The invention relates to suspended ceiling construction and, more particularly, to a main runner hanger bar.
So-called island or cloud ceilings are used by architects to define or distinguish a space from a surrounding area. Such ceilings can utilize a grid of through and cross runners, sometimes called tees, in combination with rectangular acoustical panels or parallel runners to which drywall is attached. Hanger elements have been developed to augment the rigidity of a grid or otherwise support the runners. An example of a prior grid runner hanger is disclosed in U.S. Pat. No. 7,578,107. This prior art hanger has longitudinally spaced notches that receive the reinforcing bulb of main runners and apertures for receiving screws to attach the hanger to cross runners. A problem with this hanger is that it requires manual reconfiguration by an installer at a job site of a part of the notch for reception of a bulb and then manual restoring of the reconfigured part to its original position. This manual reconfiguration and restoring adds to installation time. More subtle but of significant influence on the ease of installation of main runners on the hanger is the irregular or wholly absent ability of a notch to temporarily hold a grid runner in place once received in a field opened notch. When the notch part is provisionally bent to accept a grid runner, its configuration allows the grid runner to slip out of the notch when an attempt is made to initially install the same grid runner in a notch of another hanger spaced along the length of the grid runner. It can be impractical to fully restrain a bulb in a notch by bending the displaced part of the notch back into a positive bulb gripping position before a bulb is received in a notch of a next adjacent hanger.
The invention provides improvements in grid runner hangers that afford greater ease and speed of installation of the grid runners. The disclosed hanger can be used to support main runners in installations with or without cross runners.
The disclosed hanger, formed of malleable sheet metal, receives the hollow reinforcing bulb of a conventional grid runner or tee. The bulb is received in a specially formed notch or opening of the hanger. The notch has a profile which when its boundary is planar, is substantially closed and adapted to securely capture the reinforcing bulb and thereby locally support the respective grid runner.
A bendable tab constituting a portion of the notch profile can be bent out of the plane of the hanger to allow lateral passage of the bulb into the notch space. Once received in the notch space, the tab can be bent back into the plane of the hanger at the notch area to lock the bulb in the notch.
The tab can advantageously be pre-bent out of the notch area plane during its manufacture. A machine-made bend permits the tab to be precisely located with respect to the opposed areas of the notch. This precision, in turn, allows the tab to be located where it readily admits the bulb to the notch space, but retains the bulb from falling out of the notch space. Accidental release could otherwise occur when, for example, the suspension system is bumped or the grid runner as it is being installed in other hangers bends or otherwise develops a force tending to knock the bulb out of a notch space. It is desirable that a runner be installed in all of the notches assigned to it before any of the tabs are bent back into the notch space plane. This allows a twist in the grid runner necessary for insertion into a slot to be distributed lengthwise through adjacent hangers. The tab in its pre-bent position is preferably located so that a throat formed between the tab and an opposed edge of the notch, when viewed perpendicularly to the hanger, is generally equal to the width of the bulb.
The disclosed tab is joined to the hanger proper by two land areas separated by an elongated slot. The length of the slot is substantially greater than the combined length of the lands, measured in the same direction. This feature allows the tab to be consistently bent and straightened on a known line so that the performance of the bulb gripping and releasing action is uniform.
The profile of the notch at its upper region departs from that of the grid runner bulb. This region is configured to allow passage of a bulb that has collapsed upwardly as a result of being field cut with a tin snips or other shearing tool. The disclosed notch profile allows a field cut runner end to be longitudinally passed freely through the notch even where the bendable tab is in a notch closing position. Shoulders in the notch profile limit vertical displacement of a runner relative to the hanger bar once a bulb is installed therein.
An example of a hanger or stabilizer bar 10 embodying the invention is illustrates in
An upper margin of the hanger 10 has longitudinally spaced holes 19 for receiving suspension wire for supporting the hanger from superstructure. A lower edge 11 of the hanger 10 has a series of regularly spaced notches 12. The notch spacing can be 8 inches on center making it compatible with grid runner systems on 16 inch and 24 inch centers. Metric systems can be similarly dimensioned. As shown in
Each notch 12, shown on a larger scale in
On each side of the notch 12 is an elongated inclined through slot 31. A short land 32, 33 of the hanger material exists between the slot and the edge and the notch 11 and 12, respectively. Each slot 31 makes a line of weakness indicated by a broken line 34 in
The narrow part of the notch 12 adjacent the lower hanger edge 11, when the tab 36 is planar with the remainder of the lower portion, designated 15, of the hanger, is too small to permit a reinforcing bulb to be assembled into the notch 12 with generally vertical or upward movement of the bulb 14, i.e. lateral movement of the runner 16, relative to the hanger 10.
In accordance with one aspect of the invention, the hanger 10 is manufactured with one of the tabs 36 at each notch 12 precision machine-bent at the line of weakness 34 to an angle with respect to the hanger lower portion 15. For the geometry and proportions of the illustrated notch 12, this bend angle is, for example, between about 50 to about 70 degrees.
In the bent position of the tab 36, the minimum distance between a corner 37 formed at the intersection of a ledge 21 and the narrow portion 17 of the notch 12 and an edge 38 of the adjacent bent tab 36 is the same or slightly less than the width of the reinforcing bulb 14 (
When the hangers 10 are used in a ceiling construction, they can be suspended by wires 41, or rigid brackets (not shown), in spaced parallel relation in a common horizontal plane, as depicted in
After a length of grid runner 16 has been installed on a plurality of hangers 10, the bent tabs 36 associated with the runner can be manually bent back by the installer into the plane of the hanger lower portion 15 to lock the bulb 14 in the respective notches 12. The elongated slot 31 of the tabs 36 makes the re-bending intuitive and assures that it will reliably occur on the line of weakness 34.
The abutments 27 limit upward movement of a grid runner by stopping the bulb 14 from rising excessively in the notch 12. The notch profile provided by the arc 28 is sufficiently high to allow passage of a bulb 14 that is cut and typically crushed with a tin snips or like tool. Longitudinal movement of a grid runner 16 in a notch 12 can be necessitated, for example, by certain field conditions.
Where a length of a hanger 10 is insufficient to extend across a ceiling width or length, another hanger or hangers or a portion of a hanger can be joined in a lap joint. The end of each additional hanger 10 can be overlaid on the end of a previously installed hanger 10 so that a half notch 43 at the end of the additional hanger aligns with the last full notch 12 of the previously installed hanger. The quasi Z or S cross-section of the hanger 10 shown in
While the illustrated grid runners 16 are of a type used for suspending drywall, grid runners of other cross-sectional shape that include an upper reinforcing bulb, such as grid tees used with lay-in panels or the open slot type, can be used with the disclosed hangers 10. Further, the hanger 10 can be used with grid arrangements having cross runners between the main runners and the holes 42 adjacent the lower edge 11 can be used with self-drilling screws to attach the hanger to the cross runners. Each notch 12 can be provided with only one bendable tab 36 and the slot 31 on the opposite side of the notch can be omitted. In some installations, such as in a corridor, only one hanger running down the center of the corridor may be needed.
It should be evident that this disclosure is by way of example and that various changes may be made by adding, modifying or eliminating details without departing from the fair scope of the teaching contained in this disclosure. The invention is therefore not limited to particular details of this disclosure except to the extent that the following claims are necessarily so limited.
Number | Name | Date | Kind |
---|---|---|---|
7578107 | Platt | Aug 2009 | B2 |
20080060306 | Platt et al. | Mar 2008 | A1 |