 304, and 306 can be configured to send out regular signals that can be received by mobile devices 308 and 310. The signals can be received and processed by the mobile devices independent of a call. In this way, the network based locating system can operate using network overhead resources that can be cheaper and less resource intensive than communications sent over an application layer datalink.
The signals can contain code that can identify the macrocell that sent the signal. Each macrocell can have a unique signature, so that the signal can be positively identified as belonging to a specific macrocell. The mobile devices 308 and 310 can analyze the signals when they are received, and compare the times of receipt. When signals arrive at different times that can indicate that the signals had different distances to travel, and thus the relative distances of the macrocells can be determined. These time differences are the observed time differences and there can be observed time differences between each macrocell and each mobile device.
In order to increase the accuracy of the reference time differences and in turn increase the accuracy of the timing based locating system, the observed time differences can be combined and averaged. To do that, a reference location 312 can be defined, and a function can be applied to translate the observed time differences for mobile devices 308 and 310 to virtual observed time differences that correspond to the reference location. Since the location of the reference location is known in relation to the mobile devices 308 and 310, and the location of the macrocells are known as well, the observed time differences can be translated to virtual observed time differences for virtual signals that would have been observed if there was a mobile device at the reference location.
It should be appreciated that while
Turning now to
It is to be appreciated that while
Macrocells 404 and 406 can be configured to send out regular signals that can be received by mobile devices in range of macrocells. The signals can be received and processed by the mobile devices independent of a call. In this way, the network based locating system can operate using network overhead resources that can be cheaper and less resource intensive than communications sent over an application layer data link.
The signals can contain code that can identify the macrocell that sent the signal. Each macrocell can have a unique signature, so that the signal can be positively identified as belonging to a particular macrocell. The mobile device 402 can analyze the signals when received, and compare the times of receipt. When signals arrive at different times that can indicate that the signals had different distances to travel, and thus the relative distances of the macrocells can be determined. These time differences are the observed time differences and there can be an observed time difference for each macrocell within range of mobile device 404.
Turning now to
Collection component 510 can obtain the observed time differences from mobile device 502 in the form of an RRC measurement report. The RRC measurement report can include the primary scrambling code of the macrocell, strength of the signal, and the timing measurement. The primary scrambling code can identify the macrocell. Upon determining the identity of macrocells 504 and 506, collection component 510 can obtain the location of macrocells 504 and 506 from a database stored in the core network. Collection component 510 can retrieve the RRC measurement report from mobile device 402 via one of the macrocells, using network overhead resources.
The reference time differences can show the relative signal delay for each of the macrocells. Subtracting the reference time differences from the observed time differences can yield actual time differences for signals sent between the macrocells and the mobile device 502. With the actual time difference and the known locations of macrocells 504 and 506, it can be possible to use multilateration or hyperbolic positioning which uses time difference on arrival (TDOA) equations to solve for the location of mobile device 502.
Location component 512 can determine the position of any mobile device to within a similar degree of accuracy as the GPS receivers which provided the coordinates of the other mobile devices during the calibration phase. As observed time differences from additional mobile devices are retrieved and averaged, and new reference time differences obtained, the accuracy of the location component 512 can increase.
Referring now to
The data file can also include the observed time differences between the mobile device and the macrocells. The macrocells can periodically send out signals that can be received by mobile devices in range of the macrocells. The signals can contain code that can identify the macrocell that sent the signal. Each macrocell can have a unique signature, so that the signal can be positively identified as belonging to a specific macrocell. The mobile device can analyze the signals when they are received, and compare the times of receipt. When signals arrive at different times that can indicate that the signals had different distances to travel, and thus the relative distances of the macrocells can be determined. These time differences are the observed time differences and there can be an observed time difference for each macrocell within range of the mobile device. Multiple measurement reports can also be received from many mobile devices.
At 610, the observed time differences for each of the mobile devices at each of their respective locations can be translated to a set of translated observed time differences that correspond to a reference location. The reference location can be a defined location, and a function can be applied to translate the observed time differences for the mobile devices to virtual observed time differences that correspond to the reference location. Since the location of the reference location is known in relation to the mobile devices, and the location of the macrocells are known as well, the observed time differences can be translated to virtual observed time differences for virtual signals that would have been observed if there was a mobile device at the reference location. The virtual translated observed time differences can then be averaged.
At 620, reference time differences for the macrocells using the reference location and the translated observed time differences can be calculated. The distance between the macrocells and the reference location can be determined and since signals between the macrocells and reference location travel at a constant speed c, the expected time it takes for a signal from each macrocell to arrive at the reference location can be determined. The expected time duration for a signal sent from the macrocells can be compared to the actual time based on the observed time differences to determine the deviation of the signals from a baseline. This deviation is the reference time difference which can compensate for the unsynchronized signals from the macrocells.
Referring now to
Referring now to
The UE 800 can include a display 810 for displaying content downloaded and/or for displaying text information related to operating and using the device features. A serial I/O interface 812 is provided in communication with the processor 802 to facilitate serial communication (e.g., USB, and/or IEEE 1394) via a hardwire connection. Audio capabilities are provided with an audio I/O component 814, which can include a speaker for the output of audio signals related to, for example, recorded data or telephony voice data, and a microphone for inputting voice signals for recording and/or telephone conversations. In addition, sensor(s) 830 can be included to detect usage activity of the UE 800 and/or to detect position, motion and/or orientation of the UE 800.
The UE 800 can include a slot interface 816 for accommodating a subscriber identity module (SIM) 818. Firmware 820 is also provided to store and provide to the processor 802 startup and operational data. The UE 800 can also include an image capture component 822 such as a camera and/or a video decoder 824 for decoding encoded multimedia content. The UE 800 can also include a power source 826 in the form of batteries, which interfaces to an external power system or charging equipment via a power I/O component 828. In addition, the UE 800 can be substantially similar to and include functionality associated with mobile devices 102, 202, 308, 310, 402 and 502 described herein.
Now turning to
The embedded client 902a communicates with an application 902b (e.g., application(s) 202) that provides services and/or information to an end user. Additionally or alternately, the MS 902 and a device 902c can be enabled to communicate via a short-range wireless communication link, such as BLUETOOTH®. As one of ordinary skill in the art would recognize, there can be an endless number of devices 902c that use the SIM within the MS 902 to provide services, information, data, audio, video, etc. to end users.
The BTS 904 is physical equipment, such as a radio tower, that enables a radio interface to communicate with the MS 902. Each BTS can serve more than one MS. The BSC 906 manages radio resources, including the BTS. Moreover, the BSC 906 can be substantially similar to macrocells 104, 106, and 108 and etc., disclosed herein. The BSC and BTS components, in combination, are generally referred to as a base station (BSS) or radio access network (RAN) 903.
The GSM core network 901 also includes a Mobile Switching Center (MSC) 908, a Gateway Mobile Switching Center (GMSC) 910, a Home Location Register (HLR) 912, Visitor Location Register (VLR) 914, an Authentication Center (AuC) 916, and an Equipment Identity Register (EIR) 918. The MSC 908 performs a switching function for the network. The MSC also performs other functions, such as registration, authentication, location updating, handovers, and call routing. The GMSC 910 provides a gateway between the GSM network and other networks, such as an Integrated Services Digital Network (ISDN) or Public Switched Telephone Networks (PSTNs) 920. In other words, the GMSC 910 provides interworking functionality with external networks.
The HLR 912 is a database or component(s) that comprises administrative information regarding each subscriber registered in a corresponding GSM network. The HLR 912 also includes the current location of each MS. The VLR 914 is a database or component(s) that contains selected administrative information from the HLR 912. The VLR contains information necessary for call control and provision of subscribed services for each MS currently located in a geographical area controlled by the VLR. The HLR 912 and the VLR 914, together with the MSC 908, provide the call routing and roaming capabilities of GSM. The AuC 916 provides the parameters needed for authentication and encryption functions. Such parameters allow verification of a subscriber's identity. The EIR 918 stores security-sensitive information about the mobile equipment.
A Short Message Service Center (SMSC) 909 allows one-to-one Short Message Service (SMS) messages to be sent to/from the MS 902. A Push Proxy Gateway (PPG) 911 is used to “push” (e.g., send without a synchronous request) content to the MS 902. The PPG 911 acts as a proxy between wired and wireless networks to facilitate pushing of data to the MS 902. A Short Message Peer to Peer (SMPP) protocol router 913 is provided to convert SMS-based SMPP messages to cell broadcast messages. SMPP is a protocol for exchanging SMS messages between SMS peer entities such as short message service centers. It is often used to allow third parties, e.g., content suppliers such as news organizations, to submit bulk messages.
To gain access to GSM services, such as speech, data, and short message service (SMS), the MS first registers with the network to indicate its current location by performing a location update and IMSI attach procedure. The MS 902 sends a location update including its current location information to the MSC/VLR, via the BTS 904 and the BSC 906. The location information is then sent to the MS's HLR. The HLR is updated with the location information received from the MSC/VLR. The location update also is performed when the MS moves to a new location area. In one aspect, the location update is periodically performed to update the database as location-updating events occur.
The GPRS network 930 is logically implemented on the GSM core network architecture by introducing two packet-switching network nodes, a serving GPRS support node (SGSN) 932, a cell broadcast and a Gateway GPRS support node (GGSN) 934. The SGSN 932 is at the same hierarchical level as the MSC 908 in the GSM network. The SGSN controls the connection between the GPRS network and the MS 902. The SGSN also keeps track of individual MS's locations, security functions, and access controls.
A Cell Broadcast Center (CBC) 933 communicates cell broadcast messages that are typically delivered to multiple users in a specified area. Cell Broadcast is one-to-many geographically focused service. It enables messages to be communicated to multiple mobile phone customers who are located within a given part of its network coverage area at the time the message is broadcast.
The GGSN 934 provides a gateway between the GPRS network and a public packet network (PDN) or other IP networks 936. That is, the GGSN provides interworking functionality with external networks, and sets up a logical link to the MS through the SGSN. When packet-switched data leaves the GPRS network, it is transferred to an external TCP-IP network 936, such as an X.25 network or the Internet. In order to access GPRS services, the MS first attaches itself to the GPRS network by performing an attach procedure. The MS then activates a packet data protocol (PDP) context, thus activating a packet communication session between the MS, the SGSN, and the GGSN. In a GSM/GPRS network, GPRS services and GSM services can be used in parallel. A GPRS network 930 can be designed to operate in three network operation modes (NOM1, NOM2 and NOM3). A network operation mode of a GPRS network is indicated by a parameter in system information messages transmitted within a cell. The system information messages dictates a MS where to listen for paging messages and how signal towards the network. The network operation mode represents the capabilities of the GPRS network.
The IP multimedia network 938 was introduced with 3GPP Release 5, and includes an IP multimedia subsystem (IMS) 940 to provide rich multimedia services to end users. A representative set of the network entities within the IMS 940 are a call/session control function (CSCF), a media gateway control function (MGCF) 946, a media gateway (MGW) 948, and a master subscriber database, called a home subscriber server (HSS) 950. The HSS 950 can be common to the GSM network 901, the GPRS network 930 as well as the IP multimedia network 938.
The IP multimedia system 940 is built around the call/session control function, of which there are three types: an interrogating CSCF (I-CSCF) 943, a proxy CSCF (P-CSCF) 942, and a serving CSCF (S-CSCF) 944. The P-CSCF 942 is the MS's first point of contact with the IMS 940. The P-CSCF 942 forwards session initiation protocol (SIP) messages received from the MS to an SIP server in a home network (and vice versa) of the MS. The P-CSCF 942 can also modify an outgoing request according to a set of rules defined by the network operator (for example, address analysis and potential modification).
The I-CSCF 943 forms an entrance to a home network and hides the inner topology of the home network from other networks and provides flexibility for selecting an S-CSCF. The I-CSCF 943 can contact a subscriber location function (SLF) 945 to determine which HSS 950 to use for the particular subscriber, if multiple HSS's 950 are present. The S-CSCF 944 performs the session control services for the MS 902. This includes routing originating sessions to external networks and routing terminating sessions to visited networks. The S-CSCF 944 also decides whether an application server (AS) 952 is required to receive information on an incoming SIP session request to ensure appropriate service handling. This decision is based on information received from the HSS 950 (or other sources, such as an application server 952). The AS 952 also communicates to a location server 956 (e.g., a Gateway Mobile Location Center (GMLC)) that provides a position (e.g., latitude/longitude coordinates) of the MS 902. The mobility management entity (MME) 958 provides authentication of a user by interacting with the HSS 950 in LTE networks.
The HSS 950 contains a subscriber profile and keeps track of which core network node is currently handling the subscriber. It also supports subscriber authentication and authorization functions (AAA). In networks with more than one HSS 950, a subscriber location function provides information on the HSS 950 that contains the profile of a given subscriber.
The MGCF 946 provides interworking functionality between SIP session control signaling from the IMS 940 and ISUP/BICC call control signaling from the external GSTN networks (not shown). It also controls the media gateway (MGW) 948 that provides user-plane interworking functionality (e.g., converting between AMR- and PCM-coded voice). The MGW 948 also communicates with a PSTN network 954 for TDM trunks. In addition, the MGCF 946 communicates with the PSTN network 954 for SS7 links.
Referring now to
Program modules can include routines, programs, components, data structures, etc., that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the inventive methods can be practiced with other computer system configurations, including single-processor or multiprocessor computer systems, minicomputers, mainframe computers, as well as personal computers, hand-held computing devices, microprocessor-based or programmable consumer electronics, and the like, each of which can be operatively coupled to one or more associated devices.
The illustrated aspects of the specification can also be practiced in distributed computing environments where certain tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.
Computing devices can include a variety of media, which can include computer-readable storage media and/or communications media, which two terms are used herein differently from one another as follows. Computer-readable storage media can be any available storage media that can be accessed by the computer and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer-readable storage media can be implemented in connection with any method or technology for storage of information such as computer-readable instructions, program modules, structured data, or unstructured data. Computer-readable storage media can include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or other tangible and/or non-transitory media which can be used to store desired information. Computer-readable storage media can be accessed by one or more local or remote computing devices, e.g., via access requests, queries or other data retrieval protocols, for a variety of operations with respect to the information stored by the medium.
Communications media can embody computer-readable instructions, data structures, program modules or other structured or unstructured data in a data signal such as a modulated data signal, e.g., a carrier wave or other transport mechanism, and includes any information delivery or transport media. The term “modulated data signal” or signals refers to a signal that has one or more of its characteristics set or changed in such a manner as to encode information in one or more signals. By way of example, and not limitation, communication media include wired media, such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media.
With reference again to
The system bus 1008 can be any of several types of bus structure that can further interconnect to a memory bus (with or without a memory controller), a peripheral bus, and a local bus using any of a variety of commercially available bus architectures. The system memory 1006 includes read-only memory (ROM) 1010 and random access memory (RAM) 1012. A basic input/output system (BIOS) is stored in a non-volatile memory 1010 such as ROM, EPROM, EEPROM, which BIOS contains the basic routines that help to transfer information between elements within the computer 1002, such as during startup. The RAM 1012 can also include a high-speed RAM such as static RAM for caching data.
The computer 1002 further includes an internal hard disk drive (HDD) 1014 (e.g., EIDE, SATA), which internal hard disk drive 1014 can also be configured for external use in a suitable chassis (not shown), a magnetic floppy disk drive (FDD) 1016, (e.g., to read from or write to a removable diskette 1018) and an optical disk drive 1020, (e.g., reading a CD-ROM disk 1022 or, to read from or write to other high capacity optical media such as the DVD). The hard disk drive 1014, magnetic disk drive 1016 and optical disk drive 1020 can be connected to the system bus 1008 by a hard disk drive interface 1024, a magnetic disk drive interface 1026 and an optical drive interface 1028, respectively. The interface 1024 for external drive implementations includes at least one or both of Universal Serial Bus (USB) and IEEE 1394 interface technologies. Other external drive connection technologies are within contemplation of the subject specification.
The drives and their associated computer-readable storage media provide nonvolatile storage of data, data structures, computer-executable instructions, and so forth. For the computer 1002, the drives and storage media accommodate the storage of any data in a suitable digital format. Although the description of computer-readable storage media above refers to a HDD, a removable magnetic diskette, and a removable optical media such as a CD or DVD, it should be appreciated by those skilled in the art that other types of storage media which are readable by a computer, such as zip drives, magnetic cassettes, flash memory cards, cartridges, and the like, can also be used in the example operating environment, and further, that any such storage media can contain computer-executable instructions for performing the methods of the specification.
A number of program modules can be stored in the drives and RAM 1012, including an operating system 1030, one or more application programs 1032, other program modules 1034 and program data 1036. All or portions of the operating system, applications, modules, and/or data can also be cached in the RAM 1012. It is appreciated that the specification can be implemented with various commercially available operating systems or combinations of operating systems.
A user can enter commands and information into the computer 1002 through one or more wired/wireless input devices, e.g., a keyboard 1038 and a pointing device, such as a mouse 1040. Other input devices (not shown) can include a microphone, an IR remote control, a joystick, a game pad, a stylus pen, touch screen, or the like. These and other input devices are often connected to the processing unit 1004 through an input device interface 1042 that is coupled to the system bus 1008, but can be connected by other interfaces, such as a parallel port, an IEEE 1394 serial port, a game port, a USB port, an IR interface, etc.
A monitor 1044 or other type of display device is also connected to the system bus 1008 via an interface, such as a video adapter 1046. In addition to the monitor 1044, a computer can include other peripheral output devices (not shown), such as speakers, printers, etc.
The computer 1002 can operate in a networked environment using logical connections via wired and/or wireless communications to one or more remote computers, such as a remote computer(s) 1048. The remote computer(s) 1048 can be a workstation, a server computer, a router, a personal computer, portable computer, microprocessor-based entertainment appliance, a peer device or other common network node, and can include many or all of the elements described relative to the computer 1002, although, for purposes of brevity, only a memory/storage device 1050 is illustrated. The logical connections depicted include wired/wireless connectivity to a local area network (LAN) 1052 and/or larger networks, e.g., a wide area network (WAN) 1054. Such LAN and WAN networking environments are commonplace in offices and companies, and facilitate enterprise-wide computer networks, such as intranets, all of which can connect to a global communications network, e.g., the Internet.
When used in a LAN networking environment, the computer 1002 is connected to the local network 1052 through a wired and/or wireless communication network interface or adapter 1056. The adapter 1056 can facilitate wired or wireless communication to the LAN 1052, which can also include a wireless access point disposed thereon for communicating with the wireless adapter 1056.
When used in a WAN networking environment, the computer 1002 can include a modem 1058, or is connected to a communications server on the WAN 1054, or has other means for establishing communications over the WAN 1054, such as by way of the Internet. The modem 1058, which can be internal or external and a wired or wireless device, is connected to the system bus 1008 via the serial port interface 1042. In a networked environment, program modules depicted relative to the computer 1002, or portions thereof, can be stored in the remote memory/storage device 1050. It will be appreciated that the network connections shown are example and other means of establishing a communications link between the computers can be used.
The computer 1002 is operable to communicate with any wireless devices or entities operatively disposed in wireless communication, e.g., a printer, scanner, desktop and/or portable computer, portable data assistant, communications satellite, any piece of equipment or location associated with a wirelessly detectable tag (e.g., a kiosk, news stand, restroom), and telephone. In an example embodiment, wireless communications can be facilitated, for example, using Wi-Fi, Bluetooth™, Zigbee, and other 802.XX wireless technologies. Thus, the communication can be a predefined structure as with a conventional network or simply an ad hoc communication between at least two devices.
Wi-Fi, or Wireless Fidelity, allows connection to the Internet from a couch at home, a bed in a hotel room, or a conference room at work, without wires. Wi-Fi is a wireless technology similar to that used in a cell phone that enables such devices, e.g., computers, to send and receive data indoors and out; anywhere within the range of a base station. Wi-Fi networks use radio technologies called IEEE 802.11 (a, b, g, n etc.) to provide secure, reliable, fast wireless connectivity. A Wi-Fi network can be used to connect computers to each other, to the Internet, and to wired networks (which use IEEE 802.3 or Ethernet). Wi-Fi networks can operate in the unlicensed 2.4 and 5 GHz radio bands, at an 11 Mbps (802.11a), 54 Mbps (802.11b), or 150 Mbps (802.11n) data rate, for example, or with products that contain both bands (dual band), so the networks can provide real-world performance similar to wired Ethernet networks used in many homes and offices.
As it employed in the subject specification, the term “processor” can refer to substantially any computing processing unit or device comprising, but not limited to comprising, single-core processors; single-processors with software multithread execution capability; multi-core processors; multi-core processors with software multithread execution capability; multi-core processors with hardware multithread technology; parallel platforms; and parallel platforms with distributed shared memory. Additionally, a processor can refer to an integrated circuit, an application specific integrated circuit (ASIC), a digital signal processor (DSP), a field programmable gate array (FPGA), a programmable logic controller (PLC), a complex programmable logic device (CPLD), a discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. Processors can exploit nano-scale architectures such as, but not limited to, molecular and quantum-dot based transistors, switches and gates, in order to optimize space usage or enhance performance of user equipment. A processor may also be implemented as a combination of computing processing units.
As used in this application, the terms “component,” “system,” “interface,” or the like are generally intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution or an entity related to an operational machine with one or more specific functionalities. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a controller and the controller can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers. As another example, an interface can include I/O components as well as associated processor, application, and/or API components.
In the subject specification, terms such as “data store,” data storage,” “database,” “cache,” and substantially any other information storage component relevant to operation and functionality of a component, refer to “memory components,” or entities embodied in a “memory” or components comprising the memory. It will be appreciated that the memory components, or computer-readable storage media, described herein can be either volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory. By way of illustration, and not limitation, nonvolatile memory can include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. Volatile memory can include random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM). Additionally, the disclosed memory components of systems or methods herein are intended to comprise, without being limited to comprising, these and any other suitable types of memory.
What has been described above includes examples of the present specification. It is, of course, not possible to describe every conceivable combination of components or methods for purposes of describing the present specification, but one of ordinary skill in the art may recognize that many further combinations and permutations of the present specification are possible. Accordingly, the present specification is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “includes” is used in either the detailed description or the claims, such term is intended to be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
This application is a continuation of, and claims priority to, U.S. patent application Ser. No. 13/305,276 (now U.S. Pat. No. 9,026,133), filed Nov. 28, 2011, entitled “HANDSET AGENT CALIBRATION FOR TIMING BASED LOCATING SYSTEMS”, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4718081 | Brenig | Jan 1988 | A |
5058260 | Gloe et al. | Oct 1991 | A |
5292665 | Hochstrasser et al. | Mar 1994 | A |
5515062 | Maine et al. | May 1996 | A |
5724660 | Kauser et al. | Mar 1998 | A |
5732354 | MacDonald | Mar 1998 | A |
5732383 | Foladare et al. | Mar 1998 | A |
5831545 | Murray et al. | Nov 1998 | A |
5844521 | Stephens et al. | Dec 1998 | A |
5982324 | Watters et al. | Nov 1999 | A |
6018312 | Haworth | Jan 2000 | A |
6026301 | Satarasinghe | Feb 2000 | A |
6108532 | Matsuda et al. | Aug 2000 | A |
6108556 | Ito | Aug 2000 | A |
6125125 | Narasimha et al. | Sep 2000 | A |
6148219 | Engelbrecht et al. | Nov 2000 | A |
6216002 | Holmring | Apr 2001 | B1 |
6230018 | Watters et al. | May 2001 | B1 |
6256577 | Graunke | Jul 2001 | B1 |
6263190 | Mamori et al. | Jul 2001 | B1 |
6298233 | Souissi et al. | Oct 2001 | B1 |
6307503 | Liu et al. | Oct 2001 | B1 |
6311078 | Hardouin | Oct 2001 | B1 |
6317686 | Ran | Nov 2001 | B1 |
6321092 | Fitch et al. | Nov 2001 | B1 |
6330459 | Crichton et al. | Dec 2001 | B1 |
6351235 | Stilp | Feb 2002 | B1 |
6353778 | Brown | Mar 2002 | B1 |
6397074 | Pihl et al. | May 2002 | B1 |
6405047 | Moon | Jun 2002 | B1 |
6407703 | Minter et al. | Jun 2002 | B1 |
6429815 | Soliman | Aug 2002 | B1 |
6434396 | Rune | Aug 2002 | B1 |
6449486 | Rao | Sep 2002 | B1 |
6453168 | McCrady et al. | Sep 2002 | B1 |
6493539 | Falco et al. | Dec 2002 | B1 |
6515623 | Johnson | Feb 2003 | B2 |
6522296 | Holt | Feb 2003 | B2 |
6526335 | Treyz et al. | Feb 2003 | B1 |
6552682 | Fan | Apr 2003 | B1 |
6560532 | Cayford | May 2003 | B2 |
6560567 | Yechuri et al. | May 2003 | B1 |
6594576 | Fan et al. | Jul 2003 | B2 |
6604083 | Bailey et al. | Aug 2003 | B1 |
6668226 | Sutanto et al. | Dec 2003 | B2 |
6690292 | Meadows et al. | Feb 2004 | B1 |
6744383 | Alfred et al. | Jun 2004 | B1 |
6744740 | Chen | Jun 2004 | B2 |
6757545 | Nowak et al. | Jun 2004 | B2 |
6801782 | McCrady et al. | Oct 2004 | B2 |
6801855 | Walters et al. | Oct 2004 | B1 |
6816782 | Walters et al. | Nov 2004 | B1 |
6850761 | Pallonen | Feb 2005 | B2 |
6892054 | Belcher et al. | May 2005 | B2 |
6915123 | Daudelin et al. | Jul 2005 | B1 |
6933100 | Igawa et al. | Aug 2005 | B2 |
6933860 | Gehman et al. | Aug 2005 | B1 |
7058710 | McCall et al. | Jun 2006 | B2 |
7065349 | Nath et al. | Jun 2006 | B2 |
7098805 | Meadows et al. | Aug 2006 | B2 |
7113793 | Veerasamy et al. | Sep 2006 | B2 |
7149534 | Bloebaum et al. | Dec 2006 | B2 |
7181218 | Ovesjo | Feb 2007 | B2 |
7203752 | Rice et al. | Apr 2007 | B2 |
7277049 | Korneluk et al. | Oct 2007 | B2 |
7289039 | Kato et al. | Oct 2007 | B2 |
7346359 | Damarla et al. | Mar 2008 | B2 |
7359719 | Duffett-Smith | Apr 2008 | B1 |
7366492 | Ganesh | Apr 2008 | B1 |
7375649 | Gueziec | May 2008 | B2 |
7420464 | Fitzgerald et al. | Sep 2008 | B2 |
7432829 | Poltorak | Oct 2008 | B2 |
7436794 | Takahashi et al. | Oct 2008 | B2 |
7463143 | Forr et al. | Dec 2008 | B2 |
7508321 | Gueziec et al. | Mar 2009 | B2 |
7664492 | Lee et al. | Feb 2010 | B1 |
7696922 | Nicholson et al. | Apr 2010 | B2 |
7697917 | Camp et al. | Apr 2010 | B2 |
7706964 | Horvitz et al. | Apr 2010 | B2 |
7744740 | Diehl | Jun 2010 | B2 |
7747258 | Farmer et al. | Jun 2010 | B2 |
7761225 | Vaughn | Jul 2010 | B2 |
7831380 | Chapman et al. | Nov 2010 | B2 |
7848880 | Cheung | Dec 2010 | B2 |
7890299 | Fok et al. | Feb 2011 | B2 |
7917156 | Sheynblat et al. | Mar 2011 | B2 |
7945271 | Barnes et al. | May 2011 | B1 |
7958001 | Abbadessa et al. | Jun 2011 | B2 |
7962162 | McNair | Jun 2011 | B2 |
7962280 | Kindo et al. | Jun 2011 | B2 |
7994981 | Farrokhi et al. | Aug 2011 | B1 |
7996020 | Chhabra | Aug 2011 | B1 |
8000726 | Altman et al. | Aug 2011 | B2 |
8005050 | Scheinert et al. | Aug 2011 | B2 |
8010164 | Sennett et al. | Aug 2011 | B1 |
8036822 | Ho et al. | Oct 2011 | B2 |
8050690 | Neeraj | Nov 2011 | B2 |
8054802 | Burgess et al. | Nov 2011 | B2 |
8065185 | Foladare et al. | Nov 2011 | B2 |
8098152 | Zhang et al. | Jan 2012 | B2 |
8121604 | Schwinghammer | Feb 2012 | B1 |
8126479 | Morrison | Feb 2012 | B2 |
8140079 | Olson | Mar 2012 | B2 |
8193984 | Ward et al. | Jun 2012 | B2 |
8194589 | Wynn et al. | Jun 2012 | B2 |
8195175 | Govindan et al. | Jun 2012 | B2 |
8224349 | Meredith et al. | Jul 2012 | B2 |
8253559 | Howard et al. | Aug 2012 | B2 |
8254959 | Fix et al. | Aug 2012 | B2 |
8264956 | Ramankutty et al. | Sep 2012 | B2 |
8270933 | Riemer et al. | Sep 2012 | B2 |
8280438 | Barbera et al. | Oct 2012 | B2 |
8295854 | Osann et al. | Oct 2012 | B2 |
8300663 | Chion et al. | Oct 2012 | B2 |
8307030 | Hu | Nov 2012 | B1 |
8326682 | Redford et al. | Dec 2012 | B2 |
8355364 | Vargantwar et al. | Jan 2013 | B1 |
8355865 | Wagner et al. | Jan 2013 | B2 |
8417264 | Whitney et al. | Apr 2013 | B1 |
8469274 | Tseng et al. | Jun 2013 | B2 |
8548494 | Agarwal et al. | Oct 2013 | B2 |
8572198 | Jhanji | Oct 2013 | B2 |
8594700 | Nabbefeld | Nov 2013 | B2 |
8611919 | Barnes | Dec 2013 | B2 |
8612410 | Meredith et al. | Dec 2013 | B2 |
8666388 | Catovic et al. | Mar 2014 | B2 |
8666390 | Meredith et al. | Mar 2014 | B2 |
8761799 | Meredith et al. | Jun 2014 | B2 |
8897805 | Fix et al. | Nov 2014 | B2 |
8909247 | Tipton et al. | Dec 2014 | B2 |
8923134 | Meredith et al. | Dec 2014 | B2 |
8929827 | Fix et al. | Jan 2015 | B2 |
9008684 | Tipton et al. | Apr 2015 | B2 |
9008698 | Meredith et al. | Apr 2015 | B2 |
9232399 | Tipton et al. | Jan 2016 | B2 |
20010047242 | Ohta | Nov 2001 | A1 |
20020059266 | I'anson et al. | May 2002 | A1 |
20020069312 | Jones | Jun 2002 | A1 |
20020077116 | Havinis et al. | Jun 2002 | A1 |
20020172223 | Stilp | Nov 2002 | A1 |
20030040323 | Pihl et al. | Feb 2003 | A1 |
20030092448 | Forstrom et al. | May 2003 | A1 |
20030095065 | Ericson et al. | May 2003 | A1 |
20030097330 | Hillmer et al. | May 2003 | A1 |
20030115228 | Horvitz et al. | Jun 2003 | A1 |
20030115260 | Edge | Jun 2003 | A1 |
20030125046 | Riley et al. | Jul 2003 | A1 |
20030158924 | DeLegge | Aug 2003 | A1 |
20030222819 | Karr et al. | Dec 2003 | A1 |
20030225508 | Petzold et al. | Dec 2003 | A9 |
20040023664 | Mirouze et al. | Feb 2004 | A1 |
20040024639 | Goldman | Feb 2004 | A1 |
20040067759 | Spirito et al. | Apr 2004 | A1 |
20040082338 | Norrgard et al. | Apr 2004 | A1 |
20040127191 | Matsunaga | Jul 2004 | A1 |
20040131036 | Walsh | Jul 2004 | A1 |
20040155814 | Bascobert | Aug 2004 | A1 |
20040172190 | Tsunehara et al. | Sep 2004 | A1 |
20040219930 | Lin | Nov 2004 | A1 |
20040224698 | Yi et al. | Nov 2004 | A1 |
20040267410 | Duri et al. | Dec 2004 | A1 |
20040267561 | Meshkin et al. | Dec 2004 | A1 |
20050007993 | Chambers et al. | Jan 2005 | A1 |
20050039056 | Bagga et al. | Feb 2005 | A1 |
20050053099 | Spear et al. | Mar 2005 | A1 |
20050136911 | Csapo et al. | Jun 2005 | A1 |
20050239410 | Rochester | Oct 2005 | A1 |
20050272445 | Zellner | Dec 2005 | A1 |
20050276385 | McCormick et al. | Dec 2005 | A1 |
20060030333 | Ward et al. | Feb 2006 | A1 |
20060046744 | Dublish et al. | Mar 2006 | A1 |
20060075131 | Douglas et al. | Apr 2006 | A1 |
20060089153 | Sheynblat | Apr 2006 | A1 |
20060200303 | Fuentes et al. | Sep 2006 | A1 |
20060233133 | Liu et al. | Oct 2006 | A1 |
20060240839 | Chen et al. | Oct 2006 | A1 |
20060240841 | Bhattacharya | Oct 2006 | A1 |
20060267841 | Lee et al. | Nov 2006 | A1 |
20060270419 | Crowley et al. | Nov 2006 | A1 |
20060282660 | Varghese et al. | Dec 2006 | A1 |
20070001873 | Ishikawa | Jan 2007 | A1 |
20070049286 | Kim et al. | Mar 2007 | A1 |
20070060130 | Gogic et al. | Mar 2007 | A1 |
20070088818 | Roberts et al. | Apr 2007 | A1 |
20070121560 | Edge | May 2007 | A1 |
20070149214 | Walsh et al. | Jun 2007 | A1 |
20070176749 | Boyd | Aug 2007 | A1 |
20070213074 | Fitch et al. | Sep 2007 | A1 |
20070217375 | Zampiello et al. | Sep 2007 | A1 |
20070217379 | Fujiwara et al. | Sep 2007 | A1 |
20070293157 | Haartsen et al. | Dec 2007 | A1 |
20070298807 | Yarkosky | Dec 2007 | A1 |
20080004789 | Horvitz et al. | Jan 2008 | A1 |
20080010365 | Schneider | Jan 2008 | A1 |
20080032705 | Patel et al. | Feb 2008 | A1 |
20080039114 | Phatak et al. | Feb 2008 | A1 |
20080056193 | Bourlas et al. | Mar 2008 | A1 |
20080070593 | Altman et al. | Mar 2008 | A1 |
20080071466 | Downs et al. | Mar 2008 | A1 |
20080076450 | Nanda et al. | Mar 2008 | A1 |
20080096566 | Brunner et al. | Apr 2008 | A1 |
20080127354 | Carpenter et al. | May 2008 | A1 |
20080133730 | Park et al. | Jun 2008 | A1 |
20080186234 | Alles et al. | Aug 2008 | A1 |
20080192682 | Matsumoto et al. | Aug 2008 | A1 |
20080274750 | Carlson et al. | Nov 2008 | A1 |
20080299995 | Spain | Dec 2008 | A1 |
20080305832 | Greenberg | Dec 2008 | A1 |
20080311923 | Petrovic et al. | Dec 2008 | A1 |
20090017823 | Sachs et al. | Jan 2009 | A1 |
20090024546 | Ficcaglia et al. | Jan 2009 | A1 |
20090028082 | Wynn et al. | Jan 2009 | A1 |
20090052330 | Matsunaga et al. | Feb 2009 | A1 |
20090079622 | Seshadri et al. | Mar 2009 | A1 |
20090104917 | Ben Rached et al. | Apr 2009 | A1 |
20090117907 | Wigren | May 2009 | A1 |
20090125380 | Otto et al. | May 2009 | A1 |
20090131073 | Carlson et al. | May 2009 | A1 |
20090177382 | Alles | Jul 2009 | A1 |
20090181695 | Wirola et al. | Jul 2009 | A1 |
20090227265 | Kang et al. | Sep 2009 | A1 |
20090234876 | Schigel et al. | Sep 2009 | A1 |
20090260055 | Parmar | Oct 2009 | A1 |
20090280828 | Wang et al. | Nov 2009 | A1 |
20090286510 | Huber et al. | Nov 2009 | A1 |
20090287922 | Herwono et al. | Nov 2009 | A1 |
20090299788 | Huber et al. | Dec 2009 | A1 |
20090310501 | Catovic et al. | Dec 2009 | A1 |
20090312005 | Mukundan et al. | Dec 2009 | A1 |
20090327134 | Carlson et al. | Dec 2009 | A1 |
20100004997 | Mehta et al. | Jan 2010 | A1 |
20100020776 | Youssef et al. | Jan 2010 | A1 |
20100054237 | Han et al. | Mar 2010 | A1 |
20100056179 | Gaenger et al. | Mar 2010 | A1 |
20100058442 | Costa et al. | Mar 2010 | A1 |
20100081389 | Lawrow et al. | Apr 2010 | A1 |
20100094758 | Chamberlain et al. | Apr 2010 | A1 |
20100100732 | Hatakeyama et al. | Apr 2010 | A1 |
20100113035 | Eskicioglu et al. | May 2010 | A1 |
20100120447 | Anderson et al. | May 2010 | A1 |
20100122314 | Zhang et al. | May 2010 | A1 |
20100124886 | Fordham et al. | May 2010 | A1 |
20100124931 | Eskicioglu et al. | May 2010 | A1 |
20100135178 | Aggarwal et al. | Jun 2010 | A1 |
20100144368 | Sullivan et al. | Jun 2010 | A1 |
20100159951 | Shkedi | Jun 2010 | A1 |
20100163632 | Tseng et al. | Jul 2010 | A1 |
20100172259 | Aggarwal et al. | Jul 2010 | A1 |
20100180039 | Oh et al. | Jul 2010 | A1 |
20100189236 | MacDonald | Jul 2010 | A1 |
20100190509 | Davis | Jul 2010 | A1 |
20100195566 | Krishnamurthy et al. | Aug 2010 | A1 |
20100203903 | Dingler et al. | Aug 2010 | A1 |
20100207470 | Kim et al. | Aug 2010 | A1 |
20100220665 | Govindan et al. | Sep 2010 | A1 |
20100222075 | Miura | Sep 2010 | A1 |
20100227589 | Cook et al. | Sep 2010 | A1 |
20100250542 | Fujimaki | Sep 2010 | A1 |
20100262449 | Monteforte et al. | Oct 2010 | A1 |
20100273504 | Bull et al. | Oct 2010 | A1 |
20100291907 | MacNaughtan et al. | Nov 2010 | A1 |
20100296467 | Pelletier et al. | Nov 2010 | A1 |
20100299060 | Snavely et al. | Nov 2010 | A1 |
20100311437 | Palanki et al. | Dec 2010 | A1 |
20100313157 | Carlsson et al. | Dec 2010 | A1 |
20100323723 | Gerstenberger et al. | Dec 2010 | A1 |
20100331013 | Zhang | Dec 2010 | A1 |
20110009068 | Miura | Jan 2011 | A1 |
20110010085 | Tanaka | Jan 2011 | A1 |
20110023129 | Vernal | Jan 2011 | A1 |
20110026475 | Lee et al. | Feb 2011 | A1 |
20110026495 | Lee et al. | Feb 2011 | A1 |
20110039593 | Lee et al. | Feb 2011 | A1 |
20110053609 | Choi-Grogan | Mar 2011 | A1 |
20110060808 | Martin et al. | Mar 2011 | A1 |
20110065450 | Kazmi | Mar 2011 | A1 |
20110069668 | Chion et al. | Mar 2011 | A1 |
20110072034 | Sly et al. | Mar 2011 | A1 |
20110076975 | Kim et al. | Mar 2011 | A1 |
20110077030 | Wigren et al. | Mar 2011 | A1 |
20110077032 | Correale et al. | Mar 2011 | A1 |
20110099047 | Weiss et al. | Apr 2011 | A1 |
20110106416 | Scofield et al. | May 2011 | A1 |
20110130135 | Trigui | Jun 2011 | A1 |
20110151839 | Bolon et al. | Jun 2011 | A1 |
20110161261 | Wu et al. | Jun 2011 | A1 |
20110164596 | Montemurro et al. | Jul 2011 | A1 |
20110171912 | Beck et al. | Jul 2011 | A1 |
20110172905 | Schroder et al. | Jul 2011 | A1 |
20110205964 | Fix et al. | Aug 2011 | A1 |
20110207470 | Meredith et al. | Aug 2011 | A1 |
20110210843 | Kummetz et al. | Sep 2011 | A1 |
20110210849 | Howard et al. | Sep 2011 | A1 |
20110244879 | Siomina | Oct 2011 | A1 |
20110256874 | Hayama et al. | Oct 2011 | A1 |
20110271331 | Adams | Nov 2011 | A1 |
20110287801 | Levin | Nov 2011 | A1 |
20110296169 | Palmer | Dec 2011 | A1 |
20110319098 | Potorny et al. | Dec 2011 | A1 |
20120016902 | Ranjan et al. | Jan 2012 | A1 |
20120025976 | Richey et al. | Feb 2012 | A1 |
20120028650 | Cooper et al. | Feb 2012 | A1 |
20120030083 | Newman et al. | Feb 2012 | A1 |
20120032855 | Reede et al. | Feb 2012 | A1 |
20120052883 | Austin et al. | Mar 2012 | A1 |
20120052884 | Bogatin | Mar 2012 | A1 |
20120062415 | Hwang et al. | Mar 2012 | A1 |
20120087338 | Brandt et al. | Apr 2012 | A1 |
20120099621 | Karlsson et al. | Apr 2012 | A1 |
20120139782 | Gutt et al. | Jun 2012 | A1 |
20120144452 | Dyor et al. | Jun 2012 | A1 |
20120144457 | Counterman | Jun 2012 | A1 |
20120158289 | Bernheim Brush et al. | Jun 2012 | A1 |
20120182180 | Wolf et al. | Jul 2012 | A1 |
20120182874 | Siomina et al. | Jul 2012 | A1 |
20120185309 | Kakarla et al. | Jul 2012 | A1 |
20120214509 | Levin et al. | Aug 2012 | A1 |
20120287911 | Takano et al. | Nov 2012 | A1 |
20120302254 | Charbit et al. | Nov 2012 | A1 |
20120317500 | Kosseifi et al. | Dec 2012 | A1 |
20120323703 | Hillier | Dec 2012 | A1 |
20120327869 | Wang et al. | Dec 2012 | A1 |
20130007058 | Meredith et al. | Jan 2013 | A1 |
20130023237 | Meredith et al. | Jan 2013 | A1 |
20130023247 | Bolon et al. | Jan 2013 | A1 |
20130023274 | Meredith et al. | Jan 2013 | A1 |
20130023281 | Meredith et al. | Jan 2013 | A1 |
20130053057 | Cansino et al. | Feb 2013 | A1 |
20130066748 | Long | Mar 2013 | A1 |
20130095861 | Li et al. | Apr 2013 | A1 |
20130096966 | Barnes | Apr 2013 | A1 |
20130109407 | Tipton et al. | May 2013 | A1 |
20130114464 | Tarraf et al. | May 2013 | A1 |
20130122863 | Chen et al. | May 2013 | A1 |
20130137464 | Kramer et al. | May 2013 | A1 |
20130226451 | O'Neill et al. | Aug 2013 | A1 |
20130281111 | Syrjarinne et al. | Oct 2013 | A1 |
20130310075 | Lim et al. | Nov 2013 | A1 |
20130324149 | Fix et al. | Dec 2013 | A1 |
20130337824 | Meredith et al. | Dec 2013 | A1 |
20130337826 | Fix et al. | Dec 2013 | A1 |
20140062782 | Abraham | Mar 2014 | A1 |
20140106779 | Arslan et al. | Apr 2014 | A1 |
20140122220 | Bradley et al. | May 2014 | A1 |
20140171060 | Cook et al. | Jun 2014 | A1 |
20140278744 | Lo Faro et al. | Sep 2014 | A1 |
20140295881 | Werner et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
0856746 | Aug 1998 | EP |
1145526 | Oct 2001 | EP |
2004069609 | Mar 2004 | JP |
2005091303 | Apr 2005 | JP |
2007328050 | Dec 2007 | JP |
WO2006031035 | Mar 2006 | WO |
Entry |
---|
Notice of Allowance dated Aug. 27, 2015 for U.S. Appl. No. 14/521,431, 39 Pages. |
Office Action mailed Mar. 11, 2016 for U.S. Appl. No. 14/743,076, 86 pages. |
Notice of Allowance mailed Mar. 16, 2016 for U.S. Appl. No. 14/520,287, 23 pages. |
Office Action mailed Mar. 18, 2016 for U.S. Appl. No. 13/447,072, 37 pages. |
Office Action dated Apr. 5, 2016 for U.S. U.S. Appl. No. 13/188,136, 33 pages. |
Office Action dated Apr. 13, 2016 for U.S. Appl. No. 14/877,915, 76 pages. |
Office Action dated May 17, 2016 for U.S. Appl. No. 15/074,622, 18 pages. |
3rd Generation Partnership Project, Technical Specification, “Group GSM/EDGE Radio Access Network, Radio subsystem synchronization (Release 8)”, 3GPP TS 45.010 V8.0.0 (May 2008), last viewed Jul. 1, 2009, 30 pages. |
3rd Generation Partnership Project, Technical Specification, “Group Radio Access Network, UTRAN luh interface Home Node B Application Part (HNBAP) signalling (Release 8)”, 3GPP TS 25.469 V8.0.0 (Dec. 2008), last viewed Jul. 1, 2009, 56 pages. |
Sullivan, Mark. “Signs and Wonders: Is At&T Stepping Up Its Game?” PC World, Dec. 10, 2009, 1 page. |
ETSI TS 125 215 V6.4.0 (Sep. 2005). Universal Mobile Telecommunications System (UMTS), Physical layer, Measurements (FDD), 3GPP TS 25.215 version 6.4.0 Release 6). Last accessed Jun. 18, 2010, 20 pages. |
ETSI TS 125 331 V6.9.0 (Mar. 2006). Universal Mobile Telecommunications System (UMTS), Radio Resource Control (RRC) protocol specification, (3GPP TS 25.331 version 6.9.0 Release 6). Last accessed Jun. 18, 2010, 1211 pages. |
New Devices Aim to Disable Cell Phones While Driving. FOXNews.com, Jan. 18, 2009. http://www.foxnews.com/printer—friendly—story/0,3566,480585,00.html. Last accessed Nov. 24, 2010, 2 pages. |
Cortes, et al. “Support-Vector Networks”, Machine Learning, 20, 1995. http://www.springerlink.com/content/k238jx04hm87j80g/fulltext.pdf. Last accessed Dec. 24, 2010, 25 pages. |
ACM Website, Press release of Mar. 17, 2009. http://www.acm.org/press-room/news-releases/pdfs/awards-08-groupa1.pdf. Last accessed Dec. 24, 2010, 3 pages. |
“Boser, et al. A training algorithm for optimal margin classifiers. In D. Haussler, editor, 5th Annual ACM Workshop on COLT, pp. 144-152, Pittsburgh, PA, 1992. ACM Press.http://citeseerx.ist.psu.edu/viewdoc/summaiy?doi=10.1.1.21.3818. Last accessed Dec. 24, 2010, 9 pages.” |
“Hsu, et al. A Practical Guide to Support Vector Classification. Department of Computer Science National Taiwan University, Last updated: Apr. 15, 2010.http://www.csie.ntu.edu.tw/˜cjlin/papers/guide/guide.pdf. Last accessed Dec. 24, 2010, 16 pages.” |
“Drucker, et al. Support Vector Regression Machines.http://scholar.google.com/scholar?q=%22Support+Vector+Regression+Machines.%22. Last accessed Dec. 24, 2010, 7 pages.” |
Suykens et al., “Least squares support vector machine classifiers”, Neural Processing Letters, vol. 9, No. 3, Jun. 1999, pp. 293-300. |
Ferris et al. (2002). “Interior-point methods for massive support vector machines”. SIAM Journal on Optimization 13: 783-804. doi:10.1137/S1052623400374379. |
Meyer et al. “The support vector machine under test.” Neurocomputing 55(1-2): 169-186, 2003. |
International Search Report for PCT Application No. US2011/026122, dated Sep. 10, 2011, 11 pages. |
International Search Report for PCT Application No. US2011/026120, dated Sep. 9, 2011 13 pages. |
Charitanetra et al. “Mobile positioning location using E-OTD method for GSM network” Research and Development, 2003. Proceedings Student Conference on Putrajaya, Malaysia Aug. 25-26, 2003, pp. 319-324. |
“Location Labs Powers Location-based Fraud Detection”, All Points Blog, http://webcache.googleusercontent.com/search?hl=en&rlz=1R2GFRE—enUS398&q=cache:trsMn9Sin6wJ:http://apb.directionsmag.com/entry/location-labs-powers-location-based-fraud-detection/162802+http%3A//apb.directionsmag.com/entry/location-labs-powers-location-based-...1&ct=clnk, Oct. 12, 2010. |
“Location Based Fraud Detection”, Finsphere Corporation, 2008-2010. |
Fleishman. Using the Personal Hotspot on your At & T iPhone. Published online Mar. 15, 2011. http://www.macworld.com/article/158556/2011/03/personal—hotspot—att . . . , 4 pages. |
Fleischfresser. Never Stop at a Red-Light Again. Published online Aug. 30, 2011. http://www.smartplanet.com/blog/ . . . , 2 pages. |
Cellphone Networks and the Future of Traffic. Published online Mar. 2, 2011. http://m.wired.com/autopia/2011/03/cell-phone-networks-and-the-future- . . . 15 pages. |
Intelligent Transportation System. Published online http://en.wikipedia.org/wiki/Intelligent—transportation—system. Retrieved on Aug. 15, 2011, 7 pages. |
Koukoumidis, et al., “SignalGuru: Leveraging Mobile Phones for Collaborative Traffic Signal Schedule Advisory.” MobiSys'11, Jun. 28-Jul. 1, 2011, Bethesda, Maryland, USA, Copyright 2011 ACM 978-1-4503-0643-0/11/06. Retrieved on Nov. 19, 2011, 14 pages. |
Bitcarrier Technology. Published online at http://www.bitcarrier.com/technology. Retrieved on Aug. 15, 2011, 1 page. |
Hao, et al., “Estimating Vehicle Position in a Queue at Signalized Intersections Using Simple Travel Times from Mobile Sensors.” Retrieved on Nov. 19, 2011, 6 pages. |
Ban Xuegang(Jeff), Gruteser Marco. Mobile Sensor as Traffic Probes: Addressing Transportation Modeling and Privacy Protection in an Integrated Framework. Dated Jan. 10, 2010. 17 pages. |
Office Action dated Dec. 28, 2011 for U.S. Appl. No. 12/836,471, 34 pages. |
Office Action dated Feb. 23, 2012 for U.S. Appl. No. 12/967,747, 31 pages. |
Office Action dated Dec. 15, 2011 for U.S. Appl. No. 12/712,424, 34 pages. |
Office Action dated Apr. 13, 2012 for U.S. Appl. No. 12/416,853, 36 pages. |
Office Action dated Oct. 2, 2012 for U.S. Appl. No. 13/554,285, 19 pages. |
Office Action dated Aug. 30, 2012 for U.S. Appl. No. 12/958,146, 40 pages. |
MobileLutions Introduces MobiLoc-A Breakthrough Technology to Control Texting in the Mobile Workplace. Press release Oct. 10, 2010 by MobileLutions. 2 pages. |
DriveAssist Frequently Ask question by Aegis Mobility, Wayback archive Jul. 12, 2010, 2 pages. |
Office Action dated Jul. 30, 2012 for U.S. Appl. No. 12/967,747, 28 pages. |
Office Action dated Jul. 17, 2012 for U.S. Appl. No. 13/220,083, 57 pages. |
Office Action dated Sep. 11, 2012 for U.S. Appl. No. 13/188,345, 44 pages. |
Office Action dated Oct. 15, 2012 for U.S. Appl. No. 13/523,778, 21 pages. |
Office Action dated Dec. 20, 2012 for U.S. Appl. No. 12/958,146, 23 pages. |
Office Action dated Dec. 28, 2012 for U.S. Appl. No. 13/188,295, 37 pages. |
Office Action dated Jan. 3, 2013 for U.S. Appl. No. 13/188,300, 36 pages. |
Office Action dated Nov. 8, 2012 for U.S. Appl. No. 13/204,535, 30 pages. |
Final Office Action dated Jan. 25, 2013, for U.S. Appl. No. 13/554,285, 20 pgs. |
Non-Final Office Action dated Mar. 19, 2013, for U.S. Appl. No. 13/174,541, 46 pgs. |
Final Office Action dated Feb. 13, 2013, for U.S. Appl. No. 13/220,083, 48 pgs. |
Final Office Action dated Feb. 22, 2013, for U.S. Appl. No. 13/188,345, 45 pgs. |
Final Office Action dated Mar. 15, 2013, for U.S. Appl. No. 13/204,535, 18 pgs. |
Non-Final Office Action dated Mar. 19, 2013, for U.S. Appl. No. 13/284,497, 46 pgs. |
Non-Final Office Action dated Apr. 19, 2013, for U.S. Appl. No. 13/277,595, 58 pages. |
Notice of Allowance dated Aug. 21, 2014 for U.S. Appl. No. 13/447,069, 78 pages. |
Office Action dated Aug. 28, 2014 for U.S. Appl. No. 13/526,988, 83 pages. |
Office Action dated Sep. 22, 2014 for U.S. Appl. No. 13/175,199, 62 pages. |
Office Action dated Oct. 17, 2014 for U.S. Appl. No. 13/204,535, 47 pages. |
Office Action dated Oct. 20, 2014 for U.S. Appl. No. 13/494,959, 64 pages. |
Office Action dated Oct. 22, 2014 for U.S. Appl. No. 13/557,425, 59 pages. |
Office Action dated Aug. 11, 2014 for U.S. Appl. No. 14/279,176, 22 pages. |
Office Action dated Nov. 14, 2014 for U.S. Appl. No. 13/277,595, 74 pages. |
Notice of Allowance dated Nov. 20, 2014 for U.S. Appl. No. 13/866,909, 27 pages. |
Notice of Allowance dated Dec. 9, 2014 for U.S. Appl. No. 12/958146, 48 pages. |
Office Action dated Dec. 11, 2014 for U.S. Appl. No. 13/447072, 28 pages. |
Office Action dated Dec. 1, 2014 for U.S. Appl. No. 13/495756, 76 pages. |
Office Action dated Jan. 7, 2015 for U.S. Appl. No. 13/557425, 30 pages. |
Notice of Allowance mailed Jan. 21, 2015 for U.S. Appl. No. 13/495,391, 98 pages. |
Notice of Allowance mailed Feb. 6, 2015 for U.S. Appl. No. 13/204,535, 20 pages. |
Office Action dated Feb. 13, 2015 for U.S. Appl. No. 14/516,286, 62 pages. |
Office Action dated Feb. 13, 2015 for U.S. Appl. No. 13/188,136,44 pages. |
Girardin, et al., “Digital footprinting: Uncovering tourists with user generated content.” Pervasive Computing, IEEE 7.4, Oct.-Nov. 2008. 8 pages. |
Steinfield, “The development of location based services in mobile commerce.” ELife after the Dot Com Bust. PhysicaVerlagHD, 2004. 15 pages. |
Sevtsuk, et al., “Does urban mobility have a daily routine? Learning from the aggregate data of mobile networks.” Journal of Urban Technology, vol. 17, No. 1, Apr. 2010: 20 pages. |
Buhalis, et al., “Information communication technology revolutionizing tourism.” Tourism Recreation Research, vol. 30, No. 3, 2005. 10 pages. |
Ratti, et al. “Mobile Landscapes: using location data from cell phones for urban analysis.” Environment and Planning B: Planning and Design, vol. 33, 2006, 23 pages. |
Office Action dated Apr. 16, 2015 for U.S. Appl. No. 14/521,431, 82 Pages. |
Notice of Allowance dated Mar. 19, 2015 for U.S. Appl. No. 13/494,959, 41 Pages. |
Notice of Allowance dated Mar. 26, 2015 for U.S. Appl. No. 14/276,688, 75 pages. |
Office Action dated May 1, 2015 for U.S. Appl. No. 13/557,425, 33 pages. |
Office Action dated May 14, 2015 for U.S. Appl. No. 14/530,605, 72 pages. |
Office Action dated Jun. 1, 2015 for U.S. Appl. No. 13/447,072, 38 pages. |
Office Action dated Jun. 2, 2015 for U.S. Appl. No. 14/516,286, 20 pages. |
Office Action dated May 20, 2015 for U.S. Appl. No. 13/526,988, 52 pages. |
Office Action dated Jun. 9, 2015 for U.S. Appl. No. 13/495,756, 35 pages. |
Notice of Allowance mailed Aug. 12, 2013, for U.S. Appl. No. 13/174,541, 40 pages. |
Final Office Action dated Aug. 2, 2013, for U.S. Appl. No. 13/188,295, 26 pages. |
Final Office Action dated Aug. 2, 2013, for U.S. Appl. No. 13/188,300, 38 pages. |
Non-Final Office Action dated Jun. 20, 2013, for U.S. Appl. No. 13/219,911, 61 pages. |
Non-Final Office Action dated Jul. 17, 2013, for U.S. Appl. No. 13/188,345, 27 pages. |
Non-Final Office Action dated Jun. 20, 2013, for U.S. Appl. No. 13/291,917, 52 pages. |
Non-Final Office Action dated May 31, 2013, for U.S. Appl. No. 13/523,770, 40 pages. |
Non-Final Office Action dated Sep. 19, 2013, for U.S. Appl. No. 13/927,020, 30 pages. |
Non-Final Office Action dated Oct. 2, 2013 for U.S. Appl. No. 12/958,146, 31 pages. |
Non-Final Office Action dated Sep. 26, 2013 for U.S. Appl. No. 13/284,456, 58 pages. |
RouteFinder 3.00 for ArGIS Documentation, 2007, Routeware and Higher Mapping Solutions, 71 pages, downloaded from http://www.routeware.dk/download/routefinder—arcgis.pdf. |
mySociety (Web page), “More travel-time maps and their uses”, 2007, downloaded from http://www.mySociety.org/2007/more-travel-maps/, 10 pages total (including a single page Examiner's attachment showing the operation of the interactive travel-time map). |
Wayback machine archive from Jan. 21, 2009 of the mySociety Web page, “More travel-time maps and their uses”, downloaded from http://web.archive.org/web/20090121193615/http://www.mysociety.org/2007/more-travel-maps/, 11 pages. |
Street, Nicholas, “TimeContours: Using isochrone visualisation to describe transport network travel cost”, Final Report, Jun. 14, 2006, Department of Computing Imperial College London, 97 pages. Downloaded from http://www.doc.ic.ac.uk/teaching/projects/Distinguished06/nicholasstreet.pdf. |
Non-Final Office Action dated Nov. 5, 2013 for U.S. Appl. No. 13/188,136, 47 pages. |
Final Office Action dated Sep. 18, 2013, for U.S. Appl. No. 13/284,497, 30 pages. |
Final Office Action dated Aug. 22, 2013, for U.S. Appl. No. 13/277,595, 36 pages. |
Final Office Action dated Oct. 21, 2013, for U.S. Appl. No. 13/523,770, 24 pages. |
Office Action dated Nov. 5, 2013 for U.S. Appl. No. 13/188,345, 30 pages. |
Non-Final Office Action dated Dec. 11, 2013, for U.S. Appl. No. 13/188,295, 52 pages. |
Non-Final Office Action dated Dec. 24, 2013, for U.S. Appl. No. 13/188,300, 44 pages. |
Final Office Action dated Dec. 11, 2013, for U.S. Appl. No. 13/291,917, 34 pages. |
Final Office Action dated Jan. 15, 2014 for U.S. Appl. No. 13/219,911, 38 pages. |
Final Office Action dated Jan. 28, 2014, for U.S. Appl. No. 12/958,146, 24 pages. |
Notice of Allowance dated Feb. 14, 2014 for U.S. Appl. No. 13/284,456, 30 pages. |
Final Office Action dated Feb. 24, 2014, for U.S. Appl. No. 13/927,020, 18 pages. |
Office Action dated May 21, 2013 for U.S. Appl. No. 13/305,276, 28 pages. |
Office Action dated Oct. 24, 2012 for U.S. Appl. No. 13/305,276, 37 pages. |
“Locate your friends in real time with Google Latitude.” http://googlemobile.blogspot.com/2009/02/locate-your-friends-in-real-time-with.html. Last accessed Mar. 8, 2012, 23 pages. |
“Location sharing and updating.” http://support.google.com/mobile/bin/answer.py?hl=en&answer=136647. Last accessed Mar. 8, 2012, 3 pages. |
“Privacy Settings.” http://support.google.com/mobile/bin/answer.py?hl=en&answer=136650, Last accessed Mar. 8, 2012, 1 page. |
Office Action dated Nov. 25, 2013 for U.S. Appl. No. 13/447,069, 40 pages. |
Office Action dated May 9, 2013 for U.S. Appl. No. 13/447,069, 33 pages. |
Tsai, et al, “Location-Sharing Technologies: Privacy Risks and Controls.” Feb. 2010. Retrieved on May 10, 2013, 26 pages. |
Li et al, “Sharing Location in Online Social Networks”. IEEE Network, Sep./Oct. 2010; 0890-8044/10/$25.00 (c)2010 IEEE. Retrieved on May 10, 2013, 6 pages. |
Tsai, et al, “Who's Viewed You? The Impact of Feedback in a Mobile Location-Sharing Application”. CHI 2009—Security and Privacy, Apr. 9, 2009—Boston, MA, USA. Retrieved on May 10, 2013, 10 pages. |
Pettersen, et al., “Automatic antenna tilt control for capacity enhancement in UMTS FDD.” Retrieved on Mar. 25, 2012, 5 pages. |
Islam, et al., “Self-Optimization of Antenna Tilt and Pilot Power for Dedicated Channels.” Retrieved on Mar. 25, 2012, 8 pages. |
Bigham, et al., “Tilting and Beam-shaping for Traffic Load Balancing in WCDMA Network.” Retrieved on Mar. 25, 2012, 4 pages. |
3GPP TS 25.215 V6.4.0 (Sep. 2005) Physical Layer Measurements, Sep. 2005. |
3GPP TS 25.331 V6.9.0 (Mar. 2006) RRC protocol for the UE-UTRAN radio interface, Mar. 2006. |
3GPP TS 25.413 V6.9.0 (Mar. 2006) UTRAN lu interface RANAP signalling, Mar. 2006. |
Calabrese, et al., “Real-Time Urban Monitoring Using Cell Phones: A Case Study in Rome”. IEEE Transactions on Intelligent Transportation Systems, 12 pages. (http://senseable.mitedu/papers/ pdf/2010—Calabrese—et—al—Rome—TITS.pdf). Retrieved on Sep. 29, 2012, 11 pages. |
Smith, et al., “Airsage Overview”, (http://mikeontraffic.typepad.com/files/raleigh-winter-2011-presentation-v11-final.pdf) Retrieved on Sep. 29, 2012, 39 pages. |
Office Action dated Feb. 5, 2014 for U.S. Appl. No. 13/526,988, 56 pages. |
Marko Silventoinen, Timo Rantalainen, “Mobile Station Locating in GSM” Helsinki, Finland, Last accessed on Nov. 15, 2011, 7 pages. |
Office Action dated Dec. 30, 2013 for U.S. Appl. No. 13/305,267, 10 pages. |
Office Action dated Mar. 25, 2014 for U.S. Appl. No. 13/488,144, 60 Pages. |
Interview Summary dated Feb. 3, 2014 for U.S. Appl. No. 13/188,136, 10 pages. |
Rabinowitz, et al., A new positioning system using television synchronization signals, IEEE Transactions on Broadcasting, vol. 51(1), p. 51-61, Mar. 2005. |
Office Action dated Apr. 8, 2014 for U.S. Appl. No. 13/175,199, 52 Pages. |
Office Action dated Apr. 23, 2014 for U.S. Appl. No. 13/291,917, 29 Pages. |
Office Action dated Apr. 22, 2014 for U.S. Appl. No. 13/447,069, 51 Pages. |
Office Action dated Sep. 20, 2012 for U.S. Appl. No. 12/870,254, 29 pages. |
Office Action dated May 14, 2014 for U.S. Appl. No. 13/660,689, 62pages. |
Office Action dated May 9, 2014 for U.S. Appl. No. 13/188,136, 33 pages. |
Squires, “Practical Physics”, Cambridge University Press, p. 12, 1986, 3 pages. |
Represent (2000). In Collins English dictionary. Retrieved on May 9, 2014 from http://search.credoreference.com/content/entry/hcengdict/represent/0, 2 pages. |
Represent. (2001). In Chambers 21 st century dictionary. Retrieved on May 9, 2014 from http://search.credoreference.com/content/entry/chambdict/represent/O. |
Represent. (2011). In the american heritage dictionary of the english language. Retrieved on May 9, 2014 from http://search.credoreference.com/content/entry/hmdictenglang/represent/0. |
Non-Final Office Action dated May 20, 2014 for U.S. Appl. No. 13/551,369, 29 pages. |
Non-Final Office Action dated May 30, 2014 for U.S. Appl. No. 13/277,595, 49 pages. |
Non-Final Office Action dated Jun. 3, 2014 for U.S. Appl. No. 13/523,770, 53 pages. |
Non-Final Office Action dated Jun. 6, 2014 for U.S. Appl. No. 13/447,072, 25 pages. |
Final Office Action dated Apr. 3, 2014 for U.S. Appl. No. 13/188,295, 37 pages. |
Office Action dated Jun. 18, 2014 for U.S. Appl. No. 13/305,276, 26 Pages. |
Office Action dated Jun. 26, 2014 for U.S. Appl. No. 13/557,425, 24 Pages. |
Office Action dated Jun. 30, 2014 for U.S. Appl. No. 13/305,267, 44 Pages. |
Office Action dated Jul. 22, 2014 for U.S. Appl. No. 12/958,146, 38 Pages. |
Notice of Allowance dated Jul. 22, 2014 for U.S. Appl. No. 13/525,065, 82 Pages. |
Notice of Allowance dated Jul. 7, 2014 for U.S. Appl. No. 13/188,295, 51 pages. |
Notice of Allowance dated Jul. 22, 2014 for U.S. Appl. No. 13/188,300, 49 Pages. |
Office Action dated Aug. 8, 2014 for U.S. Appl. No. 13/284,497, 48 pages. |
Notice of Allowance dated Jul. 8, 2015 for U.S. Appl. No. 14/548,901, 125 pages. |
Buford, et al., Location Privacy Enforcement in a Location-Based Services Platform, IEEE, 2009, 978-1-4244-2309-5/09/$25.00 ©2009 IEEE. Retrieved on Jul. 29, 2015, 5 pages. |
Philips, Jr. et al., Information Sharing and Security in Dynamic Coalitions, ACM, 2002. Retrieved on Jul. 29, 2015, 10 pages. |
Moniruzzaman, et al., “A Study of Privacy Policy Enforcement in Access Control Models”, Proceedings of 13th International Conference on Computer and Information Technology (ICCIT 2010), ©2010 IEEE. Retrieved on Jul. 29, 2015, 6 pages. |
Office Action dated Jul. 22, 2015 for U.S. Appl. No. 13/188,136, 31 Pages. |
“CELL—DCH”, in INACON Glossary, published online at [http://www.inacon.de/glossary/CELL—DCH.php] retrieved on Jul. 22, 2015, 1 page. |
Office Action dated Sep. 17, 2015 for U.S. Appl. No. 13/495,756, 23 Pages. |
Office Action dated Sep. 14, 2015 for U.S. Appl. No. 13/557,425, 32 Pages. |
Office Action dated Sep. 18, 2015 for U.S. Appl. No. 14/641,247, 69 Pages. |
Office Action dated Nov. 16, 2015 for U.S. Appl. No. 13/188,136, 31 pages. |
“Error”, The American Heritage(R) Dictionary of the English Language, 2011, Houghton Mifflin Company, Boston, MA, 2 pages. Retrieved from [http://search.credoreference.com/contentientry/hmdictenglang/error/O] on Nov. 16, 2015. |
Office Action dated Nov. 23, 2015 for U.S. Appl. No. 14/520,287, 80 pages. |
Office Action dated Nov. 16, 2015 for U.S. Appl. No. 14/566,657, 87 pages. |
Office Action mailed Nov. 30, 2015 for U.S. Appl. No. 13/447,072, 45 pages. |
Office Action mailed Dec. 18, 2015 for U.S. Appl. No. 14/548,901, 35 pages. |
Office Action mailed Dec. 31, 2015 for U.S. Appl. No. 14/952,609, 32 pages. |
Office Action mailed Dec. 1, 2015 for U.S. Appl. No. 13/526,988, 43 pages. |
Office Action dated Jan. 11, 2016 for U.S. Appl. No. 13/175,199, 29 pages. |
Office Action dated Sep. 30, 2016 for U.S. Appl. No. 14/957,525, 72 pages. |
Notice of Allowance mailed Oct. 7, 2016 for U.S. Appl. No. 14/548,901, 45 pages. |
Office Action dated Oct. 12, 2016 for U.S. Appl. No. 14/877,915, 34 pages. |
Notice of Allowance mailed Nov. 16, 2016 for U.S. Appl. No. 15/186,410, 80 pages. |
Office Action dated Dec. 28, 2016 for U.S. Appl. No. 13/447,072, 34 pages. |
Office Action dated Jun. 10, 2016 for U.S. Appl. No. 14/548,901, 33 pages. |
Office Action dated Jun. 22, 2016 for U.S. Appl. No. 14/970,533, 84 pages. |
Office Action dated Jun. 28, 2016 for U.S. Appl. No. 15/132,220, 17 pages. |
Notice of Allowance dated Jul. 19, 2016 for U.S. Appl. No. 14/952,609, 99 pages. |
Office Action dated Aug. 25, 2016 for U.S. Appl. No. 13/447,072, 38 pages. |
Office Action dated Jan. 13, 2017 for U.S. Appl. No. 14/601,800, 95 pages. |
Office Action dated Jan. 26, 2017 for U.S. Appl. No. 14/877,915, 20 pages. |
Office Action dated Feb. 14, 2017 for U.S. Appl. No. 14/641,242, 120 pages. |
Office Action dated Feb. 15, 2017 for U.S. Appl. No. 15/191,877, 104 pages. |
Office Action dated Feb. 27, 2017 for U.S. Appl. No. 15/132,220, 91 pages. |
Notice of Allowance dated May 8, 2017 for U.S. Appl. No. 15/466,853, 18 pages. |
Notice of Allowance dated May 19, 2017 for U.S. Appl. No. 15/261,841, 83 pages. |
Office Action dated Jun. 19, 2017 for U.S. Appl. No. 13/447,072, 47 pages. |
Office Action dated Jun. 12, 2017 for U.S. Appl. No. 15/132,220, 25 pages. |
Number | Date | Country | |
---|---|---|---|
20150208373 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13305276 | Nov 2011 | US |
Child | 14676066 | US |