1. Field of the Invention
The present disclosure relates in general to a device for supporting an umbilical and electrical submersible pump (“ESP”) assembly in a wellbore. More specifically, the present disclosure relates to a device for supporting a tabular made of composite with a hanger having a non-marking grit that engages the tubular.
2. Description of Related Art
Electrical submersible pumping (“ESP”) systems are deployed in some hydrocarbon producing wellbores to provide artificial lift to deliver fluids to the surface. The fluids, which typically are liquids, are made up of liquid hydrocarbon and water. When installed, a typical ESP system is suspended in the wellbore at the bottom of a string of production tubing. In addition to a pump, ESP systems usually include an electrically powered motor and seal section. The pumps are often one of a centrifugal pump or positive displacement pump.
Centrifugal pumps usually have a stack of alternating impellers and diffusers coaxially arranged in a housing along a length of the pump. The impellers are connected by a shaft that connects to the motor; rotating die shaft said impellers forces fluid through passages that helically wind through the stack of impellers and diffusers. The produced fluid is pressurized as it is forced through the helical path in the pump. The pressurized fluid is discharged from the pump and into the production tubing, where the fluid is then conveyed to surface for distribution downstream for processing.
Some ESP systems deploy the pump on a lower end of the production tubing so that the pump is supported by the tubing when downhole. In these applications, an upper end of the production tubing is usually suspended from a support within a wellhead assembly that is mounted at surface. The supports sometimes include slips between the tubing and wellhead assembly, where the slips have profiled outer surfaces that are slidable along complementary profiled surfaces in the wellhead assembly. Typically, the slips are split members that fit around the upper end of the tubing, and while on the tubing, are then lowered so the slips engage the profiled surfaces in the wellhead assembly. The weight of the tubing and pump pulling the slips downward transfers to lateral forces that wedge the slips between the tubing and wellhead assembly to couple the tubing to the wellhead assembly. To enhance gripping between the slips and the tubing, the inner surface of the slips facing the tubing often includes a series of teeth. However, the size and configuration of the teeth usually forms indentations on the outer surface of the tubing.
Disclosed herein are examples of a device for supporting tubing in a wellbore. In one example, the disclosed system is for producing fluid from a wellbore, and which includes; a wellhead assembly disposed proximate an opening of the wellbore, an annular umbilical having a portion in the wellhead assembly and a portion that depends into the wellbore, a connector assembly supported in the wellhead assembly and comprising, an annular connector housing, an annular slip assembly retained in the connector housing, and particles embedded in an inner surface of the slip assembly and that project radially inward into engaging contact with an outer surface of the umbilical, and a downhole assembly coupled to a portion of the umbilical distal from the wellhead assembly. In an embodiment, engagement between the particles and umbilical is non-marking. The umbilical can be a composite tubing. In one example, the downhole assembly is an electrical submersible pumping system and which discharges fluid into the umbilical for pumping the fluid to the wellhead assembly. Alternatively, the connector assembly is an upper connector assembly, and the system further includes a lower connector assembly which is made up of an annular connector housing, an annular slip assembly retained in the connector housing, and particles embedded in an inner surface of the slip assembly that project radially inward into engaging contact with an outer surface of the umbilical. In this example the lower connector assembly couples the downhole assembly to the umbilical, and the annular connector housing of the lower connector assembly is in engaging contact with an inner surface of a housing of the downhole assembly. Optionally, an inner surface of the connector housing has a diameter that is profiled radially inward to define a frusto-conical shoulder, the retainer has an end supported on the shoulder, and the end of the retainer is profiled complementary to the shoulder, so that when the particles grip the umbilical, the retainer is urged radially inward and to increase a gripping force exerted by the retainer against the umbilical. The retainer can be made up of curved sections that fit into a recess formed on an inner surface of the retainer. In an example, the connector assembly lands on a support formed in the wellhead assembly. In one alternate embodiment, the connector assembly is an upper connector assembly and the downhole assembly is an electrical submersible pumping system that is coupled to the umbilical with a lower connector assembly. A matrix can be provided on the inner surface of the slip assembly and in which the particles are disposed. The matrix can be a material such as epoxy, a brazed material, or combinations thereof. In an embodiment, a diameter of the slip assembly tapers radially inward from an upper end to a lower end, and wherein an inner diameter of the retainer tapers radially inward along a path that corresponds to the diameter of the slip assembly, so that a force applied from the slip assembly to the umbilical is uniform along a length of an interface between the slip assembly and the umbilical. A series of triangular shaped projections can be formed on an outer surface of the slip assembly and which fit into a series of triangular shaped recesses on an inner surface of the retainer, so that a force applied from the slip assembly to the umbilical is uniform along a length of an interface between the slip assembly and the umbilical.
Also disclosed herein is a system for producing fluid from a wellbore and which includes a wellhead assembly mounted at an opening of the wellbore, an annular umbilical that depends into the wellbore and that has an end supported in the wellhead assembly, an upper connector assembly supported in the wellhead assembly and which includes, an annular connector housing, an annular slip assembly retained in the connector housing, a matrix material on an inner surface of the slip assembly, and particles embedded in the matrix material that project radially inward info engaging contact with an outer surface of the umbilical and that are disposed so that the loading between the slip assembly and the umbilical is substantially uniform along an axial length of an interface between the slip assembly and the umbilical. Also included in this embodiment of the system is a downhole assembly coupled to a portion of the umbilical distal from the wellhead assembly and a lower connector assembly supported in the wellhead assembly and which includes, an annular connector housing in compressive engagement with a housing of the downhole assembly, an annular slip assembly retained in the connector housing, a matrix material on an inner surface of the slip assembly, and particles embedded in the matrix material that project radially inward into engaging contact with an outer surface of the umbilical and that are disposed so that the loading between the slip assembly and the umbilical is substantially uniform along an axial length of an interface between the slip assembly and the umbilical. In an example, the particles include a material such as silicon, silicon carbide grit, or combinations thereof, and wherein the particles protrude from the matrix a height of up to about 0.03 inches.
Also disclosed herein is a system for producing fluid from a wellbore which is made up of a wellhead assembly disposed proximate an opening of the wellbore, a tubular member that is formed of a composite material and that has a portion in the wellhead assembly and a portion that depends into the wellbore, an upper connector assembly supported in the wellhead assembly that includes an annular connector housing, an annular slip assembly retained in the connector housing, and particles embedded in an inner surface of the slip assembly and that project radially inward into engaging contact with an outer surface of the tabular member. The system further includes an electrical submersible pumping assembly that has a pomp and a housing, and that is coupled to the portion of the tubing that depends into the wellbore and a lower connector assembly disposed within the electrical pumping assembly; where the lower connector assembly includes an annular connector housing that compressively engages an inner surface of the housing of the electrical submersible pumping assembly, an annular slip assembly retained in the connector housing, and particles embedded in an inner surface of the slip assembly and that project radially inward into engaging contact with an outer surface of the tubular member. The loading between the slip assembly of the upper connector assembly and the tubing can be substantially uniform along an axial length of an interface between the slip assembly of the upper connector assembly and the tubing. Optionally, an inner surface of the connector housing has a diameter that is profiled radially inward to define a frusto-conical shoulder, wherein the retainer has an end supported on the shoulder, and wherein the end of the retainer is profiled complementary to the shoulder, so that when the particles grip the umbilical, the retainer is urged radially inward and to increase a gripping force exerted by the retainer against the umbilical, and wherein the retainer has curved sections. The slip assembly of the system can be non-marking.
Some of the features and benefits of the present invention having been stated, others will became apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:
While the invention will be described in connection with the preferred embodiments, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout. In an embodiment, usage of the term “about” includes −/−5% of the cited magnitude. In an embodiment, usage of the term “substantially” includes +/−5% of the cited magnitude.
It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
An example of connector assembly 28 is shown in side sectional view in
Further in the example of
An advantage of me particles 40 is that while a retaining force is provided to maintain the tubing 22 and suspended ESP assembly 10 (
The respective shapes of the connector housing 30, retainer 34, and slip assembly 38 provide a retaining force for holding the tubing 22 as the downward force to hold the tubing 22 slides the retainer 34 radially inward and along angled shoulder 32. The slip assembly 38 provides a low stress connector system that attaches to a tubular and supports a tensile load. Examples exist wherein the retainer 34 is a single member or a combination of two or more members; where each of the members has an axial length substantially the same as the retainer 34, but extends along a portion of the circumference of the retainer 34. In an alternate embodiment, the inner surface (or diameter) of retainer 34 substantially mirrors that of the outer surface (or diameter) of slip assembly 38. For example, in embodiments where the outer surface (or diameter) of the slip assembly 38 is tapered or profiled, the inner surface of the retainer 34 will be correspondingly tapered or profiled.
O-rings (not shown), or other types of seals, may optionally be included with the slip assembly 38 to isolate production fluids from within the connector assembly 28. In an example, the inner diameter of the slip assembly 38 is substantially the same as the outer diameter of the tubing 22 to provide full contact between the two. As described below, the slip assembly 38 can be segmented into at least two segments, or may have a single split along its axis to allow the slip assembly 38 to be installed onto the tubing 22. In one example, the particles 40 or grit on the inner diameter of the slip assembly 38 includes silicon, silicon carbide grit, or a similar type of material that provides high shear strength. The particles 40 or grit can be angular in shape to provide good penetration into the tubing 22 when set. The particles 40 or grit may be applied with a matrix material to provide a uniform coverage over the inner surface of slip assembly 38. The matrix material can be epoxy, brazed material, or combinations thereof. In an embodiment, the protrusion of the particles 40 or grit material above the matrix is small, such as less than or up to about 0.030″. In an example, the particles 40 or grit are dendritic, with edges, and not rounded. The surface having the particles 40 or grit area may determine the shear stress and maximum tensile capacity of the connector assembly 28. Advantages exist by uniformly coating the inner surface of the slip assembly 38 with particles 40 or grit, such as the ability to provide a uniformly distributed load along a length of contact and/or interface between the slip assembly 38 and tubing 22. In an example, the slip assembly 38 is loaded to a proscribed amount to avoid damaging the tubing 22 or the particles 40 or grit.
Shown in side sectional view in
Further, in addition to the uniform placement of the particles 40, the profiles and configurations of the slip assemblies 38, 38A, 38B, 38C, 38D and retainers 34, 34A, 34B, 34C, 34D can also yield a substantially uniform loading along the axial length of the interface between these slip assemblies and respective retainers. Referring now to
Referring now to
Retainer 64 includes a recess 68 formed along a portion of its inner surface and which defines a retainer shoulder 70 proximate end 66. Recess 68 forms another retainer shoulder 72 proximate an end 74 of retainer 64 that is distal from end 66. Set within recess 68 is an annular slip assembly 76 that is retained between shoulders 70, 72. Slip assembly 76, which is similar to slip assembly 38 of
An alternate embodiment of the connector assembly 28E is shown in a partial side sectional view in
One advantage of implementation of one or more of the embodiments described herein is that an ESP may be deployed without the need for a rig, which saves time and substantial cost. Moreover examples exist wherein electricity for powering the motor 14 (
The present invention described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the invention has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. This connector can be used on metallic conduits where corrosive fluids may cause premature connector failure due to high stress loads in conventional slip type connectors. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.
This application claims priority to and the benefit of U.S. Provisional Application Ser. No. 62/051,431, filed Sep. 17, 2014, the full disclosure of which is hereby incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3130987 | Johnson | Apr 1964 | A |
4646827 | Cobb | Mar 1987 | A |
4823919 | Hayatdavoudi | Apr 1989 | A |
5515926 | Boychuk | May 1996 | A |
5988273 | Monjure et al. | Nov 1999 | A |
6089338 | Bouligny, Jr. | Jul 2000 | A |
6305649 | Walmsley | Oct 2001 | B1 |
6481498 | Ackroyd | Nov 2002 | B1 |
6672394 | Neal | Jan 2004 | B2 |
6755097 | Bangert | Jun 2004 | B2 |
6820705 | Baugh | Nov 2004 | B2 |
7231984 | Jaensch | Jun 2007 | B2 |
7533719 | Hinson et al. | May 2009 | B2 |
8056621 | Ring et al. | Nov 2011 | B2 |
8678112 | Vatne | Mar 2014 | B2 |
20050133228 | Shampine et al. | Jun 2005 | A1 |
20120298372 | Bamford | Nov 2012 | A1 |
20130043034 | Drablier et al. | Feb 2013 | A1 |
20150330194 | June | Nov 2015 | A1 |
20170183935 | Brown | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
202900112 | Apr 2013 | CN |
2009112853 | Sep 2009 | WO |
2013158030 | Oct 2013 | WO |
Entry |
---|
International Search Report and Written Opinion PCT/US2015/050502 dated Dec. 15, 2015. |
Number | Date | Country | |
---|---|---|---|
20160076330 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
62051431 | Sep 2014 | US |