Not applicable.
The present invention relates generally to the field of a removal tool for a hanger pin of a bottle molding machine.
As anyone who performs a lot of mechanical work will attest, nothing beats having the proper tool for a job. The proper tool can save time, save money, produce a higher quality job, reduce damage to equipment, and provide for the increased safety of the worker. Each field of mechanical work has its own type of specialty tools, each performing a specialized task. One (1) field where there has been a need for such a specialized tool is in the removal of molding hangers on glass bottle molding machines. Such hangers are held in place with pins. Unfortunately, these hangers run in extremely hot conditions and often seize up in the hanger.
Current methods of removal are extremely time consuming as well as posing a risk of damage to the pin, the hanger, or the molding machine itself. Accordingly, there is a need for a means by which retaining pins used on molding hangers used on glass bottle molding machines can be easily removed without the disadvantages as described above. The development of the mold hanger pin removal tool fulfills this need.
To achieve the above and other objectives, the present invention provides for such a pin removal tool, including a sleeve having a first end and a second end and an insert slidably connecting within an interior of the sleeve, further having an insert first end and an insert second end. The insert is configured to receive a first nut. The insert is configured to engage with a bolt head of a molding pin hanger. The insert is configured to permit travel of a threaded rod therethrough to adjustably engage with the first nut. The sleeve second end is configured to permit travel of the threaded rod therethrough. The sleeve is configured to resist passage of the bolt head with the insert when it insert travels relative to the sleeve.
To achieve the above and other objectives, the present invention provides for such a pin removal tool, including a sleeve having a first end and a second end an insert slidably connecting within an interior of the sleeve, further having an insert first end and an insert second end, a first nut residing within the insert, and a threaded rod adjustably attached to the first nut adjacent a first rod end and adjustably attached to the sleeve second end adjacent a rod second end. The insert is configured to receive a first nut. The insert is configured to engage with a bolt head of a molding pin hanger. The insert is configured to permit travel of a threaded rod therethrough to adjustably engage with the first nut. The sleeve second end is configured to permit travel of the threaded rod therethrough. The sleeve is configured to resist passage of the bolt head with the insert when it insert travels relative to the sleeve.
It is therefore an object of the present invention to provide such a sleeve to include a slot extending inwardly along a side of the sleeve from the sleeve first end, a cap affixed to and covering the sleeve second end, a cap aperture, and a key located on an inner surface thereof. The key interacts with the insert to prevent rotational movement of the insert relative to the sleeve. The cap aperture is configured to permit travel of the threaded rod therethrough. In at least one (1) embodiment, the slot terminates in an elongated opening on either side of a longitudinal bisecting centerline, sized to permit insertion of the bolt head therethrough. The slot is sized to restrict passage of the bolt head when the insert travels relative to the insert.
It is an object of the present invention to provide such an insert to include a band circumscribed and recessed along the insert adjacent the insert first end, a first bore section having a first bore diameter extending inwardly from the insert second end with a first bore length, a second bore section having a second bore diameter extending inwardly from the first bore section and having a second bore length, a third bore section having a third bore diameter extending inwardly from the first bore section and having a third bore length, an access slot located on a first side of the sleeve located at a transition between the second and third bore section and in fluid communication therewith, a guide slot extending inwardly along a second side of the insert from said insert first end, and a bolt head capture slot located within the band. The guide slot engages a key feature within the sleeve to prevent rotational movement of the insert relative to the sleeve. The access slot is configured to receive the first nut. The first bore section, second bore section, and third bore section are configured to permit travel of the threaded rod therethrough. In certain embodiments, a roll pin located within the access slot is capable of engaging the first nut.
The advantages and features of the present invention will become better understood with reference to the following more detailed description and claims taken in conjunction with the accompanying drawings, in which like elements are identified with like symbols, and in which:
The best mode for carrying out the invention is presented in terms of its preferred embodiment, herein depicted within
The terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one (1) of the referenced items.
Referring now to
The movable insert 15 is generally cylindrical in state with the approximate dimension of five and three-eighths inches (5⅜ in.) in length and one and three-eighths inches (1⅜ in.) in diameter. It is envisioned to be made of tool grade steel such as chromium-vanadium alloy or similar material. It is provided with three different bore sections. A first bore section 25 is approximately two inches (2 in.) in length and five-eighths inch (⅝ in.) diameter. A second bore section 30, directly adjacent to the first bore section 25 is approximately one-half inch (½ in.) in length and one-half inch (½ in.) in diameter. The remainder of the movable insert 15 is then provided with a third bore section 35 that is approximately five-sixteenths inch ( 5/16 in.) in diameter. A guide slot 40 (here shown by hidden lines due to illustrative limitations) is provided on the opposite side of the movable insert 15. This guide slot 40 continues for the entire length of the movable insert 15. An access opening 45 is provided at the junction of the second bore section 30 and the third bore section 35, whose functionality will be described herein below. The movable insert 15 is provided with a recessed band 50 that extends around the entire perimeter of the movable insert 15.
Referring next to
Referring now to
The right end of the outer sleeve 20 is provided with a welded cap 85 for structural reinforcement. The threaded rod 60 extends through the welded cap 85 whereupon a second nut 90 is installed. Thus, as the second nut 90 is tightened, the movable insert 15 is pulled through the outer sleeve 20 along a withdrawal travel path 95. The movable insert 15 is prevented from rotational movement within the outer sleeve 20 via a key 100 which is permanently fastened to the outer sleeve 20 and rides in the guide slot 40 of the movable insert 15. During use of the tool 10, the user installs a bolt 110 (typically a five-sixteenth ( 5/16) bolt) in the top of the molding pin 105 holding the molding hanger in place. It is noted that the pins are predrilled and tapped to accept the bolt 110. Next, with the tool 10 in the configuration as shown in
Referring finally to
The preferred embodiment of the present invention can be utilized by the common user in a simple and effortless manner with little or no training. It is envisioned that the tool 10 would be constructed in general accordance with
After procurement and during utilization, the tool 10 would be used in the following manner: the movable insert 15 would be positioned within the outer sleeve 20 as shown in
After use of the tool 10, the rotation of the second nut 90 is reversed; the movable insert 15 is driven back to the initial position as shown in
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention and method of use to the precise forms disclosed. Obviously many modifications and variations are possible in light of the above teaching. The embodiment was chosen and described in order to best explain the principles of the invention and its practical application, and to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is understood that various omissions or substitutions of equivalents are contemplated as circumstance may suggest or render expedient, but is intended to cover the application or implementation without departing from the spirit or scope of the claims of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
1510866 | Seppmann | Oct 1924 | A |
1873294 | Cosgrove | Aug 1932 | A |
1887994 | Conner et al. | Nov 1932 | A |
2133697 | Birkelund | Oct 1938 | A |
3099876 | Lawless | Aug 1963 | A |
3200484 | Garman | Aug 1965 | A |
3584365 | Cuen et al. | Jun 1971 | A |
4432125 | Monteleone et al. | Feb 1984 | A |
4627141 | Teske | Dec 1986 | A |
4798106 | Foster | Jan 1989 | A |
5033180 | Colson | Jul 1991 | A |
5163519 | Mead | Nov 1992 | A |
5327631 | Lincavage | Jul 1994 | A |
6526641 | Latham | Mar 2003 | B1 |
6601277 | Swanson | Aug 2003 | B1 |
6910252 | Draggie | Jun 2005 | B2 |
8256081 | Fridman | Sep 2012 | B2 |
20090236572 | Laun | Sep 2009 | A1 |
20120301291 | Spanos | Nov 2012 | A1 |
20140345100 | Huang | Nov 2014 | A1 |