The present invention relates to portable lighting devices and, more particularly, to hanging lights.
The present invention may provide, in one independent aspect, a portable lighting device including a body having an interior cavity, a lighting unit supported by the body including a light emitting diode, and a terminal block supported within the interior cavity of the body. The terminal block configured to connect to a power source and provide electrical energy to the lighting unit to illuminate the light emitting diode. The portable lighting device also includes a port formed in the body in communication with the interior cavity. The port configured to allow an electrical wire to pass into the interior cavity to couple the electrical wire to the terminal block. The portable lighting unit further includes a wire clamp supported by the body at the port. The wire clamp includes a single actuator and a clamp. The single actuator is selectively movable relative to the body to move the clamp into engagement with the electrical wire passing through the port.
The present invention may provide, in another independent aspect, a portable lighting device including a body having a base with an interior cavity and a cover movably coupled to the base to selectively provide access to the interior cavity. The portable lighting device also includes a lighting unit supported by the body having a light emitting diode and a terminal block supported within the interior cavity of the body. The terminal block configured to connect to a power source and provide electrical energy to the lighting unit to illuminate the light emitting diode. The portable lighting device further includes a cover locking mechanism supported by the body that engages the base to maintain the cover in a closed configuration. The cover locking mechanism includes an actuator to selectively allow the cover to move to an open configuration. The actuator accessible by inserting a tool through a hole in the cover.
The present invention may provide, in yet another independent aspect, a portable lighting device including a body, a lighting unit supported by the body having a light emitting diode, and a hanging cable configured to hang the body from a support structure. The hanging cable includes a first end secured to the body and a second end portion opposite the first end. The portable lighting device also includes a cable clamp mechanism supported by the body. The cable clamp mechanism engages the second end portion of the hanging cable to secure the hanging cable relative to the body. The hanging cable includes a manual actuator to disengage the cable clamp mechanism to allow adjustment of a length of the hanging cable between the first end and the cable clamp mechanism.
Other independent features and independent aspects of the invention may become apparent by consideration of the following detailed description and accompanying drawings.
Before any independent embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other independent embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
The lighting unit 20 is supported by the body 100. As shown in
With continued reference to
The illustrated lens 50 is also detachably coupled to the body 100, allowing the lens 50 to be easily cleaned and/or replaced. In some embodiments, the lens 50 may be threadably coupled to the body 100. In other embodiments, the lens 50 may be detachably coupled to the body 100 in other suitable manners (e.g., press fitting, detents, bayonet couplings, etc.).
In the illustrated embodiment, the lens 50 is frustoconically-shaped and includes a top portion 55, a middle portion 60, and a flat bottom 212. The top portion 55 completely surrounds the heat sink 30 and is coupled to the body 100. The middle portion 60 of the lens 50 tapers from the top portion 55 to the flat bottom 212. In other words, the cross-sectional diameter of the middle portion 60 of the lens 50 decreases as it extends away from the body 100. The heat sink 30 is also frustoconically shaped, and includes a body portion 70, a cone portion 75 and a bottom 80.
With reference to
In the illustrated embodiment, the length of the cone portion 75 could be 1.42 inches, and the distance between the bottom portion 80 of the heat sink 30 and the flat bottom 212 of the lens 50 could be 2.23 inches. As illustrated, the ratio of the length of the cone portion 75 to the distance between the bottom portion 80 of the heat sink 30 and the flat bottom 212 of the lens 50 is about 1:1.57. In other embodiments (not shown), the ratio of the length of the cone portion 75 to the distance between the bottom portion 80 of the heat sink 30 and the bottom 212 of the lens 50 could be lower or higher, as described below.
With reference to
With continued reference to
In other embodiments (not shown), the area of illumination can be increased by increasing the distance between the LEDs 25 and the bottom 212 of the lens 50 and/or by decreasing the size of the heat sink 30 (e.g., the diameter of the body portion 70). In such embodiments, the area of illumination may only be maximized to cover to the outer edge of the body 100.
The illustrated body 100 is generally cylindrically-shaped and includes a base 112, a cover 116, and an annular rim 162. The base 112 is coupled to the lens 50. The base 112 includes a reduced diameter portion 136, or neck, between the cover 116 and the lens 50. The reduced diameter portion 136 allows an excess length of hanging cable or electrical wire to be wrapped and stored around the body 100. As shown in
The cover 116 is movably coupled to the base 112 for movement between a closed configuration (
The cover 116 also includes a locking mechanism 150 to maintain the cover 116 in the closed configuration against the bias of the spring(s) 146. In the illustrated embodiment, the locking mechanism 150 includes a quarter-turn fastener that may be rotated by a user with, for example, a screw driver to unsecure the locking mechanism 150 from the base 112. In other embodiments, other types of detachable coupling mechanisms (e.g., push button latches, ball detents, etc.) that may or may not require tools to actuate may alternatively be used to hold the cover 116 in the closed configuration. In some embodiments, a gasket may be positioned between the cover 116 and the base 112 to seal the interior cavity 140 when the cover 116 is closed.
As shown in
With continued reference to
The cable clamp mechanism 120 is supported by the body 100 at a location diametrically opposite from where the first end 126A of the cable 126 is secured to the body 100. In particular, the cable clamp mechanism 120 is aligned with one of the channels 178, and the first end 126A of the cable 126 is secured in the other channel 178. This arrangement allows the hanging cable 126 to be extended over the cover 116 to form a loop for hanging the lighting device 10. The cable clamp mechanism 120 also allows the length of the cable 126 between the secured first end 126A and the cable clamp mechanism 120 to be adjusted (e.g., increased or decreased) by pulling the second end portion 126B of the cable 126 through or releasing the second end portion 126B of the cable 126 from the cable clamp mechanism 120. Adjusting the length of the cable 126 changes the size of the loop formed by the hanging cable 126. Excess length of the hanging cable 126 can be wrapped around the reduced diameter portion 136 of the base 112 for storage.
One set of terminals 200a-c acts as a power input, and includes a power in terminal 200a, a ground terminal 200b, and neutral terminal 200c. These terminals 200a-c are electrically coupled to an external power source via electrical wires and to the lighting unit 20 to power the LEDs 25. The other set of terminals 200e-g acts as a power output, and includes a power out terminal 200e, a ground terminal 200f, and a neutral terminal 200g. These terminals 200e-g allow a peripheral device, such as another portable lighting device, to be electrically coupled to and draw power from the lighting device 10. As such, multiple portable lighting devices 10 can be connected, or daisy-chained, together to form a string of lights that receive power from the same external power source.
The illustrated terminal block 200 also includes two pass-through screw terminals—an input terminal 200d and an output terminal 200h. The pass-through terminals 200d, 200h are configured to receive power from the external power source or a second external power source, and pass electricity through the terminal block 200. That is, electricity is passed directly through the lighting device 10 without being consumed or attenuated by the lighting device 10 (e.g., to power the lighting unit 20, etc.). Sufficient power can thereby be provided to downstream lights by the pass-through terminals 200d, 200h if, for example, many lights are strung together. Accordingly, one or more peripheral devices (including additional portable lighting units 10) may be connected to the lighting device 10 via either the output terminals 200e-g or the pass-through terminals 200d, 200h.
In one example, a plurality of lighting devices 10 may be electrically connected to a common power source via terminal blocks 200 disposed in each lighting device 10. If the first lighting device 10 is coupled to the external power source, and each subsequent lighting device 10 is coupled to the output terminals of an adjacent device 10, the number of lights that may be connected in series is limited by the power usage of each upstream device 10. In order to overcome this power consumption, the pass-through terminals 200d, 200h transfer power without significant usage or attenuation. Accordingly, a greater number of lighting devices 10 and/or other peripheral devices may be coupled in series.
Referring back to
Each clamp 132 is associated with one of the ports 128 and includes a door 204 (
Each wire clamp 132 also includes an adjustment member 208 coupled to the door 204. The adjustment member 208 is actuatable to move the door 204 relative to the body 100. As shown in
In further embodiments, other types of mechanisms may be used for moving the doors 204 relative to the body 100. For example, the doors 204 may be spring-biased closed and manually moved open, the doors 204 may be associated with switches that change their positions, or the doors 204 may include detents to hold the doors open and closed with handles to manually move the doors 204.
As shown in
In operation, the device 10 may be hung on or otherwise connected to an external structure via the hanging cable 126 or notch 170. The lighting device 10 is also electrically coupled to a power source, such as a DC power source (e.g., a battery pack) or an AC power source (e.g., a standard 120V power outlet) via one or more electrical wires, to power the LEDs 25 of the lighting unit 20. The light emitted by the LEDs 25 passes through the lens 50, which diffuses light to provide light to a larger area and to provide more uniform lighting. Furthermore, additional lighting devices, or other peripheral devices, may be coupled to the lighting device 10 via the power outlet or the pass-through terminals as described above.
As the fastener 305 is rotated in one direction (e.g., tightened), the fastener 305 moves the front and back clamps 310, 315 down towards a bottom plate 335 (
The trigger 405, or actuator, is moveable towards the latch 410 to push the latch 410 away from cover 116, allowing the cover 116 to open. A hole 420 in the cover 116 allows access to the trigger 405. In some embodiments, a tool or other object may be inserted into the hole 420 to push the trigger 405 against the bias of the resilient member 415 to release the latch 410. That is, the trigger 405 pushes the latch 410 inwardly to move the latch 410 out of engagement with the flange 418 of the cover 116. The cover 116 may then be opened (e.g., manually and/or by the springs 146 (
In some embodiments, a user may insert a tool into a hole 520 in the body 100 to move the latch 505, or actuator, against the bias of the resilient member 515. Moving the latch 505 disengages the hook 510 from the cover 116, releasing the cover 116. The cover 116 may then be opened (e.g., manually and/or by the springs 146 (
In operation, the second end 126B of the cable 126 extends through the opening 655 and into the clamp mechanism 600 between the projection 635 on the housing 605 and the cam 615. The second end 126B of the cable 126 is then clamped between the toothed surface 638 of the projection 635 and the toothed surface 630 of the cam 615. The cam 615 inhibits the cable 126 from moving in one direction relative to the housing 605. For example, a user may tighten (e.g., shorten) the cable 126 by pulling the cable 126 further through the opening 655 (i.e., downward in the figures). Movement of the cable 126 in a downward direction temporarily rotates the cam 615 away from the projection 635 against the bias of the resilient member 625. However, the cam 615 inhibits the cable 126 from being pulled in the other direction to loosen (e.g., lengthen) the cable 126.
A user may lengthen the cable 126 by pressing the button 620 against the bias of the compression spring 652 so that the button 620 slides down along the track 640. As the button 620 slides downwards, the latch 645 forces the pin 650 downward and rotates the cam 615 against the bias of the resilient member 625. Rotating the cam 615 against the bias of the resilient member 625 enlarges a gap 660 between the projection 635 and the toothed cam surface 630, allowing a user to move the cable 126 through the opening 655. As such, a user may extend the cable 126 by pulling the cable 126 out of the opening 655. Once a desired length has been reached, the user may then release the button 620 to secure the second end 126B of the cable 126 between the projection 635 and the cam 615.
The illustrated clamp mechanism 700 further includes a cover 735. The cover 735 is coupled to the housing 705 and at least partially covers the cam 710. The cover 735 defines an arcuate slot 740 through which the lever 715 extends. The arcuate slot 740 guides movement of the lever 715. The cover 735 also defines an opening 745 between an upper portion of the cover 735 and the housing 705. The opening 745 receives the cable 126 to thread the cable 126 through the clamp mechanism 700.
In operation, the second end 126B of the cable 126 extends through the opening 745 and into the clamp mechanism 700 between the projection 720 on the housing 705 and the cam 710. The second end 126B of the cable 126 is then clamped between the toothed surface 725 of the projection 720 and the toothed surface 730 of the cam 710. The cam 710 inhibits the cable 126 from moving in one direction relative to the housing 705. For example, a user may tighten (e.g., shorten) the cable 126 by pulling the cable 126 further through the housing 705 (i.e., downward in the figures). Movement of the cable 126 in a downward direction temporarily rotates the cam 710 away from the projection 720 against the bias of the torsion spring. However, the cam 710 inhibits the cable 126 from being pulled in the other direction (i.e., upward in the figures) to loosen (e.g., lengthen) the cable 126.
A user may lengthen the cable 126 by rotating the lever 715, and thereby the cam 710, against the bias of the torsion spring. In particular, the lever 715 is rotatable by a user in the direction of arrow A (
The illustrated cam 820 includes an inclined surface 850, a slot 855 that the pin 840 extends through to couple the cam 820 to the stem 835, and a toothed surface 860. A resilient member (e.g., compression spring) biases the inclined surface 850 of the cam against an inclined surface 865 of the housing 805. The housing 805 at least partially defines an opening 870 between an upper portion of the cover and the housing 805. The opening 870 receives the cable 126 to thread the cable 126 through the clamp mechanism 800.
In operation, the second end 126B of the cable 126 extends through the opening 870 and into the clamp mechanism 800 between the projection 825 on the housing 805 and the cam 820. The second end 126B of the cable 126 is then clamped between the toothed surface 830 of the projection 825 and the toothed surface 860 of the cam 820. The cam 820 inhibits the cable 126 from moving relative to the housing 805.
A user may lengthen the cable 126 by pressing the button 810 downwards along the track 815, causing the inclined surface 850 of the cam 820 to slide along the inclined surface 865 of the housing 805. The bias of the compression spring forces the inclined surface 850 of the cam 820 to engage the inclined surface 865 of the housing 805, allowing the cam 820 to slide on the pin 840 and away from the projection 825 to enlarge a gap 875 between the projection 825 and the cam 820. A user may then pull the cable 126 in or out of the housing 805 through the opening 870. Once the cable 126 is at a desired length, a user may release the button 810. The resilient member 845 biases the button 810 upwards out of the housing 805, drawing the cam 820 upwards and causing the inclined surface 865 of the housing 805 to push the toothed cam surface 860 against the bias of the compression spring towards the toothed surface 830 of the projection 825 to secure the cable 126 again.
To secure the second end 126B of the cable 126, a user rotates the knob 905 against the bias of the resilient member 915 to enlarge a gap 925 for the cable 126 to pass through. Once the cable 126 is within the gap 925, a user then releases the knob 905 allowing the resilient member 915 to rotate the knob 905 and secure the cable 126 between the abutments 910, 920. In the illustrated embodiment, the resilient member 915 is a torsion spring; although in other embodiments the resilient member 915 may be other types of springs. The resilient member 915 biases the knob 905 in a clockwise direction and thus a user rotates the knob 905 counter-clockwise to allow the cable 126 into the gap 925. Alternatively, the resilient member 915 may bias the knob 905 counter-clockwise.
In the illustrated embodiment, the cam member 1115 is coupled to the button 1120, or actuator, with a pin 1150. The cam member 1115 is pivotable relative to the housing 1105 about the pin 1150. The cam member 1115 includes a toothed surface 1155 that faces the smooth surface 1135. The resilient member 1125 biases the toothed surface 1155 of the cam member 1115 against the smooth surface 1135 of the housing 1105. In the illustrated embodiment, the resilient member 1125 is a spring plate, although in other embodiments, the resilient member 1125 may be other types of springs.
In operation, the second end 126B of the cable 126 extends through the opening 1140 and into the clamp mechanism 1100 between the cam member 1115 and the housing 1105. The cam 1115 inhibits movement of the cable 126 from moving in one direction relative to the housing 1105. For example, a user may tighten (e.g., shorten) the cable 126 by pulling the cable 126 further through the housing 1105 (i.e., downward in the figures). Movement of the cable 126 in a downward direction temporarily pivots the cam member 1115 away from the smooth surface 1135 of the housing 1105 against the bias of the resilient member 1125. However, the cam member 1115 inhibits the cable 126 from being pulled in the other direction (i.e., upward in the figures) to loosen (e.g., lengthen) the cable 126.
A user may lengthen the cable 126 by actuating the button 1120, and thereby pivoting the cam member 1115 against the bias of the resilient member 1125. In particular, the button 1120 is depressible by a user to pivot the cam member 1115 away from the housing 1105. Pivoting the cam member 1115 enlarges a gap between the smooth surface 1135 of the housing 1105 and the toothed surface 1155 of the cam member 1115, allowing the user to pull cable 126 through the opening 1140. Once a desired length of cable 126 has been reached, the user may release the button 1120, causing the cam 1115 to pivot back towards the housing 1105 and clamp the cable 126 between the surfaces 1135, 1155.
In the illustrated embodiment, the maximum power input from an AC source for the device 10 is 125 Watts (W) at just over 1 Amp (A). Preferably, the power input from an AC source is within a range between 115 W and 125 W for 115-120 Volts (V) AC. With such an input, the light output is within a range between 15,000 and 18,000 Lumens. Preferably, the light output is 15,900 Lumens. In the illustrated embodiment, the device 10 produces a ratio of the light emitted (Lumens) divided by the power (Watts) that is greater than 117 L/W. Preferably, the ratio is in a range between 120 L/W and 155 L/W. Additionally, the device 10 produces a ratio of the light emitted divided by the voltage output (Volts) that is in a range between 150 L/V and 160 L/V.
In the illustrated embodiments, the portable lighting device 10 includes an integrated circuit board with a processor that controls the operation of the portable lighting device 10. For example, the processor may control power to the terminal block 200 or to the LEDs 25. As shown in
Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the scope and spirit of one or more independent aspects of the invention as described.
This application claims priority to co-pending U.S. Provisional Patent Application No. 62/749,181 filed on Oct. 23, 2018, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62749181 | Oct 2018 | US |